Как был открыт закон Архимеда? Архимед - гений, опередивший время.

Знаменитая легенда о том, как нагой Архимед бежал по улице и кричал «Эврика!» («нашел!»), как раз повествует об открытии им того, что выталкивающая сила воды равна по модулю весу вытесненной им воды, объем которой равен объему погруженного в нее тела. Это открытие названо законом Архимеда.

В III веке до нашей эры царь древнегреческого города Сиракузы попросил проверить ученого Архимеда, из чистого ли золота сделал мастер ему корону. Проблема здесь вот в чем. Когда царь заказывал корону, он дал мастеру определенную массу золота. Когда мастер вернул золото в виде короны, то оно весило столько, сколько и масса данного золота. Но ведь мастер мог схитрить.

Если взять из общей массы золота немного золота и положить туда равную взятой массе золота массу серебра (которое дешевле), то никто и не заметит. Ведь на глаз не отличишь, а масса такая, какая и должна быть.

Как известно, масса тела равна произведению плотности вещества, из которого сделано тело, на его объем: m = ρV. Если у разных тел одинаковая масса, но они сделаны из разных веществ, то значит у них будет разный объем. Если бы мастер вернул царю не ювелирно сделанную корону, объем которой определить невозможно из-за ее сложности, а такой же по форме кусок металла, который дал ему царь, то сразу было бы ясно, подмешал он туда другого металла или нет. Просто при равной массе отличались бы объемы кусков. Но как определить объем короны? По-сути именно эта задача стояла перед Архимедом.

И вот принимая ванну, Архимед обратил внимание, что вода из нее выливается. Он заподозрил, что выливается она именно в том объеме, какой объем занимают его части тела, погруженные в воду. И Архимеда осенило, что объем короны можно определить по объему вытесненной ей воды. Ну а коли можно измерить объем короны, то его можно сравнить с объемом куска золота, равного по массе. Если объемы окажутся равными, то значит ювелирный мастер честно выполнил свою работу. Архимед выскочил из ванной и побежал проверять свое открытие.

Архимед погрузил в воду корону и измерил, как увеличился объем воды. (Хотя на самом деле Архимед мог измерять потерю веса при погружении тела в воду. Потеря веса равна весу вытесненной воды. А вес воды зависит от вытесненного объема. В свою очередь вытесненный объем воды равен объему погруженного в воду тела.) Также он погрузил в воду кусок золота, у которого масса была такая же как у короны. И тут он измерил, как увеличился объем воды. Объемы вытесненной в двух случаях воды оказались разными. Архимед был рад своему открытию, а вот ювелир не очень.

Архиме́д (Ἀρχιμήδης; 287 до н. э. - 212 до н. э.) - древнегреческий физик,инженер и математик из Сиракуз. Автор множества открытий в геометрии. Основоположник механики, гидростатики, автор ряда важных изобретений. Он изобрел машину для поливки полей (\»улитку\»), водоподъемный винт и особенно успешно разрабатывал конструкции военных машин.

По словам Плутарха, Архимед был просто одержим математикой. Он забывал о пище, решая математические задачи и совершенно не заботился о себе.

Архимед родился в Сиракузах, греческой колонии на острове Сицилия. Отцом Архимеда был математик и астроном Фидий, состоявший, как утверждает Плутарх, в близком родстве с Гиероном II, тираном Сиракуз. Отец привил сыну с детства любовь к математике, механике и астрономии. Для обучения Архимед отправился в Александрию Египетскую - научный и культурный центр того времени.


В Александрии Архимед познакомился и подружился со знаменитыми учёными: астрономом Кононом, разносторонним учёным Эратосфеном, с которыми потом переписывался до конца жизни. В то время Александрия славилась своей библиотекой, в которой было собрано более 700 тыс. рукописей.

По-видимому, именно здесь Архимед познакомился с трудами Демокрита, Евдокса и других замечательных греческих геометров, о которых он упоминал и в своих сочинениях.
По окончании обучения Архимед вернулся в Сицилию. В Сиракузах он был окружён вниманием и не нуждался в средствах. Из-за давности лет жизнь Архимеда тесно переплелась с легендами о нём.

Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Известен рассказ о том, как Архимед сумел определить, сделана ли корона царя Гиерона из чистого золота, или ювелир подмешал туда значительное количество серебра. Удельный вес золота был известен, но трудность состояла в том, чтобы точно определить объём короны: ведь она имела неправильную форму! Архимед всё время размышлял над этой задачей. Как-то он принимал ванну, и тут ему пришла в голову блестящая идея: погружая корону в воду, можно определить её объём, измерив объём вытесненной ею воды. Согласно легенде, Архимед выскочил голый на улицу с криком «Эврика!» , то есть «Нашёл!». В этот момент был открыт основной закон гидростатики: закон Архимеда. Посмотрите мультфильм: «Коля, Оля и Архимед». Там эта история очень замечательно рассказывается.
Другая легенда рассказывает, что построенный Гиероном в подарок египетскому царю Птолемею тяжёлый многопалубный корабль «Сиракузия» никак не удавалось спустить на воду. Архимед соорудил систему блоков (полиспаст), с помощью которой он смог проделать эту работу одним движением руки.

По легенде, Архимед заявил при этом: «Будь в моём распоряжении другая Земля, на которую можно было бы встать, я сдвинул бы с места нашу» (в другом варианте: «Дайте мне точку опоры, и я переверну мир»).

Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 году до н. э. в ходе Второй Пунической войны. А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер.

Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули. В последние годы были проведены несколько экспериментов с целью проверить правдивость описания этого «сверхоружия древности». Построенная конструкция показала свою полную работоспособность.

Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело… римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца». Но даже во время осады Архимед не давал покоя римлянам. По легенде, во время осады римский флот был сожжён защитниками города, которые при помощи зеркал и отполированных до блеска щитов сфокусировали на них солнечные лучи по приказу Архимеда.

Известен Архимед и как изобртатель машины для поливки полей (\»улитки\»), водоподъемного винта. Этот винт (шнек) для вычерпывания воды до сих пор применяется в Египте.

Рассказ о смерти Архимеда от рук римлян существует в нескольких версиях::
1 версия: в разгар боя 75-летний Архимед сидел на пороге своего дома, углублённо размышляя над чертежами, сделанными им прямо на дорожном песке. В это время пробегавший мимо римский воин наступил на чертёж, и возмущённый учёный бросился на римлянина с криком: «Не тронь моих чертежей!» Солдат остановился и хладнокровно зарубил старика мечом.

2 версия: К Архимеду подошёл солдат и объявил, что его зовёт Марцелл. Но Архимед настойчиво просил его подождать одну минуту, чтобы задача, которой он занимался, не осталась нерешённой. Солдат, которому не было дела до его доказательства, рассердился и пронзил его своим мечом».

3 версия: Архимед сам отправился к Марцеллу, чтобы отнести ему свои приборы для измерения величины Солнца. По дороге его ноша привлекла внимание римских солдат. Они решили, что учёный несёт в ларце золото или драгоценности, и, недолго думая, перерезали ему горло.

Математика

Работы Архимеда относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя,

Архимед значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида, корни которых он находил с помощью пересечения параболы и гиперболы. Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать.

Греки до Архимеда сумели определить площади многоугольников и круга, объём призмы и цилиндра, пирамиды и конуса. Но только Архимед нашёл гораздо более общий метод вычисления площадей или объёмов; он использовал бесконечно малые для вычисления объёмов. Идеи Архимеда легли впоследствии в основу интегрального исчисления.

Архимед сумел установить, что сфера и конусы с общей вершиной, вписанные в цилиндр, соотносятся следующим образом: объем конуса: сфера: цилиндр как 1:2:3.
Лучшим своим достижением он считал определение поверхности и объёма шара - задача, которую до него никто решить не мог. Архимед просил выбить на своей могиле шар, вписанный в цилиндр.

А мы с вами знаем постулаты Архимеда и используем его метод барицентров для решения задач.

Использовались материалы с сайта:

http://ru.wikipedia.org/wiki/%C0%F0%F5%E8%EC%E5%E4

Архимед – греческий механик, физик, математик, инженер. Родился в Сиракузах (Сицилия). Его отец Фидий был астрономом и математиком. Отец занимался воспитанием и образованием сына. От него Архимед унаследовал способности к математике, астрономии и механике. Архимед обучался в Александрии (Египет), которая в то время была культурным и научным центром. Там он познакомился с Эратосфеном – греческим математиком, астрономом, географом и поэтом, который стал наставником Архимеда и покровительствовал ему долгое время.

