План летней кампании 1942. Описание сталинградской битвы

СТРОНЦИЙ (Strontium, Sr ) - химический элемент периодической системы Д. И. Менделеева, подгруппы щелочноземельных металлов. В организме человека С. конкурирует с кальцием (см.) за включение в кристаллическую решетку оксиапатита кости (см.). 90 Sr, один из наиболее долгоживупих радиоактивных продуктов расщепления урана (см.), накапливаясь в атмосфере и биосфере при испытаниях ядерного оружия (см.), представляет огромную опасность для человечества. Радиоактивные изотопы С. применяют в медицине для лучевой терапии (см.), в качестве радиоактивной метки в диагностических радиофар-мацевтических препаратах (см.) в медико-биол. исследованиях, а также в атомных электрических батареях. Соединения С. используют в дефектоскопах, в чувствительных приборах, в устройствах для борьбы со статическим электричеством, кроме того, С. применяют в радиоэлектронике, пиротехнике, в металлургической, химической промышленности и при изготовлении керамических изделий. Соединения С. неядовиты. При работе с металлическим С. следует руководствоваться правилами обращения со щелочными металлами (см.) и щелочноземельными металлами (см.).

С. был открыт в составе минерала, позднее названного стронцианитом SrC03, в 1787 г. вблизи шотландского города Стронциана.

Порядковый номер стронция 38, атомный вес (масса) 87,62. Содержание С. в земной коре составляет в среднем 4-10 2 вес. %, в морской воде - 0,013% (13 мг/л). Промышленное значение имеют минералы стронцианит и целестин SrSO 4 .

В организме человека содержится ок. 0,32 г стронция, в основном в костной ткани, в крови концентрация С. в норме составляет 0,035 мг/л, в моче - 0,039 мг/л.

С. представляет собой мягкий серебристо-белый металл, t°пл 770°, t°кип 1383°.

По хим. свойствам С. сходен с кальцием и барием (см.), в соединениях валентность стронция 4-2, химически активен, окисляется при обычных условиях водой с образованием Sr(OH) 2 , а также кислородом и другими окислителями.

В организм человека С. поступает гл. обр. с растительной пищей, а также с молоком. Он всасывается в тонкой кишке и быстро обменивается со С., содержащимся в костях. Выведение С. из организма усиливают комп-лексоны, аминокислоты, полифосфаты. Повышенное содержание кальция и фтора (см.) в воде препятствует кумуляции С. в костях. При увеличении концентрации кальция в рационе в 5 раз накопление С. в организме снижается вдвое. Избыточное поступление С. с пищей и водой вследствие его повышенного содержания в почве нек-рых геохим. провинций (напр., в отдельных р-нах Восточной Сибири) вызывает эндемическое заболевание - уровскую болезнь (см. Кашина - Бека болезнь).

В костях, крови и других биол. субстратах С. определяют гл. обр. спектральными методами (см. Спектроскопия).

Радиоактивный стронций

Природный С. состоит из четырех стабильных изотопов с массовыми числами 84, 86, 87 и 88, из к-рых наиболее распространен последний (82,56%). Известны 18 радиоактивных изотопов С. (с массовыми числами 78-83, 85, 89-99) и 4 изомера у изотопов с массовыми числами 79, 83, 85 и 87 (см. Изомерия).

В медицине 90Sr применяют для лучевой терапии в офтальмологии и дерматологии, а также в радиобиологических экспериментах в качестве источника р-изл учения. 85Sr получают либо облучением в ядерном реакторе нейтронами стронциевой мишени, обогащенной по изотопу 84Sr, по реакции 84Sr (11,7) 85Sr, либо производят на циклотроне, облучая протонами или дейтронами мишени из природного рубидия, напр, по реакции 85Rb (p, n) 85Sr. Радионуклид 85Sr распадается с электронным захватом, испуская гамма-излучение с энергией Е гамма, равной 0,513 Мэв (99,28%) и 0,868 Мэв (< 0,1%).

