Закон устанавливающий скорость расширения вселенной. Астрономы с рекордной точностью измерили скорость расширения Вселенной 

Учёным известно с какой скоростью расширяется Вселенная сегодня?

    Максимальная скорость убегания от нас одной из самых отдаленных галактик, наблюдаемой на границе видимой Метагалактики, составляет порядка 270 000 км/сек, что всего на 30% меньше скорости света. Официально считается, что это не сами галактики убегают от нас, это расширяется Метагалактика, в пространстве которой находятся галактики примерно как изюмки в булочке. Поэтому можно предполагать, что скорость расширения видимой Метагалактики составляет на сегодня чуть меньше скорости света.

    А вот из моих исследований вытекает несколько иная картина. У меня получается так, что скорость расширения Метагалактики всегда равна скорости света, но при этом скорость света очень сильно меняется во времени. Сегодня она равна 3х10(8) м/сек, а в самый начальный момент Большого Взрыва составляла 5.28х10(49) м/сек. И с тех пор скорость света постоянно падает обратно пропорционально квадратному корню из времени. Это в значительной мере напоминает инфляционную модель.

    При этом мне удалось теоретически вычислить возраст наблюдаемой Метагалактики: получилось 13.12 миллиардов лет, что отличается от официально принятой цифры 13.7 миллиардов всего на 4.3%. И такое совпадение служит для меня подтверждением правильности моих концепций. Также я получил очень простую и удобную формулу, связывающую некоторые параметры Метагалактики: сt/R = 1/2, где c - скорость света, t - возраст Метагалактики, R - радиус Метагалактики.

    Обратите внимание на то, что я везде пишу про расширение видимой Метагалактики, а не про расширение Вселенной. Дело в том, что Вселенная намного шире того, что мы можем наблюдать в свои телескопы. Вселенная напоминает луковицу или кочан капусты из множества параллельных сферических слоев, в одном из которых живем мы и называем его нашей Метагалактикой. В центре Вселенной постоянно работает ни на миг не останавливающийся Большой Взрыв, порождающий новые и новые параллельные слои (или параллельные миры). Все слои разлетаются от центра со световой скоростью, которая постоянно снижается для каждого слоя. Энергия для Большого Взрыва берется из тех черных дыр, которые образуются в уже существующих и убегающих от центра слоях. Дело в том, что черная дыра сама по себе существовать не может. Может быть только процесс образования черной дыры. Но незадолго до наступления окончательного коллапса огромные гравитационные силы формирующейся черной дыры прорывают пространство и космический объект через все параллельные слои и миры проваливается в самое начало, питая своей энергией Большой Взрыв. Так происходит постоянный круговорот энергии и массы во Вселенной.

    При этом ускоренное расширение Вселенной, о котором сегодня постоянно говорят астрофизики, является иллюзией. Расширение всегда происходит с замедлением. Но падает скорость света и падает скорость бега времени (время тоже замедляется). Поэтому когда мы своими телескопами смотрим на очень отдаленную галактику, мы фактически смотрим в ту эпоху, когда и скорость света была много выше и время бежало быстрее. Поэтому и расширение происходило быстрее. В результате нам кажется, будто расширение постоянно ускоряется. Но это иллюзия.

    Я читал что скорость расширения увеличивается.

    Я думаю, что это тот еще вопрос. Знания об этом настолько относительны, что точного ответа вам никто не даст. Ведь нет таких приборов, которые измеряют скорость расширения вселенной (косимческий спидометр). Все это как то высчитывается. А все эти филькины грамоты, все это относительно. Нам сказали ученые, а мы должны верить? Как там на самом деле, не известно. Встречаются и другие уверения, что она, буд то бы сужается. Лично мне, вообше по барабану.

Американские астрономы, используя космический телескоп "Хаббл", установили, что более ранняя оценка скорости расширения Вселенной под действием тёмной энергии была неверна. В действительности она расширяется на 5-9% быстрее. Открытие позволит точнее оценить тёмную материю и тёмную энергию, которые составляют основную часть массы во Вселенной, но до сих пор ускользают от прямого наблюдения и исследования. Соответствующая статья направлена на публикацию в The Astrophysical Journal , а с её текстом можно ознакомиться на сервере препринтов Корнелльского университета.

Чтобы уточнить прежние оценки скорости расширения наблюдаемой Вселенной, авторы новой работы наблюдали за двумя типами звёзд в наиболее удалённых от нас галактиках - 2400 цефеид и 300 сверхновых. В отличие от остальных светил, истинную яркость которых можно определить, лишь зная расстояние до них, эти два типа звёзд, наоборот, дают возможность установить расстояние до них по их же яркости. Первые -цефеиды - переменные звёзды, свет которых меняется с пульсациями их внешних слоёв. Истинная яркость цефеид (то есть та яркость, которую можно было бы наблюдать рядом с ними) чётко привязана к периоду пульсаций звезды. Астрономы просто замеряют время между пульсациями и на основе довольно несложной формулы выводят её истинную яркость. Сравнивая эту яркость с видимой с Земли, учёные могут точно выявить, каково расстояние между нашей планетой и цефеидой.

Вторым видом "верстовых столбов" во Вселенной являются сверхновые типа Ia. Истинная яркость этих звёзд почти всегда одинакова: они образуются только из белых карликов, когда те превышают предельно допустимый лимит массы, равный 1,44 солнечных (предел Чандрасекара). Существенно больше этого предела карлик набрать не может -именно потому, что в этом случае он тут же взрывается. Из-за одинаковой массы все сверхновые этого типа при взрыве дают предельно сходную истинную яркость. Сравнив её с видимой с Земли яркостью, астрономы-наблюдатели легко могут вычислить расстояние до такой звезды. Затем они сравнивают дистанцию, вычисленную таким образом для более близких и более далёких галактик, и получают скорость расширения Вселенной.