Архимед сочетал в себе таланты инженера-изобретателя и ученого-теоретика. Он стал основателем теоретической механики и гидростатики, разработал методы нахождения площадей поверхностей и объемов различных фигур и тел.

По легенде, Архимеду принадлежит множество удивительных технических изобретений, которые завоевали ему славу среди современников. Предполагают, что Архимед с помощью зеркал и отражения солнечных лучей смог поджечь римский флот, который осадил Александрию. Этот случай является наглядным примером отличного владения оптикой.

Архимеду также приписывают изобретение катапульты, военной метательной машины, конструирование планетария, в котором планеты двигались. Учёный создал винт для подъёма воды (Архимедов винт), который до сих пор используется и представляет собой водоподъемную машину, вал с винтовой поверхностью, находящийся в наклонной трубе, погруженной в воду. Во время вращения винтовая поверхность вала перемещает воду по трубе на разные высоты.

Архимед написал много научных трудов: «О спиралях», «О коноидах и сфероидах», «О шаре и цилиндре», «О рычагах», «О плавающих телах». А в трактате «О песчинках» он подсчитал количество песчинок в объёме земного шара.

Свой знаменитый закон Архимед открыл при интересных обстоятельствах. Царь Гиреон II, которому служил Архимед, хотел узнать, не подмешивали ли ювелиры серебро к золоту, когда изготавливали корону. Для этого необходимо определить не только массу, но объём короны, чтобы рассчитать плотность металла. Определить объём изделия неправильной формы непростая задача, над которой Архимед долго размышлял.

Решение пришло Архимеду в голову, когда он погрузился в ванну: уровень воды в ванне поднялся после того, как тело учёного было опущено в воду. То есть объем его тела вытеснил равный ему объем воды. С криком «Эврика!» Архимед побежал во дворец, даже не потрудившись одеться. Он опустил корону в воду и определил объем вытесненной жидкости. Задача была решена!

Таким образом, Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Тело может плавать в воде, если его средняя плотность меньше плотности жидкости, в которую его поместили.

Закон Архимеда гласит: на всякое тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости или газа.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Наименование параметра Значение
Тема статьи: Архимед.
Рубрика (тематическая категория) География

Это ученый-естественник в строгом смысле, не философ, хотя очень разносторонний ученый. Он - математик , взявшийся за труднейшие проблемы своего времени: вычисление площадей криволинœейных фигур, вычисление поверхностей и объёма цилиндра и шара. В его методах проявляются элементы высшей математики, в частности, интегральные методы. Причем уже древние восхищались строгостью, изяществом и простотой его доказательств. Он - оптик , но, к сожалению, его объёмистый труд об отражениях “Катоптрика” не сохранился. Он - астроном , строитель первого “планетария” (астрономической сферы) и прибора для измерения видимого диаметра Солнца. Он – физик , создатель гидростатики и автор одноименного закона. Наконец, он - механи к, причем одновременно и механик-теоретик (создатель статики) и механик-практик - автор многочисленных механических приспособлений, в т.ч. боевых машин, успешно использовавшихся при обороне Сиракуз.

В гидростатике Архимед формулирует известный закон . При этом он исходит из одного предположения, задающего модель идеальной жидкости: “Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из частиц сдавливается жидкостью, находящейся над ней по отвесу, в случае если только жидкость не заключена в каком-нибудь сосуде и не сдавливается чем-то другим". Это единственное предположение, исходя из которого, Архимед выводит всœе остальное. С гидростатическими исследованиями, связан и метод определœения удельного веса , разработанный Архимедом.

В теоретической механике Архимед.- основатель статики, одного из трех разделов механики. Именно он разработал учение о равновесии твердых тел : установил понятие центра тяжести , разработал методы его нахождения, дал первую теорию рычага, вообще создал единую систему, дающую возможность решать задачи на равновесие, которая оформилась в самостоятельную научную область.