87m Sr также можно получить облучением стронциевой мишени в реакторе по реакции 86Sr (n, гамма) 87mSr, но выход искомого изотопа мал, кроме того, одновременно с 87mSr образуются изотопы 85Sr и 89Sr. Поэтому обычно 87niSr получают с помощью изотопного генератора (см. Генераторы радиоактивных изотопов) на основе материнского изотопа иттрия-87 - 87Y (Т1/2 = 3,3 сут.). 87mSr распадается с изомерным переходом, испуская гамма-излучение с энергией Егамма, равной 0,388 Мэв, и частично с электронным захватом (0,6%).

89Sr содержится в продуктах деления вместе с 90Sr, поэтому 89Sr получают облучением природного С. в реакторе. При этом неизбежно образуется и примесь 85Sr. Изотоп 89Sr распадается с испусканием P-излучения с энергией 1,463 Мэв (ок. 100%). В спектре имеется также очень слабая линия гамма-излучения с энергией Е гамма, равной 0,95 Мэв (0,01%).

90Sr получают выделением из смеси продуктов деления урана (см.). Этот изотоп распадается с испусканием бета-излучения с энергией Е бета, равной 0,546 Мэе (100%), без сопровождающего гамма-излучения. Распад 90Sr приводит к образованию дочернего радионуклида 90Y, к-рый распадается (Т1/2 = 64 часа) с испусканием р-из-лучения, состоящего из двух компонент с Ер, равной 2,27 Мэв (99%) и 0,513 Мэв (0,02%). При распаде 90Y испускается также весьма слабое гамма-излучение с энергией 1,75 Мэв (0,02%).

Радиоактивные изотопы 89Sr и 90Sr, присутствующие в отходах атомной промышленности и образующиеся при испытаниях ядерного оружия, при загрязнении окружающей среды могут попадать в организм человека с пищей, водой, воздухом. Количественная оценка миграции С. в биосфере обычно проводится в сравнении с кальцием. В большинстве случаев при движении 90Sr от предшествующего звена цепи к последующему происходит уменьшение концентрации 90Sr в расчете на 1 г кальция (так наз. коэффициент дискриминации), у взрослых людей в звене организм - рацион этот коэффициент равен 0,25.

Подобно растворимым соединениям других щелочноземельных элементов растворимые соединения С. хорошо всасываются из жел.-киш. тракта (10-60%), всасывание плохорастворимых соединений С. (напр., SrTi03) составляет менее 1%. Степень всасывания радионуклидов С. в кишечнике зависит от возраста. С увеличением содержания кальция в рационе накопление С. в организме уменьшается. Молоко способствует увеличению всасывания С. и кальция в кишечнике. Полагают, что это связано с присутствием в молоке лактозы и лизина.

При вдыхании растворимые соединения С. быстро элиминируются из легких, в то время как плохорастворимый SrTi03 обменивается в легких крайне медленно. Проникновение радионуклида С. через неповрежденную кожу составляет ок. 1%. Через поврежденную кожу (резаная рана, ожоги и др.)? так же как из подкожной клетчатки и мышечной ткани, С. всасывается почти полностью.

С. является остеотропным элементом. Независимо от пути и ритма поступления в организм растворимые соединения 90Sr избирательно накапливаются в костях. В мягких тканях задерживается менее 1% 90Sr.