Более ранние исследования редко комбинировали данные по цефеидам и сверхновым из одной и той же галактики, что часто не позволяло достаточно точно выяснить расстояния до неё. В конце 1990-х выяснилось, что сверхновые в самых далёких галактиках имеют яркость ниже той, что должны иметь. Из этого был сделан очень важный вывод: в настоящий момент Вселенная расширяется с нарастающим ускорением, которое потенциально может привести к значимым последствиям, вплоть до Большого разрыва , однако неточность измерений по одним только сверхновым не дала в тот раз корректно рассчитать скорость расширения Вселенной.

Новая и уточнённая оценка равна 73,1 километра в секунду на один мегапарсек. Это означает, что галактика на расстоянии в 3,26 миллиона световых лет каждую секунду удаляется от нас на 73,1 километра. Ранее эту цифру оценивали примерно в 70 километров в секунду.

Новые вычисления, несмотря на вроде бы небольшое расхождение с предыдущими оценками, имеют огромное значение для понимания происходящего во Вселенной и её физики в целом. Более ранние цифры расчётов на основе имевшихся оценок тёмной материи и энергии давали меньшую скорость расширения Вселенной. Новая работа означает, что наши представления о тёмной материи и тёмной энергии, заставляющей Вселенную расширяться с ускорением, могут быть неверны. Возможно, мы недооцениваем силу, с которой тёмная энергия "расталкивает" пространство во все стороны. Или же сразу после Большого взрыва существовала некая субатомная частица так называемого тёмного излучения, недоучёт которой и привёл к ранним ошибочным оценкам скорости расширения пространства-времени. Исследователи надеются, что их новая работа приведёт в конечном счёте научное сообщество к ответу на все эти вопросы.

Исследования американских астрономов подтверждают информацию из книг Анастасии Новых. Скорость расширения Вселенной оказалась гораздо выше, чем показывали предыдущие расчёты. Учёные приходят к выводу, что данный факт может указывать на наличие некоего тёмного излучения или на неполноту теории относительности. принята к публикации в Astrophysical Journal.

Американский астрофизик, нобелевский лауреат Адам Рисс (Adam Riess) отмечает, что данное открытие может помочь понять, чем является тёмная материя, а также тёмная энергия и тёмное излучение. Это считается довольно важным, поскольку по оценкам современных учёных, различные комбинации тёмной материи составляют более 95% от общей массы Вселенной .

Ранее для измерения скорости расширения Вселенной изучались далёкие сверхновые и использовались данные зондов WMAP и Planck, с помощью которых изучают микроволновое "эхо" Большого Взрыва. В новом исследовании астрофизики решили изменить тактику работы и начали наблюдать за относительно близкими, переменными звёздами соседних галактик. Эти звёзды называют цефеидами. Они представляют интерес для исследователей, поскольку их пульсацию можно использовать для точного вычисления расстояний до далёких космических объектов. Группа Адама Рисса при помощи телескопа "Хаббл" наблюдала за такими звёздами в 18 соседних галактиках, где недавно произошли взрывы сверхновых первого типа. В результате исследований удалось вычислить расстояние до данных объектов, что помогло уточнить значение постоянной Хаббла и уменьшить погрешность при её вычислении с 3% до 2,4%. В результате оказалось, что две галактики, находящиеся друг от друга на расстоянии 3 миллионов световых лет, разлетаются со скоростью 73 километра в секунду. Таким образом, был получен неожиданный результат: скорость оказалась заметно выше, чем при подсчётах, полученных с помощью WMAP и Planck. Это значение скорости не могут объяснить существующие научные взгляды о механизме зарождения Вселенной и природе тёмной энергии.

Фотографии NASA/ ESA/ A.Riess

Адам Рисс предполагает, что такая высокая скорость расширения Вселенной может говорить о том, что в процессе "разгона", помимо тёмной энергии, участвует ещё одна невидимая субстанция . Учёный назвал её "тёмным излучением" (dark radiation). По мнению исследователей, это "излучение" по своим свойствам похоже на так называемые стерильные нейтрино, и оно существовало в первые дни жизни Вселенной, когда в ней преобладала энергия, а не материя. Учёные надеются, что дальнейшие исследования при помощи телескопа "Хаббл" и повышение точности наблюдений помогут понять, действительно ли нужно "тёмное излучение" для объяснения неожиданных результатов в исследованиях скорости расширения Вселенной.

То, что Вселенная не стоит на месте, а постепенно расширяется, в 1929 доказал астроном Эдвин Хаббл. Он совершил это открытие, наблюдая за движением далёких галактик. В конце 1990-х годов, исследуя сверхновые первого типа, астрофизикам удалось выяснить, что Вселенная расширяется не с постоянной скоростью, а с ускорением. Тогда был сделан вывод, что причиной этому является тёмная энергия.

Интересно, что результаты современных исследований в области астрономии зачастую подтверждают информацию из древних преданий многих народов планеты. Эти памятники культуры хранят в себе поразительную информацию о рождении Вселенной посредством Первичного Звука (который до сих пор наблюдается в виде фона определённых излучений), а также знания о мироустройстве. Достаточно вспомнить широко известные космогонические мифы догонов и бамбара. Частично понять информацию, которую сохранил этот народ, удалось совсем недавно, благодаря открытиям в астрономии. Но в мифах догонов сохранилась и такая информация , что уровень развития современной физики ещё не в состоянии дать ей научное объяснение.