В области практической механики Архимед изобрел “архимедов винт ” - винт для подъема воды, который затем широко использовался в Египте для подъема воды из Нила на высоту до 4-х метров; около сорока других механических изобретений.

Архимед по своему геометрическому подходу к решению физических проблем и ценностным установкам близок, скорее, к математической программе Платона, но по своему инженерному и экспериментальному, опытному характеру идет даже дальше Аристотеля к методам и воззрениям новой физики. Тем не менее, на своей могиле он просил установить памятник с изображением шара, вписанного в цилиндр и надписать установленное им соотношение их объёмов 2:3, считая это главной своей заслугой .

Астрономия. На первом этапе становления греческой астрономии данный процесс шел в двух направлениях:

I) выдвижение астрономических гипотез. В первом направлении развивали астрономию в основном философы: Анаксимандр, Анаксимен, Пифагор, Анаксагор, Филолай. По-видимому, пифагорейцам принадлежит идея о шарообразности Земли , очевидно, из идей симметрии и геометрической идеальности. Эта идея стала общепризнанной в античной астрономии. Еще Анаксимандр выдвинул идею о центральном положении Земли, свободно висящей в пространстве (правда ее форма ему виделась цилиндрической). Парадоксальная идея, но также принятая практически без доказательств.

2)развитие систематических и всœе более точных и регулярных наблюдений. занимался календарной астрономией: Клеостат с Тенедоса (конец 6-го в. до н.э.), Эпонид Хиосский (ок.450 ᴦ.до н.э.), Метон и Евктемон из Афин (ок. 430 ᴦ. до н.э.).

Выдвигались разного рода негеоцентрические системы . Из них первой следует признать пифагорейскую, согласно которой в центре мира находится огонь - Гестия . Земля совместно с подобной ей Противоземлей вращается вокруг Гестии. Гестия в находящуюся между Землей и Противоземлей щель посылает свет, отражением которого светит Солнце, планеты и звезды. Подвижные планеты, Луна и Солнце находятся на одной оси

Наиболее близкой к современным воззрениям следует признать гелиоцентрическую систему Аристарха Самосского (ок. 250 ᴦ. до н.э.). Аристарх Самосский как раз считал звезды неподвижными и удаленными практически бесконечно от Земли, а Солнце, находящимся в центре, вокруг которого движется Земля, вращаясь суточным обращением. “Сфера звезд...так велика, что круг, по которому обращается Земля, так относится к расстоянию до неподвижных звезд, как центр сферы к ее поверхности”. Исходя из этой системы, он рассчитал соотношение между диаметрами Земли, Солнца и Луны и диаметрами орбит Земли и Луны . Причем методы расчета были безупречны, но точность измерения весьма низка, и в связи с этим результаты далеки от действительных.

Система Аристарха Самосского не была принята современиками. Почему? Из нее вытекали два следствия, не гармонирующие с античным представлением о космосœе: практическая его бесконечность и разноприродность планет и звезд. Птолемей оценивает расстояние от Земли до Солнца в 1200 радиусов Земли, что в 10 000 раз меньше действительного. По- видимому большинство греческих ученых не могло согласиться с тем, что звезды находятся невообразимо далеко от Земли .

Античная география получила свое завершение в работах Птолемея и Страбона. Труды названных ученых выражают два разных взгляда на предмет, содержание и задачи науки.

Птолемей Клавдий (90-160 ᴦ. н.э.). Астроном, географ, математик. 13 книг ʼʼВеликое построение астрономииʼʼ - свод астрономических знаний древних, геоцентрическая модельмира, каталог звезд (1028), описание видимой формы Млечного пути. ʼʼРуководство по географииʼʼ - 8 книᴦ. Приведены данные по 8000 географическим объектам. Труды сохранили свое значение до 16 в.

Согласно Птолемею в центре мира находится неподвижная Земля, вокруг которой движутся планеты. Он заложил основы географии – 8 книᴦ. Различал географию и хорографию (страноведение). Предложил две новые проекции: простую коническую и псевдоконическую равнопромежуточную. ʼʼГеография – есть линœейное изображение всœей ныне известной нам части Земли со всœем тем, что на ней находитсяʼʼ. Труды Птолемея являются вершиной античной географии. При этом его интересовало только положение пунктов на Земле, но не сущность географических явлений.