При внутривенном введении С. очень быстро элиминируется из кровяного русла. Вскоре после введения концентрация С. в костях становится в 100 раз и более выше, чем в мягких тканях. Отмечены нек-рые отличия в накоплении 90Sr в отдельных органах и тканях. Относительно более высокая концентрация 90Sr у экспериментальных животных обнаруживается в почках, слюнной и щитовидной железах, а самая низкая - в коже, костном мозге и надпочечниках. Концентрация 90Sr в корковом веществе почек всегда выше, чем в мозговом веществе. С. первоначально задерживается на костных поверхностях (надкостнице, эндосте), а затем распределяется сравнительно равномерно по всему объему кости. Тем не менее распределение 90Sr в различных частях одной и той же кости и в разных костях оказывается неравномерным. В первое время после введения концентрация 90Sr в эпифизе и метафизе кости экспериментальных животных примерно в 2 раза выше, чем в диафизе. Из эпифиза и метафиза 90Sr выделяется быстрее, чем из диафиза: за 2 мес. концентрация 90Sr в эпифизе и метафизе кости снижается в 4 раза, а в диафизе почти не изменяется. Первоначально 90Sr концентрируется в тех участках, в к-рых происходит активное образование кости. Обильное крово- и лимфообращение в эпиметафизарных участках кости способствует более интенсивному отложению в них 90Sr по сравнению с диафизом трубчатой кости. Величина отложения 90Sr в костях у животных непостоянна. Резкое понижение фиксации 90Sr в костях с возрастом обнаружено у всех видов животных. Отложение 90Sr в скелете существенным образом зависит от пола, беременности, лактации, состояния нейроэндокринной системы. Более высокое отложение 90Sr в скелете отмечено у самцов крыс. В скелете беременных самок 90Sr накапливается меньше (до 25%), чем у контрольных животных. Существенное влияние на накопление 90Sr в скелете самок оказывает лактация. При введении 90Sr через 24 часа после родов в скелете крыс 90Sr задерживается в 1,5-2 раза меньше, чем у нелактирующих самок.

Проникновение 90Sr в ткани эмбриона и плода зависит от стадии их развития, состояния плаценты и длительности циркуляции изотопа в крови матери. Проникновение 90Sr в плод тем больше, чем больше срок беременности в момент введения радионуклида.

Для уменьшения повреждающего действия радионуклидов стронция необходимо ограничить накопление их в организме. С этой целью при загрязнении кожи следует произвести быструю дезактивацию ее открытых участков (препаратом «Защита-7», моющими порошками «Эра» или «Астра», пастой НЭДЭ). При пероральном поступлении радионуклидов стронция следует применять антидоты, позволяющие связать или сорбировать радионуклид. К таким антидотам относят активированный сульфат бария (адсо-бар), полисурьмин, препараты альгиновой к-ты и др. Напр., препарат адсобар при немедленном приеме после попадания радионуклидов в желудок снижает их всасывание в 10-30 раз. Адсорбенты и антидоты следует назначать сразу после обнаружения поражения радионуклидами стронция, т. к. промедление в этом случае приводит к резкому снижению их положительного действия. Одновременно рекомендуют назначать рвотные средства (апоморфин) или производить обильное промывание желудка, применять солевые слабительные, очистительные клизмы. При поражении пылевидными препаратами необходимо обильное промывание носа и полости рта, отхаркивающие средства (термопсис с содой), хлорид аммония, инъекции препаратов кальция, мочегонные. В более поздние сроки после поражения для уменьшения отложения радионуклидов С. в костях рекомендуют применять так наз. стабильный стронций (лактат С. или глюконат С.). Большие дозы кальция перорально или внутривенно MofyT заменить препараты стабильного стронция, если они недоступны. В связи с хорошей реабсорбцией радионуклидов стронция в почечных канальцах показано также применение мочегонных средств.

Нек-рое уменьшение накопления радионуклидов С. в организме может быть достигнуто путем создания конкурентных отношений между ними и стабильным изотопом С. или кальция, а также созданием дефицита этих элементов в тех случаях, когда радионуклид С. уже зафиксировался в скелете. Однако эффективных средств декорпорации радиоактивного стронция из организма пока не найдено.

Минимально значимая активность, не требующая регистрации или получения разрешения органов Государственного санитарного надзора, для 85mSr, 85Sr, 89Sr и 90Sr составляет соответственно 3,5*10 -8 , 10 -10 , 2,8*10 -11 и 1,2*10 -12 кюри/л.

