1 определение прямой перпендикулярной к плоскости. Перпендикулярность прямой и плоскости определение прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой

Статья раскрывает понятие о перпендикулярности прямой и плоскости, дается определение прямой, плоскости, графически иллюстрировано и показано обозначение перпендикулярных прямой и плоскости. Сформулируем признак перпендикулярности прямой с плоскостью. Рассмотрим условия, при которых прямая и плоскость будут перпендикулярны с заданными уравнениями в плоскости и трехмерном пространстве. Все будет показано на примерах.

Yandex.RTB R-A-339285-1 Определение 1

Прямая перпендикулярна к плоскости , когда она перпендикулярна к любой прямой, лежащей в этой плоскости.

Верно то, что и плоскость перпендикулярна к прямой, как и прямая к плоскости.

Перпендикулярность обозначается « ⊥ ». Если в условии задано, что прямая с перпендикулярна плоскости γ , тогда запись имеет вид с ⊥ γ .

Например, если прямая перпендикулярна к плоскости, тогда возможно провести только одну прямую, благодаря которой две смежных стены комнаты пересекутся. Прямая считается перпендикулярной к плоскости потолка. Канат, расположенный в спортзале рассматривается в качестве отрезка прямой, который перпендикулярен плоскости, в данном случае полу.

При наличии перпендикулярной прямой к плоскости, угол между прямой и плоскостью считается прямым, то есть равен 90 градусов.

Перпендикулярность прямой и плоскости – признак и условия перпендикулярности

Для нахождения выявления перпендикулярности необходимо использовать достаточное условие перпендикулярности прямой и плоскости. Оно гарантирует выполнение перпендикулярности прямой и плоскости. Данное условие считается достаточным и называют признаком перпендикулярности прямой и плоскости.

Теорема 1

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, которые лежат в этой плоскости.

Подробное доказательство приведено в учебнике геометрии 10 - 11 класса. Теорема применяется для решения задач, где необходимо установить перпендикулярность прямой и плоскости.

Теорема 2

При условии параллельности хоть одной из прямых плоскости, считается, что вторая прямая также перпендикулярна к данной плоскости.

Признак перпендикулярности прямой и плоскости рассматривается еще со школы, когда необходимо решить задачи по геометрии. Рассмотрим подробнее еще одно необходимое и достаточное условие, при котором прямая и плоскость будут перпендикулярны.

Теорема 3

Для того, чтобы прямая а была перпендикулярна плоскости γ , необходимым и достаточным условием является коллинеарность направляющего вектора прямой а и нормального вектора плоскости γ .

Доказательство

При a → = (a x , a y , a z) являющимся вектором прямой a , при n → = (n x , n y , n z) являющимся нормальным вектором плоскости γ для выполнения перпендикулярности нужно, чтобы прямая a и плоскость γ принадлежали выполняемости условия коллинеарности векторов a → = (a x , a y , a z) и n → = (n x , n y , n z) . Отсюда получаем, что a → = t · n → ⇔ a x = t · n x a y = t · n y a z = t · n z , t является действительным числом.

Данное доказательство основывается на необходимом и достаточном условии перпендикулярности прямой и плоскости, направляющего вектора прямой и нормального вектора плоскости.

Данное условие применимо для доказательства перпендикулярности прямой и плоскости, так как достаточно найти координаты направляющего вектора прямой и координаты нормального вектора в трехмерном пространстве, после чего производить вычисления. Используется для случаев, когда прямая определена уравнением прямой в пространстве, а плоскость уравнением плоскости некоторого вида.

Пример 1

Доказать перпендикулярность заданной прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 с плоскостью x + 2 2 + 1 y - (5 + 6 2) z .

Решение

Знаменатели канонических уравнений являются координатами направляющего вектора данной прямой. Отсюда имеем, что a → = (2 - 1 , 2 , 2 - 7) является направляющим вектором прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 .

В общем уравнении плоскости коэффициенты перед переменными x , y , z являются координатами нормального вектора данной плоскости. Отсюда следует, что n → = (1 , 2 (2 + 1) , - (5 + 6 2)) - это нормальный вектор плоскости x + 2 2 + 1 y - (5 + 6 2) z - 4 = 0

Необходимо произвести проверку выполнимости условия. Получаем, что

2 - 1 = t · 1 2 = t · 2 (2 + 1) 2 = t · (- (5 + 6 2)) ⇔ t = 2 - 1 , тогда векторы a → и n → связаны выражением a → = (2 - 1) · n → .