“Генеральной линией” развития греческой космологии стала геоцентрическая система Платона - Аристотеля – Птолемея. Платон поручил своему ученику Евдоксу Книдскому (408 – З55 гᴦ.до.н.э.) разработать астрономическую модель Вселœенной в соответствие со своими космогоническими идеями, что последний и осуществил . В результате возникла система, в которой небесные светила располагались на правильных сферах (хрустальных).

Гераклит Понтийский (4 в. до н.э.) в разработке этой системы добавил идею о том, что Меркурий и Венера вращаются вокруг Солнца. Он посœещал лекции Аристотеля. Написал ʼʼДиалог о природеʼʼ, где развил представление о ʼʼнесопряженных молекулахʼʼ управляемых божеством, мировым разумом. Обсуждал астрономические теории: вращения Земли вокруг своей оси, вращение Меркурия и Венеры вокруг Солнца, Солнца – вокруг Земли. У него есть гениальная догадка о существовании других планетных систем.

Эратосфен . Величайший географ периода эллинизма, глава библиотеки в Александрии. Его ʼʼГеографияʼʼ содержала не только внешнее описание ойкумены, но и включала вопросы математики и физики. Он дал критический обзор истории географии от Гомера. Он критически относился к древнейшему греческому поэту. Он излагает теорию шарообразности Земли, рассматривает изменение ее поверхности, составляет карту ойкумены, ввел сетку меридианов и параллелœей, определил окружность земного шара по экватору порядка 39690 км. Он высказал предположение о преобладании водной поверхности над сушей, что Индию можно достичь западным морским путем. Попытался разделить сушу на сфрагиды - ϶ᴛᴏ первый опыт районирования. А. Гумбольдт видел в труде Эратосфена первую попытку дать целостную картину физического мироописания.

Страбон (род. 64-23 ᴦ. до н.э.).Хранитель ценнейшего научного наследия античности. Он ничего не открыл, ничего не изобрел, не придумал. Он не был самостоятельным мыслителœем, творческой натурой. Но он умел собирать факты и мнения, анализировать их и приводить в систему. Он подробно рассказал о современном ему мире. Себя именовал философом.

Страбон воспринял философию стоиков: проповедь всœемирной гармонии, стремиться к согласию и доброте, самосовершенствованию. Как истинный стоик, Страбон вел размеренную жизнь, не позволял страстям вырываться наружу, заводил друзей и избегал наживать врагов, был осторожен в словах и поступках.

Написал 43 книги ʼʼИсторические запискиʼʼ - исторический труд охватывает 100 лет истории Римского государства.

Страбон много путешествует. ʼʼЯ считаю, что наука география, которой я теперь решил заняться, так же как и всякая другая наука, входит в круг занятий философаʼʼ. 100 стр.
Размещено на реф.рф
первых двух книг ʼʼГеографии ʼʼ посвящены анализу и критике сочинœений предшественников. Всего 17 книг .

1. Природу и человека связывает с хозяйственной деятельностью.

2. Применил исторический метод для географического исследования.

3. Подчеркивает значение географического положения, природных условий,

4. выдвигает идею научного подхода к районированию.

5. Метод Страбона чисто описательный.

6. Он не стремился к объяснению причин и теоретическим построениям и даже гордился тем, что только добросовестно собирал и изложил факты. Объяснение природных явлений он предоставлял философии.

Архимед. - понятие и виды. Классификация и особенности категории "Архимед." 2017, 2018.

  • - Сила статического давления жидкости на криволинейные стенки. Закон Архимеда

    Вопросы по теме 1.4. 1. Как определяется равнодействующая сил давления на твердую поверхность и что понимается под символом рT? 2. Может ли равнодействующая сил давления действовать с внешней стороны твердой поверхности, где жидкости нет? 3. Что такое центр давления? 4.... .


  • - Плавание тел. Закон Архимеда.

    Гидростатический парадокс Основное уравнение гидростатики. Гидростатическое давление и его свойство. Жидкость, находящаяся в покое подвергается действию внешних сил двух категорий: массовых и поверхностных. В результате этого под действием... .


  • -

    Задача 1 Большой поршень гидравлической машины поднимает груз массой Задачи для самостоятельной работы Гидравлическая машина (пресс, подъемник) Основные части гидравлической машины _____________________________________________ _____________________________________________... .