Библиография: Борисов В. П. и д р. Неотложная помощь при острых радиационных воздействиях, М., 1976; Булдаков Л. А. и М о с к а л е в Ю. И. Проблемы распределения и экспериментальной оценки допустимых уровней Cs137, Sr90 и Ru106, М., 1968, библиогр.; Войнар А. И. Биологическая роль микроэлементов в организме животных и человека, с. 46, М., 1960; Ильин JI. А. и Иванников А. Т. Радиоактивные вещества и раны, М., 1979; К а с а в fi-на Б. С. и Т о р б е н к о В. П. Жизнь костной ткани, М., 1979; JI е в и н В. И. Получение радиоактивных препаратов, М., 1972; Метаболизм стронция, под ред. Дж. М. А. Ленихена и др., пер. с англ., М., 1971; Полуэктов Н. С. и д р. Аналитическая химия стронция, М., 1978; P е м и Г. Курс неорганической химии, пер. с нем., т. 1, М., 1972; Protection of the patient in radionuclide investigations, Oxford, 1969, bibliogr.; Table of isotopes, ed. by С. M. Lederer a. V. S. Shirley, N. Y. a. o., 1978.

А. В. Бабков, Ю. И. Москалев (рад.).

ОПРЕДЕЛЕНИЕ

Стронций - тридцать восьмой элемент Периодической таблицы. Обозначение - Sr от латинского «strontium». Расположен в пятом периоде, IIA группе. Относится к металлам. Заряд ядра равен 38.

Стронций встречается в природе главным образом в виде сульфатов и карбонатов, образуя минералы целестин SrSO 4 и стронцианит SrCO 3 . Содержание стронция в земной коре равно 0,04% (масс.).

Металлический стронций в виде простого вещества представляет собой мягкий серебристо-белый (рис. 1) метал, обладающий ковкостью и пластичностью (легко режется ножом). Химически активный: быстро окисляется на воздухе, довольно энергично взаимодействует с водой и непосредственно соединяется со многими элементами.

Рис. 1. Стронций. Внешний вид.

Атомная и молекулярная масса стронция

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии стронций существует в виде одноатомных молекул Sr, значения его атомной и молекулярной масс совпадают. Они равны 87,62.

Аллотропия и аллотропные модификации стронция

Стронций существует в виде трех кристаллических модификаций, каждая из которых устойчива в определенном температурном диапазоне. Так, до 215 o С устойчив α-стронций (кубическая гранецентрированная решетка), выше 605 o С — g — стронций (кубическая объемноцентрированная решетка), а в интервале температур 215 — 605 o С — b-стронций (гексагональная решетка).

Изотопы стронция

Известно, что в природе рубидий может находиться в виде единственного стабильного изотопа 90 Sr.Массовое число равно 90, ядро атома содержит тридцать восемь протонов и пятьдесят два нейтрона. Радиоактивен.

Ионы стронция

На внешнем энергетическом уровне атома стронция имеется два электрона, которые являются валентным:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 .

В результате химического взаимодействия стронций отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Sr 0 -2e → Sr 2+ .

Молекула и атом стронция

В свободном состоянии стронций существует в виде одноатомных молекул Sr. Приведем некоторые свойства, характеризующие атом и молекулу стронция:

Сплавы стронция

Стронций нашел широкое применение в металлургии в качестве легирующего компонента сплавов на основе меди.

Примеры решения задач

ПРИМЕР 1

Задание Определите, какое из двух указанных оснований будет более сильным: гидроксид стронция (II) (Sr(OH) 2) или гидроксид кадмия (Cd(OH) 2)?
Решение Прежде, чем дать ответ на вопрос задачи, следует дать понятие тому, что подразумевается под силой основания. Сила основания - это характеристика данного класса неорганических соединений, демонстрирующая прочность связи протонов, которые в процессе химической реакции были «оторваны» от молекулы растворителя.

Стронций и кадмий расположены в одном периоде, а также в одной и той же группе Периодической системы Д.И. Менделеева (II), только в разных подгруппах. Стронций - элемент главной, а кадмий - побочной подгруппы.

При одинаковом количестве электронных оболочек радиус атома кадмия меньше, чем у стронция, что затрудняет процесс отдачи электрона от атома.