Возвращаясь к вопросу расширения Вселенной, стоит отметить, что результаты нового исследования подтверждают то, что было обнародовано много лет назад в книгах Анастасии Новых , причём, совершённое открытие является лишь малой частью знаний, заложенных в в этих книгах. Так, например, в книгах "Сэнсэй-4" и "АллатРа" отмечается, что движение Вселенной происходит по спирали. Вообще, спиралевидный ход движения является перспективным направлением для изучения, он проявляется во всех процессах материального мира. Но самое интересное, что в книгах писательницы описан не только процесс зарождения Вселенной, но и предоставлена информация о том, что происходит и произойдёт в результате её расширения. Также в книгах даны ценные знания о силе, которая лежит в основе материи и всех её взаимодействий, проведен анализ современных научных взглядов в области изучения астрономических явлений, анализ древних преданий со всего мира и многое другое, что может стать толчком для эпохальных открытий в современной науке.

Например, в книге "АллатРа" описана довольно интересная информация об общей массе Вселенной:

Ригден: ...Количество материи (её объём, плотность и так далее), да и сам факт её присутствия во Вселенной не влияют на общую массу Вселенной. Люди привыкли воспринимать материю с присущей ей массой только с позиции трёхмерного пространства. Но чтобы глубже понять смысл данного вопроса, необходимо знать о многомерности Вселенной. Объём, плотность и другие характеристики видимой, то есть привычной для людей материи во всём её разнообразии (включая и так называемые ныне «элементарные» частицы) изменяются уже в пятом измерении. Но масса остаётся неизменной, так как является частью общей информации о «жизни» этой материи до шестого измерения включительно. Масса материи — это всего лишь информация о взаимодействии одной материи с другой в определённых условиях. Как я уже говорил, упорядоченная информация создаёт материю, задаёт ей свойства, в том числе и массу. С учётом многомерности материальной Вселенной, её масса всегда равна нулю. Суммарная масса материи во Вселенной будет огромна лишь для Наблюдателей третьего, четвёртого и пятого измерений...

Анастасия: Масса Вселенной равна нулю? Это же указывает на иллюзорность мира, как такового, о чём говорилось во многих древних легендах народов мира...

Ригден: Наука будущего, если выберет указанный в твоих книгах путь, сможет вплотную подойти к ответам на вопросы о происхождении Вселенной и её искусственного создания.

Читать продолжение в книге "АллатРа", стр. 42

Согласно существующим в науке взглядам, "если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света".

Имеется и другой взгляд на процесс расширения Вселенной, который можно проследить и мифах народов мира, где говорилось и о сокращении дней, и о Первичном Звуке. В книге "Сэнсэй-4" можно прочитать следующее:

— ...В ближайшем будущем человечество столкнётся ещё с одним феноменом Вселенной. За счёт возрастающего ускорения Вселенной, в связи с истощением силы Аллата , человечество будет ощущать стремительное сокращение времени. Феномен будет заключаться в том, что условные двадцать четыре часа в сутки как были, так и останутся, но время будет пролетать гораздо быстрее. И люди будут чувствовать это стремительное сокращение временных промежутков как на физическом уровне, так и на уровне интуитивного восприятия.
— Так это будет связано именно с расширением Вселенной? — уточнил Николай Андреевич.
— Да. С возрастающим ускорением. Чем больше расширяется Вселенная, тем быстрее бежит время и так до полной аннигиляции материи.

Благодаря учёным, которые заинтересовались знаниями из книг А.Новых и начали вникать в их суть, недавно вышел доклад "ИСКОННАЯ ФИЗИКА АЛЛАТРА" . Как написано в докладе, основная закладка знаний для научных исследований была сделана автором в работах "АллатРа" и "Эзоосмос". В докладе учёных информация из книг автора дополняется новыми данными. В частности, появляются такие понятия как эзоосмическая решётка, септонное поле, септон, которые являются основополагающими для понимания происходящих в мире процессов как на микро-, так и на макроуровне.

"В основе материальной Вселенной находится своеобразный "пространственный каркас", нематериальная структура - ЭЗООСМИЧЕСКАЯ РЕШЁТКА.В представлении жителя 3-х мерного измерения эта энергетическая "конструкция" в целом напоминала бы по внешнему очертанию сильно уплощенный объект, приблизительно похожий на плоский кирпич, высота боковой грани которого составляет 1/72 от величины её основания. Другими словами, эзоосмическая решётка обладает плоской геометрией. Возможность расширения материальной Вселенной ограничена размерами эзоосмической решётки.

В пределах эзоосмической решётки существует 72 измерения (примечание: подробнее о 72 измерениях см. в книге "АллатРа"). Всё, что современной наукой именуется "материальной Вселенной", существует лишь в пределах первых 6 измерений, а остальные 66 измерений - это, по своей сути, контролирующие надстройки, сдерживающие "материальный мир" в определённых ограничительных рамках - шести измерениях. Согласно древним знаниям, 66 измерений (с 7 по 72 включительно) тоже относятся к материальному миру, но не являются таковыми по своей сути.

За пределами эзоосмической решётки, что также утверждается в древних священных преданиях разных народов мира, находится духовный мир - качественно иной мир, не имеющий ничего общего с материальным миром, его законами и проблемами."

Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.

В июле 1965 г. ученые объявили об открытии явных признаков расширения Вселенной из более горячего и плотного исходного состояния. Они нашли остывающее послесвечение Большого взрыва – реликтовое излучение. С этого момента расширение и охлаждение Вселенной легло в основу космологии. Космологическое расширение позволяет понять, как формировались простые структуры и как они постепенно развивались в сложные. Спустя 75 лет после открытия расширения Вселенной многие ученые не могут проникнуть в его истинный смысл. Джеймс Пиблз (James Peebles), космолог из Принстонского университета, изучающий реликтовое излучение, писал в 1993 г. : «Мне кажется, что даже специалисты не знают, каково значение и возможности модели горячего Большого взрыва».