  • - Закон Архимеда и плавание тел

    Пусть тело произвольной формы полностью погружено в жидкость (рис. 17). Выделим цилиндрическую часть этого тела с бесконечно малой площадью поперечного сечения. Рис. 17. Гидростатическая подъемная сила Сила давления, действующая на цилиндрическую часть тела: ,... .


  • - Машины Архимеда

    Учение о рычаге разработано было впервые древнегреческим математиком Архимедом, жившим в Сиракузах (Сицилия) за двести лет до нашей эры. Легенды, в которых, вероятно, кроется большая доля истины, повествуют о замечательных машинах, которые были придуманы им на основе... .


  • Архимед (около 287 до н.э., Сиракузы, Сицилия - 212 до н.э., там же) - древнегреческий ученый, математик и механик, основоположник теоретической механики и гидростатики. Разработал предвосхитившие интегральное исчисление методы нахождения площадей, поверхностей и объемов различных фигур и тел.

    В основополагающих трудах по статике и гидростатике (закон Архимеда) Архимед дал образцы применения математики в естествознании и технике. Архимеду принадлежит множество технических изобретений (архимедов винт, определение состава сплавов взвешиванием в воде, системы для поднятия больших тяжестей, военные метательные машины), завоевавших ему необычайную популярность среди современников.

    Архимед получил образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона II, покровительствовавшего Архимеду. В юности провел несколько лет в крупнейшем культурном центре того времени Александрии Египетской, где познакомился с Эрастосфеном. Затем до конца жизни жил в Сиракузах.

    Во время Второй Пунической войны (218-201), когда Сиракузы были осаждены войском римского полководца Марцелла, Архимед участвовал в обороне города, строил метательные орудия. Военные изобретения ученого (о них рассказывал Плутарх в жизнеописании полководца Марцелла) в течение двух лет помогали сдерживать осаду Сиракуз римлянами. Архимеду приписывается сожжение римского флота направленными через систему вогнутых зеркал солнечными лучами, но это недостоверные сведения. Гений Архимеда вызывал восхищение даже у римлян. Марцелл приказал сохранить ученому жизнь, но при взятии Сиракуз Архимед был убит.

    Архимеду принадлежит первенство во многих открытиях из области точных наук. До нас дошло тринадцать трактатов Архимеда. В самом знаменитом из них - «О шаре и цилиндре» (в двух книгах) Архимед устанавливает, что площадь поверхности шара в 4 раза больше площади наибольшего его сечения; формулирует соотношение объемов шара и описанного около него цилиндра как 2:3 - открытие, которым он так дорожил, что в завещании просил поставить на своей могиле памятник с изображением цилиндра с вписанным в него шаром и надписью расчета (памятник через полтора века видел Цицерон). В этом же трактате сформулирована аксиома Архимеда (называемая иногда аксиомой Евдокса), играющая важную роль в современной математике.

    В трактате «О коноидах и сфероидах» Архимед рассматривает шар, эллипсоид, параболоид и гиперболоид вращения и их сегменты и определяет их объемы. В сочинении «О спиралях» исследует свойства кривой, получившей его имя (Архимедова спираль) и касательной к ней. В трактате «Измерение круга» Архимед предлагает метод определения числа π, который использовался до конца 17 в., и указывает две удивительно точные границы числа π:

    В физике Архимед ввел понятие центра тяжести, установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении «О равновесии плоских фигур».

    Архимед рассматривает сложение параллельных сил, определяет понятие центра тяжести для различных фигур, дает вывод закона рычага. Знаменитый закон гидростатики, вошедший в науку с его именем (Архимеда закон), сформулирован в трактате «О плавающих телах». Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну, с возгласом «Эврика!» он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину.