Кроме этого, электроотрицательность кадмия выше, чем стронция, поэтому кадмий «с большим удовольствием» будет принимать электроны другого атома, нежели отдавать свои; поэтому более сильным основанием является гидроксид стронция (II) (Sr(OH) 2).

Ответ Гидроксид стронция (II) (Sr(OH) 2)

Общие сведения и методы получения

Стронций (Sr) - металл серебристо-белого цвета. Минерал, содержа­щий стронций, был обнаружен в 1787 г. в Шотландии в свинцовом руд­нике недалеко от деревни Стронциан и назван стронцианитом. В 1790 г. шотландские минералоги Кроуфорд и Крюикшенк подробно исследовали этот минерал и обнаружили в нем новую «землю» (ок­сид). Независимо от них их соотечественник химик Хоп установил, что в этом минерале содержится новый элемент - стронций. К такому же выводу пришел немецкий химик Клапрот. В те же годы известный рус­ский химик акад. Т. Е. Ловиц обнаружил следы стронция в тяжелом шпате. Результаты его исследований опубликованы в 1795 г. Однако чистый металл был выделен лишь в 1808 г. Дэви. В 1924 г. Даннер (США) получил чистый стронций восстановлением его из оксида ме­таллическим алюминием (или магнием).

Металлический стронций в настоящее время получают преимущест­венно алюминотермическим методом. Оксид стронция смешивают с по­рошком алюминия, брикетируют и помещают в электровакуумную печь (вакуум 1,333 Па), где при 1100-1150 "С происходит восстановление металла.

Стронций выпускают в соответствии с ЦМТУ 4764-56 трех марок (Ч, ЧДА и ХЧ) в виде штабиков и кристаллов (друзы).

Соли и соединения стронция токсичны (вызывают паралич, влияют на зрение). При работе с ними следует соблюдать правила техники безопасности с солями щелочных и щелочноземельных металлов.

Физические свойства

Атомные характеристики. Атомный номер 38, атомная масса 87,62 а. е. м, атомный объем 33,7*10 -6 м 3 /моль, атомный радиус 0,215 нм, ионный радиус 0,127 нм. Потенциалы ионизации J (эВ): 5,692; 11,026; 43,6. Электроотрицательность 1,0. Стронций имеет г. ц. к. решетку (a - Sr) с периодом а = 0,6085 нм, энергия кристаллической решетки 164,3 мкДж/кмоль, координационное число 12, межатомное расстояние 4,30 нм. При температуре 488 К происходит a -6-превращение. 6-строн-ций имеет гексагональную решетку с периодами а=0,432 нм, с - = 0,706 им, с/а= 1,64. При 605 °С имеет место полиморфное превраще­ние 6->-у- Образующая кубическая объемноцептрированная модифика­ция имеет период а=0,485 нм. Электронная конфигурация внешнего слоя 5 s 2 . Природный стронций состоит из четырех стабильных изотопов: 84 Sr (0,58 %), 86 Sr (9,88%), 87 Sr (7,2 %). 88 Sr (82,58 %). Получено так­же 14 искусственных неустойчивых изотопов Радиоактивный изотоп 90 Sr с периодом полураспада 27,7 лет образуется при ядерных реак­циях (делении урана). Эффективное поперечное сечение захвата теп­ловых нейтронов 1,21*10 -28 м 2 . Работа выхода электронов ф=2,35 эВ, для монокристалла (100) ф=2,43 эВ.

Плотность р при 273 К равна 2,630 Мг/м 3 .

Магнитная восприимчивость при температуре 293 К х= +1,05-Ю^ 9 .

Химические свойства

Нормальный электродный потенциал реакции Sr -2 e =?* Sr 2 + cp 0 = 2,89 B . Степень окисления +2.