Известные физики, авторы учебников по астрономии и популяризаторы науки порою дают неверную или искаженную трактовку расширения Вселенной, которое легло в основу модели Большого взрыва. Что же мы имеем в виду, когда говорим, что Вселенная расширяется? Несомненно, сбивает с толку то обстоятельство, что теперь говорят об ускорении расширения, и это ставит нас в тупик.

ОБЗОР: КОСМИЧЕСКОЕ НЕДОРАЗУМЕНИЕ

* Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование.

* Не следует воспринимать термин «Большой взрыв» буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара.

* Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономических наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная.

* Модель Большого взрыва описывает лишь то, что случилось после него.

Что такое расширение?

Когда расширяется что-нибудь привычное, например, влажное пятно или Римская империя, то они становятся больше, их границы раздвигаются, и они начинают занимать больший объем в пространстве. Но Вселенная, похоже, не имеет физических ограничений, и ей некуда двигаться. Расширение нашей Вселенной очень похоже на надувание воздушного шара. Расстояния до далеких галактик увеличиваются. Обычно астрономы говорят, что галактики удаляются или убегают от нас, но не перемещаются в пространстве, как осколки «бомбы Большого взрыва». В действительности расширяется пространство между нами и галактиками, хаотически движущимися внутри практически неподвижных скоплений. Реликтовое излучение заполняет Вселенную и служит системой отсчета, подобной резиновой поверхности воздушного шара, по отношению к которой движение и может быть измерено.

Находясь вне шара, мы видим, что расширение его искривленной двухмерной поверхности возможно только потому, что она находится в трехмерном пространстве. В третьем измерении располагается центр шара, а его поверхность расширяется в окружающий его объем. Исходя из этого, можно было бы заключить, что расширение нашего трехмерного мира требует наличия у пространства четвертого измерения. Но согласно общей теории относительности Эйнштейна, пространство динамично: оно может расширяться, сжиматься и изгибаться.

Дорожная пробка

Вселенная самодостаточна. Не требуются ни центр, чтобы расширяться от него, ни свободное пространство с внешней стороны (где бы она ни находилась), чтобы туда расширяться. Правда, некоторые новейшие теории, такие как теория струн, постулируют наличие дополнительных измерений, но при расширении нашей трехмерной Вселенной они не требуются.

В нашей Вселенной, как и на поверхности воздушного шара, каждый объект отдаляется от всех остальных. Таким образом, Большой взрыв не был взрывом в пространстве, а скорее это был взрыв самого пространства, который не произошел в определенном месте и затем не расширялся в окружающую пустоту. Это произошло всюду одновременно.

НА ЧТО БЫЛ ПОХОЖ БОЛЬШОЙ ВЗРЫВ?

НЕВЕРНО : Вселенная родилась тогда, когда вещество, подобно бомбе, взорвалось в определенном месте. Давление было высоким в центре и низким в окружающей пустоте, что и вызвало разлет вещества.

ВЕРНО : Это был взрыв самого пространства, который привел вещество в движение. Наше пространство и время возникло в Большом взрыве и начало расширяться. Нигде не было центра, т.к. условия всюду были одинаковыми, никакого перепада давления, характерного для обычного взрыва, не было.

Если представить, что мы прокручиваем киноленту в обратном порядке, то увидим, как все области Вселенной сжимаются, а галактики сближаются, пока не столкнутся все вместе в Большом взрыве, как автомобили в дорожной пробке. Но сопоставление тут не полное. Если бы речь шла о происшествии, то вы могли бы объехать затор, услышав сообщения о нем по радио. Но Большой взрыв был катастрофой, которую невозможно избежать. Это похоже на то, как если бы поверхность Земли и все дороги на ней смялись, но автомобили оставались бы прежнего размера. В конце концов машины столкнулись бы, и никакое сообщение по радио не помогло бы предотвратить это. Так же и Большой взрыв: он произошел повсеместно, в отличие от взрыва бомбы, который происходит в определенной точке, а осколки разлетаются во все стороны.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме. Иногда космологи заявляют, что Вселенная когда-то была не больше грейпфрута, но они имеют в виду лишь ту ее часть, которую мы сейчас можем наблюдать.

У обитателей туманности Андромеды или других галактик свои наблюдаемые вселенные. Наблюдатели, находящиеся в Андромеде, могут видеть галактики, которые недоступны нам, просто из-за того, что они немного ближе к ним; зато они не могут созерцать те, которые рассматриваем мы. Их наблюдаемая Вселенная тоже была размером с грейпфрут. Можно вообразить, что ранняя Вселенная была похожа на кучу этих фруктов, безгранично простирающуюся во всех направлениях. Значит, представление о том, что Большой взрыв был «маленьким», ошибочно. Пространство Вселенной безгранично. И как его ни сжимай, оно таковым и останется.

Быстрее света

Ошибочные представления бывают связаны и с количественным описанием расширения. Скорость, с которой увеличиваются расстояния между галактиками, подчиняется простой закономерности, выявленной американским астрономом Эдвином Хабблом (Edwin Hubble) в 1929 г. : скорость удаления галактики v прямо пропорциональна его расстоянию от нас d, или v = Hd. Коэффициент пропорциональности H называется постоянной Хаббла и определяет скорость расширения пространства как вокруг нас, так и вокруг любого наблюдателя во Вселенной.

Некоторых сбивает с толку то, что не все галактики подчиняются закону Хаббла. Ближайшая к нам крупная галактика (Андромеда) вообще движется к нам, а не от нас. Такие исключения бывают, поскольку закон Хаббла описывает лишь среднее поведение галактик. Но каждая из них может иметь и небольшое собственное движение, поскольку галактики гравитационно воздействуют друг на друга, как, например, наша Галактика и Андромеда. Отдаленные галактики также имеют небольшие хаотические скорости, но при большом расстоянии от нас (при большом значении d) эти случайные скорости ничтожно малы на фоне больших скоростей удаления (v). Поэтому для далеких галактик закон Хаббла выполняется с высокой точностью.