    Архимед построил небесную сферу - механический прибор, на котором можно было наблюдать движение планет, Солнца и Луны (описан Цицероном, после гибели Архимеда планетарий был вывезен Марцеллом в Рим, где на протяжении нескольких веков вызывал восхищение); гидравлический орган, упоминаемый Тертуллианом как одно из чудес техники (изобретение органа некоторые приписывают александрийскому инженеру Ктесибию). Считается, что еще в юности, во время пребывания в Александрии, Архимед изобрел водоподъемный механизм (Архимедов винт), который был применен при осушении залитых Нилом земель. Он построил также прибор для определения видимого (углового) диаметра Солнца (о нем Архимед рассказывает в трактате «Псаммит») и определил значение этого угла. (И. Н. Осипенко)

    Еще об Архимеде:

    Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

    После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.

    В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде «Об измерении круга» Архимед впервые вычислил число «пи» - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.

    Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир.

    Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости.

    Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. «Эврика! Нашел"» - воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он не точен. Знаменитое «Эврика!» было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов - открытия, которое также принадлежит сиракузскому ученому и обстоятельные детали которого находим у Витрувия.

    Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на нее золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера.

    Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» - модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».

    И, наконец, Архимед был не только великим ученым, он был, кроме того, человеком, страстно увлеченным механикой. Он проверяет и создает теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это - рычаг («Дайте мне точку опоры, - говорил Архимед, - и я сдвину Землю»), клин, блок, бесконечный винт и лебедка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот. Впоследствии эти механизмы широко применялись в разных странах Мира. Интересно, что усовершенствованный вариант водоподъемной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке.

    Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, - к изобретению болта, сконструированного из винта и гайки.

    Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебедку, нашел средство, к удивлению зевак, спустить на воду тяжелую галеру, севшую на мель, со всем ее экипажем и грузом.

    Еще более убедительное доказательство он дал в 212 году до нашей эры. При обороне Сиракуз от римлян во время второй Пунической войны Архимед сконструировал несколько боевых машин, которые позволили горожанам отражать атаки превосходящих в силе римлян в течение почти трех лет. Одной из них стала система зеркал, с помощью которой египтяне смогли сжечь флот римлян. Этот его подвиг, о котором рассказали Плутарх, Полибий и Тит Ливий, конечно, вызвал большее сочувствие у простых людей, чем вычисление числа «пи» - другой подвиг Архимеда, весьма полезный в наше время для изучающих математику.

    Архимед погиб во время осады Сиракуз -его убил римский воин в тот момент, когда ученый был поглощен поисками решения поставленной перед собой проблемы.

    Любопытно, что, завоевав Сиракузы, римляне так и не стали обладателями трудов Архимеда. Только через много веков они были обнаружены европейскими учеными. Вот почему Плутарх, одним из первых описавший жизнь Архимеда, упомянул с сожалением, что ученый не оставил ни одного сочинения.

    Плутарх пишет, что Архимед умер в глубокой старости. На его могиле была установлена плита с изображением шара и цилиндра. Ее видел Цицерон, посетивший Сицилию через 137 лет после смерти ученого. Только в XVI-XVII веках европейские математики смогли, наконец, осознать значение того, что было сделано Архимедом за две тысячи лет до них.

    Архимед оставил многочисленных учеников. На новый путь, открытый им, устремилось целое поколение последователей, энтузиастов, которые горели желанием, как и учитель, доказать свои знания конкретными завоеваниями.

    Первым по времени из этих учеников был александриец Ктесибий, живший во II веке до нашей эры. Изобретения Архимеда в области механики были в полном ходу, когда Ктесибий присоединил к ним изобретение зубчатого колеса.

    Достижения в математике

    Задача о трисекции угла.

    Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.

    Измерение круга.

    Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате "Измерение круга" он доказывает следующие три теоремы:

    Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.

    Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.

    Теорема третья: C-3d < d и C-3d > d , где С -длина окружности, а d -ее диаметр. Откуда, d < C-3d < d .

    Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово значение (архимедово число).

    Спираль Архимеда.

    Архимедова спираль плоская трансцендентная кривая. Архимедова спираль описывается точкой M , движущейся равномерно по прямой d , которая вращается вокруг точки O , принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой.

    Инфинитезимальные методы.

    В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.

    Дифференциальным методом Архимед находил касательную к спирали.

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

    Последние материалы раздела:

    Кир II Великий - основатель Персидской империи
    Кир II Великий - основатель Персидской империи

    Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

    Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
    Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

    Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

    Николай Некрасов — Дедушка: Стих
    Николай Некрасов — Дедушка: Стих

    Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...