Стронций - очень активный элемент, быстро окисляется на возду­хе с выделением большого количества тепла, энергично разлагает воду. С водородом взаимодействует при повышенной температуре 300- 400°С, образуя гидрид SrH 2 с температурой плавления 650°С. С кис­лородом образует оксид (II) SrO с температурой плавления 2430 °С, при 500 °С и давлении 15 МПа - оксид (IV) Sr 0 2 . С азотом взаимо­действует при 380-400 °С и дает соединение Sr 3 N 2 .

При нагревании стронций легко взаимодействует с галогенами, об­разуя соответствующие соли: хлорид SrCl 2 с температурой плавления 872 °С, бромид SrBr 2 с температурой плавления 643 °С, фторид SrF 2 с температурой плавления 1190°С, иодид Srl 2 . С углеродом образует карбид стронция SrC 2 , с фосфором - фосфид стронция SrP 2 , с серой при нагревании - сульфиды.

С концентрированными азотной и серной кислотами взаимодейству­ет слабо, с разбавленными энергично; со щелочами - NaOH , КОН (концентрированными и разбавленными) также вступает в реакции.

С металлами образует твердые растворы и металлические соедине-

ния В жидком состоянии смешивается с элементами ПА, ПВ - VB подгрупп (Be, Mg, Zn, Cd, Hg, Al, Ga, In, TI, Sn, Pb, Sb, Bi, As). Co многими из них образует металлические соединения (Al , Mg , Zn , Sn , РЬ и др.). С некоторыми переходными и благородными металлами дает несмешивающиеся системы. Для большинства металлов платиновой группы характерно образование со стронцием фаз типа Лавеса. С эле­ментами П1В подгруппы образует фазы типа АВ 4 . Электрохимический эквивалент 0,45404 мг/Кл.

Технологические свойства

Стронций - ковкий и пластичный металл. Ковкой из него можно по­лучить тонкий лист, а прессованием при 230 °С - проволоку.

Области применения

В промышленности используют металлический стронций и его соедине­ния. Введение этого элемента и его соединений в сталь и чугун спо­собствует повышению их качества. Имеются сведения об использова­нии стронция для раскисления и рафинирования меди; при этом также повышается твердость. Введение 0,1 % Sr в титан и его сплавы повы­шает ударную вязкость; стронций увеличивает пластичность магния и его сплавов, положительно влияет на свойства алюминиевых сплавов.

Соединения стронция используют в пиротехнике, в электровакуумной технике (газопоглотитель), в радиоэлектронике (для изготовления фо­тоэлементов). Стронций входит в состав оксидных катодов, применяе­мых в электронно-лучевых трубках, лампах СВЧ и др.

В стекловарении стронций используют для получения специальных оптических стекол; он повышает химическую и термическую устойчи­вость стекла и показатели преломления. Так, стекло, содержащее 9 °," 0 SrO , обладает высоким сопротивлением истиранию и большой эластич­ностью, легко поддастся механической обработке (кручению, перера­ботке в пряжу и ткани). В нашей стране разработана технология полу­чения стронцийсодержащего стекла без бора. Такое стекло обладает высокой химической стойкостью, прочностью и электрофизическими свойствами. Установлена способность стронциевых стекол поглощать рентгеновское излучение трубок цветных телевизоров, а также улуч­шать радиационную стойкость. Фторид стронция используют для про­изводства лазеров и оптической керамики. Гидроксид стронция приме­няют в нефтяной промышленности для производства смазочных масел с повышенным сопротивлением окислению, а в пищевой- для обработ­ки отходов сахарного производства с целью дополнительного извлече­ния сахара. Соединения стронция входят также в состав эмалей, глазу­рей и керамики Их широко используют в химической промышленноеги в качестве наполнителей резииы, стабилизаторов пластмасс, а также для очистки каустической соды от железа и марганца, в качестве ката­лизаторов в органическом синтезе и при крекинге нефти и т. д.

Номер атома 38 с массой 87,62. В природе встречается в стабильном состоянии в виде 4-х изотопов: 84, 86, 87, 88. Самый распространенный в природе 88. В связи с распадом природного рубидия 87 точное количество стронция с течением времени меняется. Человеком были получены радиоактивные атомы с номерами 80-97.