Согласно закону Хаббла, Вселенная расширяется не с постоянной скоростью. Некоторые галактики удаляются от нас со скоростью 1 тыс. км/с, другие, находящиеся вдвое дальше, со скоростью 2 тыс. км/с, и т.д. Таким образом, закон Хаббла указывает, что, начиная с некоторого расстояния, называемого хаббловским, галактики удаляются со сверхсветовой скоростью. Для измеренного значения постоянной Хаббла это расстояние составляет около 14 млрд. световых лет.

Но разве частная теория относительности Эйнштейна не утверждает, что никакой объект не может иметь скорость выше скорости света? Такой вопрос ставил в тупик многие поколения студентов. А ответ состоит в том, что частная теория относительности применима лишь к «нормальным» скоростям – к движению в пространстве. В законе Хаббла речь идет о скорости удаления, вызванного расширением самого пространства, а не движением в пространстве. Этот эффект общей теории относительности не подчиняется частной теории относительности. Наличие скорости удаления выше скорости света никак не нарушает частную теорию относительности. По-прежнему верно, что никто не может догнать луч света.

МОГУТ ЛИ ГАЛАКТИКИ УДАЛЯТЬСЯ СО СКОРОСТЬЮ ВЫШЕ СКОРОСТИ СВЕТА?

НЕВЕРНО : Частная теория относительности Эйнштейна запрещает это. Рассмотрим область пространства, содержащую несколько галактик. Из-за ее расширения галактики удаляются от нас. Чем дальше галактика, тем больше ее скорость (красные стрелки). Если скорость света – предел, то скорость удаления должна в итоге стать постоянной.

ВЕРНО : Разумеется, могут. Частная теория относительности не рассматривает скорость удаления. Скорость удаления бесконечно возрастает с рассто- янием. Дальше некоторого расстояния, называемого хаббловским, она превышает скорость света. Это не является нарушением теории относительности, пос- кольку удаление вызвано не движением в простран- стве, а расширением самого пространства.

МОЖНО ЛИ УВИДЕТЬ ГАЛАКТИКИ, УДАЛЯЮЩИЕСЯ БЫСТРЕЕ СВЕТА?

НЕВЕРНО : Конечно нет. Свет от таких галактик улетает вместе с ними. Пусть галактика находится за пределом хаббловского расстояния (сфера), т.е. удаляется от нас быстрее скорости света. Она испускает фотон (помечено желтым цветом). Пока фотон летит сквозь пространство, само оно расширяется. Расстояние до Земли увеличивается быстрее, чем движется фотон. Он никогда не достигнет нас.

ВЕРНО : Конечно можно, поскольку скорость расширения изменяется со временем. Сначала фотон действительно сносится расширением. Однако хаббловское расстояние не постоянно: оно увеличивается, и в конце концов фотон может попасть в сферу Хаббла. Как только это случится, фотон будет двигаться быстрее, чем удаляется Земля, и он сможет достичь нас.

Растяжение фотонов

Первые наблюдения, показывающие, что Вселенная расширяется, были сделаны между 1910 и 1930 г. В лаборатории атомы испускают и поглощают свет всегда на определенных длинах волн. То же наблюдается и в спектрах далеких галактик, но со смещением в длинноволновую область. Астрономы говорят, что излучение галактики испытывает красное смещение. Объяснение простое: при расширении пространства световая волна растягивается и поэтому ослабевает. Если в течение того времени, пока световая волна дошла до нас, Вселенная расширилась вдвое, то и длина волны удвоилась, а ее энергия ослабла в два раза.

ГИПОТЕЗА УСТАЛОСТИ

Каждый раз, когда Scientific American публикует статью по космологии, многие читатели пишут нам, что, по их мнению, галактики на самом деле не удаляются от нас и что расширение пространства – иллюзия. Они полагают, что красное смещение в спектрах галактик вызвано чем-то вроде «утомления» от долгой поездки. Некий неизвестный процесс вынуждает свет, распространяясь сквозь пространство, терять энергию и поэтому краснеть.

Данной гипотезе уже более полувека, и на первый взгляд она выглядит разумной. Но она совершенно не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. Весь процесс длится примерно две недели у сверхновых того типа, который астрономы используют для определения расстояний до галактик. За этот период времени сверхновая излучает поток фотонов. Гипотеза усталости света говорит, что за время пути фотоны потеряют энергию, но наблюдатель все равно получит поток фотонов длительностью в две недели.

Однако в расширяющемся пространстве не только сами фотоны растягиваются (и поэтому теряют энергию), но и их поток также растягивается. Поэтому требуется более двух недель, чтобы все фотоны добрались до Земли. Наблюдения подтверждают такой эффект. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1 – месяц.

Гипотеза усталости света противоречит также наблюдениям спектра реликтового излучения и измерениям поверхностной яркости далеких галактик. Пришло время отправить на покой «утомленный свет» (Чарльз Линевивер и Тамара Дэвис).

Сверхновые звезды, как эта в скоплении галактик в Деве, помогают измерять космическое расширение. Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется.

Процесс можно описать в терминах температуры. Испускаемые телом фотоны имеют распределение по энергии, которое в целом характеризуют температурой, указывающей, насколько тело горячее. Когда фотоны движутся в расширяющемся пространстве, они теряют энергию и их температура снижается. Таким образом, Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста. К примеру, реликтовое излучение сейчас имеет температуру около 3 К, тогда как оно родилось при температуре около 3000 К. Но с того времени Вселенная увеличилась в размере в 1000 раз, а температура фотонов понизилась во столько же раз. Наблюдая газ в далеких галактиках, астрономы прямо измеряют температуру этого излучения в далеком прошлом. Измерения подтверждают, что Вселенная со временем охлаждается.