Это и есть коллинеарность векторов. отсюда следует, что прямая x 2 - 1 = y - 1 2 = z + 2 2 - 7 перпендикулярна плоскости x + 2 (2 + 1) y - (5 + 6 2) z - 4 = 0 .

Ответ: прямая и плоскость перпендикулярны.

Пример 2

Определить, перпендикулярны ли прямая y - 1 = 0 x + 4 z - 2 = 0 и плоскость x 1 2 + z - 1 2 = 1 .

Решение

Чтобы ответить на вопрос перпендикулярности, необходимо, чтобы было выполнено необходимое и достаточное условие, то есть для начала нужно найти вектор заданной прямой и нормальный вектор плоскости.

Из прямой y - 1 = 0 x + 4 z - 2 = 0 видно, что направляющий вектор a → - это произведение нормальных векторов плоскости y - 1 = 0 и x + 4 z - 2 = 0 .

Отсюда получаем, что a → = i → j → k → 0 1 0 1 0 4 = 4 · i → - k → .

Координаты вектора a → = (4 , 0 , - 1) .

Уравнение плоскости в отрезках x 1 2 + z - 1 2 = 1 является эквивалентным уравнению плоскости 2 x - 2 z - 1 = 0 , нормальный вектор которой равен n → = (2 , 0 , - 2) .

Следует произвести проверку на коллинеарность векторов a → = (4 , 0 , - 1) и n → = (2 , 0 , - 2) .

Для этого запишем:

4 = t · 2 0 = t · 0 - 1 = t · (- 2) ⇔ t = 2 t ∈ R ⇔ t ∈ ∅ t = 1 2

Отсюда делаем вывод о том, что направляющий вектор прямой не коллинеарен нормальному вектору плоскости. Значит, y - 1 = 0 x + 4 z - 2 = 0 - это прямая, не перпендикулярная к плоскости x 1 2 + z - 1 2 .

Ответ: прямая и плоскость не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Перпендикулярность прямой и плоскости.

1. Перпендикулярные прямые в пространстве.

Определение. Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между прямыми равен 90°.
Обозначение перпендикулярности прямых а и b: a⊥b

Перпендикулярные прямые могут пересекаться, а могут быть скрещивающимися.

Лемма перпендикулярности двух параллельных прямых к третьей прямой.

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Обратите внимание, что следующее утверждение планиметрии в стереометрии не действует:
Если две прямые перпендикулярны к третьей, то они параллельны.

На рисунке видно, что две прямые a и b перпендикулярны прямой с , но не параллельны .

2.Параллельные прямые, перпендикулярные к плоскости.

Определение. Прямая называется перпендикулярной к плоскости , если она перпендикулярна ко всем прямым, лежащим в этой плоскости.
Обозначение перпендикулярности прямой и плоскости: a⊥ γ.

На рисунке прямая а перпендикулярна плоскости γ. Из определения следует, что прямая a перпендикулярна каждой прямой, лежащей в этой плоскости.

Теорема.
Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.


Теорема. Если две прямые перпендикулярны к плоскости, то они параллельны.

3. Признак перпендикулярности прямой и плоскости

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости (рис. 6.3).

Если прямая перпендикулярна плоскости, то она будет перпендикулярна любой прямой, лежащей в этой плоскости. Из множества этих прямых при построении перпендикуляров к плоскости выбирают горизонталь и фронталь плоскости. В этом случае, пользуясь свойством проецирования прямого угла на комплексном чертеже, фронтальную проекцию перпендикуляра проводим под углом 90 0 к фронтальной проекции фронтали, а горизонтальную проекцию перпендикуляра – под углом 90° к горизонтальной проекции горизонтали.

Рассмотрим алгоритм построения перпендикуляра n к плоскости Р(D АВС) (табл. 6.6).

Таблица 6.6

Алгоритм построения перпендикуляра к плоскости

2. Строим фронталь в плоскости Р(D АВС) – f (f 1 f 2)

3. Строим перпендикуляр n к плоскости Р(D АВС). Для этого через точку D 2 проводим n 2 , перпендикулярно f 2 , а через D 1 проводим n 1 , перпендикулярно h 1 .

n (n 1 n 2) ^Р (DАВС), так как

n 1 ^h 1 ; h 1 P 1 (DА 1 В 1 С 1)

n 2 ^f 2 ; f 2 P 2 (DА 2 В 2 С 2)

§ 6. Перпендикулярность двух плоскостей

Две плоскости будут перпендикулярны друг к другу, если одна из них проходит через прямую, перпендикулярную другой плоскости (рис. 6.4).