Причем из урана получен самый часто применяемый изотоп – Стронций 90 . История открытия элемента уходит в далекие 90-е годы восемнадцатого века. Еще в 1787 году стронций был впервые выделен из минерала стронцианита близ деревни Стронциана в Шотландии.

Первые изучения провели ученые-химики Адер Кроуфорд и Мартин Генрих Клапот. В России исследования стронциановой земли проводил Тобиаш Ловиц. Отличительной характеристикой стало горение ярко-красным пламенем.

Описание и свойства стронция

Стронций формула – Sr. Представляет собой полиморфный металл белой окраски с серебристым отливом. В связи с быстрой реакцией в чистом виде с кислородом воздуха приобретает оксидную пленку с желтым оттенком. Стронций металл очень мягкий и легко поддается ковке.

Представлен в трех модификациях: кубическая гранецентрированная кристаллическая решетка – до 231 °С, гексагональная – от 231 до 623 °С, кубическая объемоцентрированная – при температуре выше 623 °С. Атом стронция имеет строение внешней электронной оболочки 5s2. В реакциях окисляется и принимает форму +2, иногда + 1. Строение атома стронция : 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s2

Основные физические показатели:

    Атомный объем – 34 см 3 /г×атом;

    Радиус атома – 2,15 А;

    Плотность – 2,63 г/см 3 при 20 °С;

    Тпл. = 770 °С;

    Ткип. = 1380 °С;

    Уд. тепл-сть 0,176 кал/г×град при 20 °С;

    Давление пара 10-3 мм ртутного столба при 462 °С, 1 мм ртутного столба 733 °С и 100 мм ртутного столба при 1092 °С;

    Поверхностное натяжение 165 дин/см;

    Твердость по Бринеллю 13 кГ/мм2;

Химическая характеристика стронция . По реакционной способности стронций близок к своим братьям о группе барию и кальцию. При обычных условиях быстро взаимодействует с кислородом атмосферного воздуха. Образуется оксид стронция SrO и SrO 2 с желтоватым оттенком.

Как и все щелочноземельные металлы реагирует с водой – образуется гидроксид стронция . Очень активно проходит взаимодействие с галогенами — образуются галогениды. Порошкообразная форма металла очень быстро воспламеняется даже при комнатной температуре и атмосферном давлении.

Особо важными при этом являются йодид и хлорид стронция . При нагревании активно соединяется с углекислым газом, образуется карбонат и гидрокарбонат. В газовой фазе при добавлении водорода образуется гидрид SrH 2 . Наиболее распространены также следующие соединения: карбид – соединения на основе углерода (SrC 2), амид – с аммиаком в газообразном состоянии (Sr(NH 2) 2), сульфид – с серой (SrS), селенид – с селеном (SrSe) и некоторые другие.

Стронций в расплавленном состоянии легко смешивается с такими металлами, как алюминий, железо, барий, и другие. Происходит гомогенезация расплава с получением интерметаллидов. Стронций легко реагирует с разбавленными кислотами. Огромное количество разнообразных солей получается в реакциях с органическими и минеральными кислотами.

Однако проявляя высокую реакционную способность со слабыми кислотами, с концентрированными, напротив, активности не проявляет. Поэтому сульфаты, нитраты, нитриты и другие соли стронция получают в реакции с разбавленными кислотами. Основная масса солей окрашены в белый цвет с различной степенью растворимости в воде (на основе минеральных кислот, как правило, растворяются лучше).

Характеристика стронция как радиоактивного элемента. Радиоактивный изотоп получают в ядерных реакторах в течение β — -распада рубидия 90, после чего стронций проходит стадию β — -распада с получением нуклида иттрия 90. Период полураспада стронция равен 28,79 лет.