В связи между красным смещением и скоростью также существуют некоторые противоречия. Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Согласно формуле Доплера, если скорость объекта в пространстве приближается к скорости света, то его красное смещение стремится к бесконечности, а длина волны становится слишком большой и поэтому недоступной для наблюдения. Если бы это было верно для галактик, то самые отдаленные видимые объекты на небе удалялись бы со скоростью, заметно меньшей скорости света. Но космологическая формула для красного смещения приводит к другому выводу. В рамках стандартной космологической модели галактики с красным смещением около 1,5 (т.е. принимаемая длина волны их излучения на 50% больше лабораторного значения) удаляются со скоростью света. Астрономы уже обнаружили около 1000 галактик с красным смещением больше 1,5. А значит, нам известно около 1000 объектов, удаляющихся быстрее скорости света. Реликтовое излучение приходит с еще большего расстояния и имеет красное смещение около 1000. Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света.

Бег на месте

Трудно поверить, что мы можем видеть галактики, движущиеся быстрее скорости света, однако это возможно из-за изменения скорости расширения. Вообразите луч света, идущий к нам с расстояния большего, чем расстояние Хаббла (14 млрд. световых лет). Он движется к нам со скоростью света относительно своего местоположения, но само оно удаляется от нас быстрее скорости света. Хотя свет устремляется к нам с максимально возможной скоростью, он не может угнаться за расширением пространства. Это напоминает ребенка, пытающегося бежать в обратную сторону по эскалатору. Фотоны на хаббловском расстоянии перемещаются с максимальной скоростью, чтобы оставаться на прежнем месте.

Можно подумать, что свет из областей, удаленных дальше расстояния Хаббла, никогда не сможет дойти до нас и мы его никогда не увидим. Но расстояние Хаббла не остается неизменным, поскольку постоянная Хаббла, от которой оно зависит, меняется со временем. Эта величина пропорциональна скорости разбегания двух галактик, деленной на расстояние между ними. (Для вычисления можно использовать любые две галактики.) В моделях Вселенной, согласующихся с астрономическими наблюдениями, знаменатель увеличивается быстрее числителя, поэтому постоянная Хаббла уменьшается. Следовательно, расстояние Хаббла растет. А раз так, свет, который первоначально не достигал нас, может со временем оказаться в пределах хаббловского расстояния. Тогда фотоны окажутся в области, удаляющейся медленнее скорости света, после чего они смогут добраться до нас.

ДЕЙСТВИТЕЛЬНО ЛИ КОСМИЧЕСКОЕ КРАСНОЕ СМЕЩЕНИЕ – ЭТО ДОПЛЕРОВСКОЕ СМЕЩЕНИЕ?

НЕВЕРНО : Да, потому что удаляющиеся галактики движутся в пространстве. В эффекте Доплера световые волны растягиваются (становясь более красными), когда их источник удаляется от наблюдателя. Длина волны света не меняется во время его путешествия сквозь пространство. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики.

ВЕРНО : Нет, красное смещение не имеет никакого отношения к эффекту Доплера. Галактика почти неподвижна в пространстве, поэтому испускает свет одинаковой длины волны во всех направлениях. За время пути длина волны становится больше, поскольку пространство расширяется. Поэтому свет постепенно краснеет. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики. Космическое красное смещение отличается от доплеровского смещения, что подтверждают наблюдения.

Однако галактика, пославшая свет, может продолжать удаляться со сверхсветовой скоростью. Таким образом, мы можем наблюдать свет от галактик, которые, как и прежде, всегда будут удаляться быстрее скорости света. Одним словом, хаббловское расстояние не фиксировано и не указывает нам границы наблюдаемой Вселенной.

А что в действительности отмечает границу наблюдаемого пространства? Здесь тоже происходит некая путаница. Если бы пространство не расширялось, то самый отдаленный объект мы могли бы наблюдать теперь на расстоянии около 14 млрд. световых лет от нас, т.е. на расстоянии, которое свет преодолел за 14 млрд. лет, прошедших с момента Большого взрыва. Но поскольку Вселенная расширяется, пространство, пересеченное фотоном, расширилось за время его пути. Поэтому текущее расстояние до самого удаленного из наблюдаемых объектов примерно втрое больше – около 46 млрд. световых лет.

Раньше космологи думали, что мы живем в замедляющейся Вселенной и поэтому можем наблюдать все больше и больше галактик. Однако в ускоряющейся Вселенной мы отгорожены границей, вне которой никогда не увидим происходящие события – это космический горизонт событий. Если свет от галактик, удаляющихся быстрее скорости света, достигнет нас, значит, расстояние Хаббла увеличится. Но в ускоряющейся Вселенной его увеличение запрещено. Удаленное событие может послать луч света в нашем направлении, но этот свет навсегда останется за пределом расстояния Хаббла из-за ускорения расширения.

Как видим, ускоряющаяся Вселенная напоминает черную дыру, тоже имеющую горизонт событий, извне которого мы не получаем сигналов. Нынешнее расстояние до нашего космического горизонта событий (16 млрд. световых лет) целиком лежит в пределах нашей наблюдаемой области. Свет, испущенный галактиками, находящимися сейчас дальше космического горизонта событий, никогда не сможет достигнуть нас, т.к. расстояние, которое сейчас соответствует 16 млрд. световых лет, будет расширяться слишком быстро. Мы сможем увидеть события, происходившие в галактиках прежде, чем они пересекли горизонт, но о последующих событиях мы не узнаем никогда.

Во Вселенной расширяется все?