АВ b , то есть АВ принадлежит плоскости b и АВ ^ плоскости a . Плоскость b ^ плоскости a .

Рассмотрим это положение на комплексном чертеже (табл. 6.7), где будет показано построение плоскости Р, проходящей через прямую l и перпендикулярной плоскости, заданной треугольником Q(D АВС) (табл. 6.7).

Таблица 6.7

Алгоритм построения плоскости, перпендикулярной данной

Вербальная форма

Графическая форма

1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонталь и фронталь в плоскости.

а) Заметим, что построение перпендикуляра упрощается, так как стороны плоскости Q(D АВС) являются прямыми уровня:

АВ (А 1 В 1 ; А 2 В 2) – фронталь

АС (А 1 С 1 ; А 2 С 2) – горизонталь.

б) Возьмем на прямой l произвольную точку К

2. Через точку К, которая принадлежит прямой l, проводим прямую n ^ Q, т.е.

n 1 ^ A 1 C 1 и n 2 ^ A 2 В 2 .

Искомая плоскость будет определяться двумя пересекающимися прямыми, одна из которых задана – l , а другая – n является перпендикулярной к заданной плоскости:

P(l n)^ Q (D ABC)

Выводы

а) не иметь общих точек;

б) иметь хотя бы одну общую точку;

в) иметь множество общих точек.

В зависимости от этого прямая может принадлежать плоскости, быть ей параллельна, пересекаться с данной плоскостью и, как частный случай, быть ей перпендикулярна.

2. Две плоскости в пространстве могут быть параллельны друг другу, пересекаться между собой и, как частный случай, быть взаимно перпендикулярны.

3. Две пересекающиеся плоскости имеют одну общую прямую – линию пересечения.

5. Для построения перпендикуляра к плоскости необходимо использовать свойства проецирования прямого угла.

Определение . Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.

Приведем без доказательства известные в школьном курсе стереометрии теоремы, необходимые для решения последующих метрических задач.

1. Признак перпендикулярности прямой и плоскости: если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.

2. Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.

3. Через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.

Для построения прямой t " Е, перпендикулярной плоскости Σ, необходимо, на основании признака перпендикулярности, провести в плоскости две пересекающиеся прямые h и f, а затем построить прямую t по условиям: t ^ h, t ^ f (рис. 7.3). В общем случае прямые t и h, t и f – пары скрещивающихся прямых.

Задача. Даны плоскость Σ(ΔАВС) и точка Е.

Построить прямую t по условиям: t " E, t ^ Σ (рис. 7.4).

Решение задачи может быть следующим:

1) строятся линии уровня h и f в плоскости Σ, где h 2 // х, f 1 // x;

2) строятся проекции t 1 и t 2 искомой прямой t, где t 2 " Е 2 , t 2 ^ f 2 ; t 1 " E 1 , t 1 ^ h 1 . В итоге t 1 , t 2 решение задачи. Прямая t скрещивается с f и h.

Выбор линий уровня h и f в качестве пересекающихся прямых в плоскости Σ продиктован приведенными выше условиями теоремы о проецировании прямого угла и простотой построений на КЧ. Если точка Е находится в плоскости Σ, то последовательность построений остается прежней.

Задача. Даны прямая t и точка Е. Построить плоскость, проходящую через точку Е и перпендикулярную прямой t (рис. 7.5).

Решение задачи основывается на построении двух линий уровня h(h 1 ,h 2) и f(f 1 ,f 2), проходящих через точку Е: h 2 " E 2 , h 2 // х, h 1 " E 1 , h 1 ^ t 1 ; f 1 " E 1 , f 1 // х, f 2 " E 2 , f 2 ^ t 2 . Плоскость (h , f) – решение задачи.

ГПОУ «Усинский политехнический техникум»

Открытый урок по геометрии

Тема «Перпендикулярность прямой и плоскости».

Выполнил: преподаватель математики Мельникова Е.А.

Усинск, 2016 г.