Люди часто думают, что если пространство расширяется, то и все в нем тоже расширяется. Но это неверно. Расширение как таковое (т.е. по инерции, без ускорения или замедления) не производит никакой силы. Длина волны фотона увеличивается вместе с ростом Вселенной, поскольку в отличие от атомов и планет фотоны не связанные объекты, размеры которых определяются равновесием сил. Изменяющаяся скорость расширения действительно вносит новую силу в равновесие, но и она не может заставить объекты расширяться или сжиматься.

Например, если бы гравитация стала сильнее, ваш спинной мозг сжался бы, пока электроны в позвоночнике не достигли бы нового положения равновесия, чуть ближе друг к другу. Ваш рост немного уменьшился бы, но сжатие на этом прекратилось бы. Точно так же, если бы мы жили во Вселенной с преобладанием сил тяготения, как еще несколько лет назад считало большинство космологов, то расширение замедлялось бы, а на все тела действовало бы слабое сжатие, заставляющее их достигать меньшего равновесного размера. Но, достигнув его, они бы больше не сжимались.

НАСКОЛЬКО ВЕЛИКА НАБЛЮДАЕМАЯ ВСЕЛЕННАЯ?

НЕВЕРНО : Вселенной 14 млрд. лет, поэтому наблюдаемая ее часть должна иметь радиус 14 млрд. световых лет.Рассмотрим самую далекую из наблюдаемых галактик – ту, чьи фотоны, испущенные сразу после Большого взрыва, только теперь достигли нас. Световой год – это расстояние, проходимое фотоном за год. Значит, фотон преодолел 14 млрд. световых лет

ВЕРНО : Поскольку пространство расширяется, наблюдаемая область имеет радиус больше, чем 14 млрд. световых лет. Пока фотон путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени полета, – приблизительно втрое больше

Фактически же расширение ускоряется, что вызвано слабой силой, «раздувающей» все тела. Поэтому связанные объекты имеют размеры немного больше, чем были бы в неускоряющейся Вселенной, поскольку равновесие сил достигается у них при немного большем размере. На поверхности Земли ускорение, направленное наружу, от центра планеты, составляет мизерную долю ($10^{–30}$) нормального гравитационного ускорения к центру. Если это ускорение неизменно, то оно не заставит Землю расширяться. Просто планета принимает чуть больший размер, чем он был бы без силы отталкивания.

Но все изменится, если ускорение не постоянно, как полагают некоторые космологи. Если отталкивание увеличивается, то это может в конце концов вызвать разрушение всех структур и привести к «Большому разрыву», который произошел бы не из-за расширения или ускорения как такового, а потому что ускорение ускорялось бы.

А ОБЪЕКТЫ ВО ВСЕЛЕННОЙ ТОЖЕ РАСШИРЯЮТСЯ?

НЕВЕРНО : Да. Расширение заставляет Вселенную и все находящееся в ней увеличиваться. В качестве объекта рассмотрим скопление галактик. Раз Вселенная становится больше, то и скопление – также. Граница скопления (желтая линия) расширяется.

ВЕРНО : Нет. Вселенная расширяется, но связанные объекты в ней не делают этого. Соседние галактики сначала удаляются, но в конечном счете их взаимное притяжение пересиливает расширение. Формируется скопление такого размера, которое соответствует его равновесному состоянию.

По мере того как новые точные измерения помогают космологам лучше понять расширение и ускорение, они могут задаться еще более фундаментальными вопросами о самых ранних мгновениях и наибольших масштабах Вселенной. Чем было вызвано расширение? Многие космологи считают, что в этом виноват процесс, называемый «инфляцией» (раздуванием), особый тип ускоряющегося расширения. Но возможно, это лишь частичный ответ: чтобы она началась, похоже, Вселенная уже должна была расширяться. А что относительно наибольших масштабов за пределом наших наблюдений? Расширяются ли разные части Вселенной по-разному, так, что наша Вселенная – это всего лишь скромный инфляционный пузырь в гигантской сверхвселенной? Никто не знает. Но мы надеемся, что со временем мы сможем прийти к пониманию процесса расширения Вселенной.

ОБ АВТОРАХ:
Чарльз Линевивер (Charles H. Lineweaver) и Тамара Дэвис (Tamara M. Davis) – астрономы из австралийской обсерватории Маунт-Стромло. В начале 1990-х гг. в Калифорнийском университете в Беркли Линевивер входил в группу ученых, открывших с помощью спутника COBE флуктуации реликтового излучения. Он защитил диссертацию не только по астрофизике, но и по истории и английской литературе. Дэвис работает над созданием космической обсерватории Supernova/Acceleration Probe (Исследователь сверхновых звезд и ускорения).

ЗАМЕЧАНИЯ К СТАТЬЕ «ПАРАДОКСЫ БОЛЬШОГО ВЗРЫВА»
Профессор Засов Анатолий Владимирович, физ. ф-т МГУ: Все недоразумения, с которыми спорят авторы статьи, связаны с тем, что для наглядности чаще всего рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета (причем расширение достаточно маленькой области, чтобы не учитывать разность хода времени на Земле и на далеких галактиках в земной системе отсчета). Отсюда представление и о взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения. Авторы же пишут, и пишут правильно, как все выглядит в неинерциальной (сопутствующей) системе координат, в которой обычно работают космологи, хотя в статье прямо не говорится об этом (в принципе, все расстояния и скорости зависят от выбора системы отсчета, и здесь всегда есть некий произвол). Единственно, что написано нечетко, так это то, что не определено, что же в расширяющейся Вселенной понимается под расстоянием. Сначала у авторов это скорость света, умноженная на время распространения, а далее говорится, что необходим еще учет расширения, которое удалило галактику еще больше, пока свет был в пути. Таким образом, расстояние уже понимается как скорость света, умноженная на время распространения, которое он потратил бы, если бы галактика перестала удаляться и излучила свет сейчас. В действительности все сложнее. Расстояние – величина модельно зависимая и непосредственно из наблюдений не получаемая, поэтому космологи без него прекрасно обходятся, заменяя красным смещением. Но может быть, более строгий подход здесь и неуместен.