Тип урока: Урок-семинар

Цели урока :

Обобщить, закрепить и систематизировать знания обучающихся по данной теме, умения применять эти знания при решении задач; показать практическую значимость изучаемого материала; изучить связь между отношениями параллельности и перпендикулярности в пространстве; показать межпредметную связь.

Воспитывать культуру устной и письменной речи, способствовать воспитанию эстетического вкуса, прививать интерес к предмету математики.

Развивать пространственное и логическое мышление.

Оборудование к уроку: карточки с названиями Теоретики, Практики, Исследователи, задания группам, ПК, проектор.

План урока.

I. Организация учащихся.

Обучающимся предлагаются карточки с названиями Теоретики, Практики, Исследователи и производится деление на 3 группы.

II. Постановка целей и задач урока.

Говорят, что математика- наука неинтересная, что математика - сухая наука, что о ней можно говорить только в кабинете математики, на уроке. Нет, жизнь доказывает обратное: математика повсюду вокруг нас. Послушайте, что пишет об этом Роман Бухараев в стихотворении “Геометрия трав”.

Математик несбывшийся, странник,
Оглянись, удивляясь стократ:
В травах - срез волчеца - пятигранник,
А в сеченьи душицы - квадрат.
Все на свете покажется внове
Под гольцом, чья вершина в снегу:
Водосбор - треуголен в основе
На цветущем альпийском лугу!
Где же круг?
Возле иглистой розы.
Там, где луг поднебесный скалист,
Вижу, с ветром играет березы
Треугольно-ромбический лист.

Но я соглашусь с тем, что математика наука точная, требующая четкости определений и доказательства фактов. И поэтому сейчас предлагаю от лирики перейти к практике.

Вы изучили очень важную тему геометрии “Перпендикулярность прямой и плоскости”. В результате изучения этой темы вы должны:

знать определения перпендикулярных прямых и прямой, перпендикулярной к плоскости.

уметьформировать и доказывать теоремы (прямую и обратную) о параллельных прямых, прямых, перпендикулярных к плоскости, признак перпендикулярности прямой и плоскости, теорему о прямой, перпендикулярной к плоскости.

Решать задачи типа 119, 121, 126, 128, 131 (уч. “Геометрия 10-11”, автор Атанасян Л.С.)

Преподаватель знакомит с целями урока.

III. Закрепление знаний и умений.

На уроке будут работать 3 группы «Теоретики», «Практики», «Исследователи».

Преподаватель дает задание группам, приготовленное на листах. Указывает на порядок оценивания.

Перед началом работы групп фронтальная проверка готовности.

Каково может быть взаимное расположение 2-х прямых в пространстве? (Прямые могут пересекаться, скрещиваться и быть параллельными.)

Какие две прямые называют параллельными? (Параллельные прямые называются прямые , которые лежат в одной плоскости и либо совпадают, либо не пересекаются.)

Какие две прямые называют скрещивающимися? (Прямые называются скрещивающимися, если одна из прямых лежит в плоскости, а другая эту плоскость пересекает в точке не принадлежащей первой прямой.)

Если угол между двумя прямыми 900 , как их называют? (Перпендикулярные прямые)

Какую прямую называют перпендикулярной к плоскости? (Прямая называется перпендикулярной к плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

Верно ли утверждение:

a) Любая прямая перпендикулярная к плоскости, пересекает эту плоскость? (верно)
b) Любая прямая, пересекающая плоскость, перпендикулярна к этой плоскости? (неверно)
c) Если прямая не перпендикулярна к данной плоскости, то она не пересекает эту плоскость? (неверно)

Прямая а параллельна прямой в и не пересекает плоскость?. Может ли прямая в быть перпендикулярной к плоскости? Ответ обоснуйте. (не может быть, т.к если прямая в будет перпендикулярной плоскости, то и прямая а тоже перпендикулярна плоскости, что невозможно, т.к по условию прямая а не пересекает плоскость, следовательно она параллельна плоскости)

1. Задания для группы «Теоретики».

Доказать лемму о перпендикулярности двух параллельных прямых к третьей прямой.

Лемма . Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Дано:a ‖ b, a ⊥ c

Доказать: b ⊥ c

Доказательство:

Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым а и с. Так как а ⊥ с, то ∠ АМС=90о.

По условию, b ‖ a, а по построению а ‖ МА, поэтому b ‖ МА.

Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между ними равен 90о, т.е. b ‖ МА, с ‖ МС, угол между МА и МС равен 90о

Это означает, что угол между прямыми b и с также равен 90о, то есть b ⊥ с. Лемма доказана.