Куда расширяется Вселенная
Думаю, что все уже слышали, что Вселенная расширяется , и часто мы её представляем, как огромный шар, наполненный Галактиками и туманностями, который увеличивается из какого-то меньшего состояния и закрадывается мысль, что в начале времён Вселенная вообще была зажата в точечку.

Тогда возникает вопрос, а что же находится за границей , и куда Вселенная расширяется ? Но, о какой границе идёт речь?! Разве Вселенная не бесконечна?! Всё-же попробуем в этом разобраться.

Расширение Вселенной и сфера Хаббла

Давайте представим, что наблюдаем в суперогромный телескоп, в которой видно, что угодно во Вселенной . Она расширяется и её галактики удаляются от нас. Причём, чем пространственно дальше относительно нас находятся они, тем быстрее галактики удаляются. Давайте посмотрим всё дальше и дальше. И на каком-то расстоянии выяснится, что все тела удаляются относительно нас со световой скоростью. Так образуется сфера, которая называется, сфера Хаббла . Сейчас до неё чуть менее 14 млрд.св.лет , и всё за её пределами улетает относительно нас быстрее света. Казалось бы, что это противоречит Теории Относительности , ведь скорость не может превышать световую. Но нет, ведь тут речь не о скорости самих объектов, а о скорости расширения пространства . А это совсем другое и она может быть какой угодно.
Но мы можем посмотреть и дальше. На некотором расстоянии объекты удаляются настолько быстро, что мы их вообще никогда не увидим. Фотоны, испущенные в нашу сторону просто никогда не достигнут Земли. Они словно человек, идущий против движения эскалатора. Будут уноситься назад быстро расширяющимся пространством. Граница, где такое происходит, называется Горизонтом частиц . Сейчас до него около 46,5 млрд.св.лет . Расстояние это увеличивается, ведь Вселенная расширяется . Это граница, так называемой, Наблюдаемой Вселенной . И всё за пределами этой границы, мы никогда никогда не увидим.
И вот тут вот самое интересное. А что же за ней? Может быть, это и есть ответ на вопрос?! Оказывается всё очень прозаично. На самом-то деле никакой границы нет. И там на миллиарды миллиарды километров простираются такие же Галактики, звёзды и планеты.

Но как?! Как так получается?!

Центр расширения вселенной и горизонт частиц

Просто Вселенная разлетается довольно хитро. Это происходит в каждой точке пространства одинаково. Словно мы взяли координатную сетку и увеличиваем её масштаб. От этого и правда кажется, что все Галактики удаляются от нас. Но, если вы переместимся в другую Галактику, то увидим эту же картину. Теперь все объекты будут удаляться от неё. То есть, в каждой точке космоса будет казаться, что мы находимся в центре расширения . Хотя никакого центра нет.
Поэтому, если мы окажемся рядом с Горизонтом частиц , соседние Галактики не будут разлетаться от нас быстрее скорости света. Ведь Горизонт частиц переместиться вместе с нами и опять окажется очень далеко. Соответственно, сместятся границы Наблюдаемой Вселенной и мы увидим новые Галактики, ранее недоступные для наблюдения. И такую операцию можно проделывать бесконечно. Можно раз за разом перемещаться к горизонту частиц, но тогда он сам будет смещаться, открывая взору всё новые просторы Вселенной . То есть, мы не достигнем ее границ никогда, и получается, что Вселенная и правда бесконечна . Ну, а границы есть только у наблюдаемой ее части.
Что-то похожее происходит и на Земном шаре . Нам кажется, что горизонт — это граница земной поверхности, но стоит переместиться в ту точку и окажется, что никакой границы то нет. У Вселенной нет предела, за которым отсутствует пространство-время или что-то типа такого. Просто здесь мы наталкиваемся на бесконечностью , которая для нас непривычна. Но можно сказать так, Вселенная всегда была бесконечной и растягивается продолжая оставаться бесконечной. Она может это делать потому, что у пространства нет мельчайшей частицы. Оно может растягиваться сколь угодно долго. Вселенной, для расширения, не нужны границы и области куда расширяться. Так, что этого куда просто не существует.

Так подождите-ка, а как же Большой Взрыв ?! Разве всё, что существует в космосе не было сжато в одну малюсенькую точечку?!

Нет! Сжата в точечку была лишь наблюдаемая граница Вселенной . А вся в целом она никогда не имела границ. Чтобы понять это, давайте вообразим себе Вселенную через миллиардные доли секунды после , когда наблюдаемая её часть была размером с баскетбольный мяч. Даже тогда мы можем перемещаться к Горизонту частиц и вся видимая Вселенная будет сдвигаться. Мы можем проделывать это сколько угодно раз и окажется, что Вселенная действительно бесконечна .
И мы можем проделывать тоже самое и раньше. Таким образом, перемещаясь во времени назад, мы окажемся всё ближе к Большому Взрыву . Но при этом, каждый раз мы будем обнаруживать, что Вселенная бесконечна в каждый период времени! Даже в мгновение Большого Взрыва! И получается, что он случился не в какой-то конкретной точечке, а повсюду, в каждой точечке, не имеющего предела Космоса.
Однако, это только теория. Да, достаточно согласованная и логичная, но не лишённая недостатков.

В каком состоянии находилось вещество в мгновение Большого Взрыва ? Что было до него и почему он вообще произошел? Пока что, на эти вопросы чётких ответов нет. Но научный мир не стоит на месте, и может быть даже мы станем очевидцами разгадки этих тайн.

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...