Доказать теоремы (прямую и обратную) о параллельных прямых, прямых, перпендикулярных к плоскости.

Теорема: (прямая) Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Запись на доске и в тетрадях:

Дано: а ‖ а1, а ⊥ α

Доказать, что а1 ⊥ α

Доказательство:

Проведем какую-нибудь прямую x в плоскости α, т.е. x ∊ α.Так как а ⊥ α, то а ⊥ x.

По лемме о перпендикулярности двух параллельных прямых к третьей а1 ⊥ x.

Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т. е. а1 ⊥ α. Теорема доказана.

Теорема: (обратная) Если две прямые перпендикулярны к плоскости, то они параллельны.

Дано: а ⊥ α, b ⊥ α

Доказать, что а ‖ b

Доказательство:

Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой а.

М ∊ b, M ∊ b1, b1 ‖ a. По предыдущей теореме b1 ⊥ α.

Докажем, что прямая b1 совпадает с прямой b. Тем самым будем доказано, что а ‖ b. Допустим, что прямые b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, следовательно, а ‖ b, т.е. b ∊ β, b1 ∊β, α β=c (невозможно)→ а ‖ b.

Сформировать и провести анализ доказательства признака перпендикулярности прямой и плоскости.

Признак перпендикулярности прямой и плоскости: Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна и самой плоскости

По окончании группы «Теоретики» преподаватель предоставляет слово обучащемуся с исторической справкой «Провешивание прямой».

Для проведения длинных отрезков прямых (при прокладывании трассы шоссейной или железной дороги, линий электропередач и т.д.) применяется способ, называемый провешиванием прямой, который заключается в использовании всех - шестов, имеющих длину около 2 м., заостренных с одного конца для того, чтобы их можно было воткнуть в землю. Если нужно провести прямую линию между двумя точками А и В, положение которых дано, то сначала в этих точках ставятся вехи; затем между ними устанавливается промежуточная веха С так, чтобы веха А и С закрывали веху В. Необходимо, чтобы все вехи стояли вертикально. Правильность вертикального направления проверяется с помощью отвеса. Отвес - это шнур, на конце которого укреплен небольшой груз. Казалось бы, в этой простой процедуре провешивания прямой все ясно. Но и здесь есть много вопросов, о которых следует подумать, а ответы на них дают изучение нашего курса и других дисциплин. Во-первых, почему все отвесы мира смотрят в центр Земли, а с точки зрения геометрии- определяют прямую, перпендикулярную ее поверхности? Во-вторых, веха должна быть параллельна отвесу, и тогда она также будет перпендикулярна поверхности Земли. Таким образом, все вехи перпендикулярны поверхности Земли и, значит, параллельны между собой.

Такой способ получил название провешивание прямой на местности. Слово "провешивание" - производное от слова "веха".

2. Задания для группы «Практики» .

Показать применение теории при решении задач № 126, 127, 128,131 (стр. 42 уч. “Геометрия 10-11 автор Атанасян Л.С.)

3. Задания для группы «Исследователи».

Изучить связь между отношениями параллельности и перпендикулярности в пространстве. Проверку осуществить с помощью таблицы.

Даны прямая а, перпендикулярная к плоскости α, и прямая b. Укажите взаимное расположение прямых а и b:

Если b параллельна , то……

Если b перпендикулярна , то ……

Если b параллельна или принадлежит , то…..

Если b перпендикулярна , то……

Даны прямая а, перпендикулярная к плоскости α, и плоскость .

Если параллельна , то……

Если перпендикулярна , то ……

Если параллельна а или а принадлежит , то…..

Если перпендикулярна , то……

Приведите примеры окружающей нас обстановки, иллюстрирующие перпендикулярность прямой и плоскости.

По окончании работы групп учащиеся приводят примеры расположения прямых в задачах по физике (межпредметная связь)

Вспомните о силе давления. Как она направлена? (Перпенд. плоскости поверхности).

Тело на горизонтальной поверхности. Как на любое тело на него действует сила тяжести mg? Каково ее направление?

Тело опущено в жидкость. На него оказывает действие выталкивающая сила. Каково ее направление?

IV. Подведение итогов урока. Выставление оценок.

V . Домашнее задание.

П.15 - 16, вопросы 1, 2 (стр. 57), №116, 118.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...