Месторождения и добыча стронция

Стронций широко распространен в природе. Элемент в виде руд залегает в земной коре. В мировом океане находится более 24% общего запаса элемента. Природные запасы существует только в связанном состоянии и представляют собой минералы, общее количество которых насчитывает не менее 40. В земле стран СНГ, Западной Европы, Северной Америке, преимущественно в Канаде, найдены самые большие залежи руды: стронцианита — стронция карбонат и — стронция сульфат .

Промышленные способы получения металла основаны на обработке минеральных руд различными соединениями. После чего осуществляют термическое разложение соединений, либо электролитическое воздействие. Однако в результате подобных реакций образуется порошкообразная форма металла, которая очень легко воспламеняется, либо выход элемента очень низок и получают с примесями. Поэтому в настоящее время вышеописанные методы не используются.

Наиболее популярным остается восстановление оксида стронция с добавлением металлического алюминия и кремневого песка. Реакция проходит в вакуумной трубке, выполненной из стали при очень высоких температурах выше 1 000 °С. Очистку элемента осуществляют перегонкой также под вакуумом. Для атомной энергетики чрезвычайно важно получение радиоактивных изотопов.

Их получают в реакторах в течение полураспада Урана 235. Изотоп Sr 89 (полураспад стронция 50,5 суток) образуется после распада с выделением огромного количества энергии из стабильного изотопа. Стронций является незаменимой частью животного и растительного мира. Многие организмы накапливают элемент в себе совместно с кальцием и фосфором.

Применение стронция

В виде металла используют в качестве легирующего агента. Добавляет ковкость и пластичность. В смеси с барием и кальцием взрывоопасен. Является частью термитных смесей.

Использование соединений стронция:

SrO — часть оксидных катодов, пиротехнических смесей.

SrCO 3 — получают специальные покрытия – химическистабильные и термическистойкие глазури.

Sr(NO 3) 2 – компонент пиротехнических веществ для сигнальных ракет.

SrSO 4 – наполнитель для красок и резины.

SrCrO 4 — компонент лаков и грунтовок в авиастроении.

SrTiO 3 – материал производства диэлектрических антенн, проводников и датчиков.

SrF 2 — используют при производстве специализированных .

SrCl 2 – компонент пиротехнических составов, косметических средств и медицинских препаратов.

SrS используют в производстве добавок при изготовлении кожи.

90 Стронций 137 цезий используют как компонент радиоактивного топлива.

Самое полезное вещество на основе органических соединений — стронция ранелат — стимулятор роста костной ткани. Данным препаратом проводят лечение остеопороза.

Цена стронция

Металлический стронций чаще всего продают в виде соединений. Цены на соединения стронция варьируется в широких пределах: Нитрат – 3,8 USD, Хлорид – 500-800 рублей, Ранелат в виде препаратов от 1500 до 2500 рублей.

СТРОНЦИЙ (Strontium), Sr (а. strontium; н. Strontium; ф. strontium; и. estroncio), — химический элемент II группы периодической системы Менделеева , атомный номер 38, атомная масса 87,62, относится к щёлочноземельным металлам.

Свойства стронция

Природный стронций состоит из 4 стабильных изотопов; 84 Sr (0,56%), 86 Sr (9,84%), 87 Sr (7,0%) и 88 Sr (82,6%); известно свыше 20 искусственных радиоактивных изотопов стронция с массовыми числами от 77 до 99, из которых наиболее важное значение имеет 90 Sr (ТЅ 29 лет), образующийся при делении урана . Стронций открыт в 1790 шотландским учёным А. Крофордом в виде оксида.

В свободном состоянии стронций — мягкий золотисто-жёлтый металл. При t ниже 248°С для него характерна гранецентрированная кубическая решётка (а-Sr с периодом а=0,60848 нм), в интервале 248-577°С — гексагональная (b-Sr с периодами а=0,432 нм, с=0,706 нм); при более высокой температуре переходит в объёмноцентрированную кубическую модификацию (g-Sr с периодом а=0,485 нм). Плотность а-Sr 2540 кг/м 3 ; t плавления 768°С, t кипения 1381°С; молярная теплоёмкость 26,75 Дж/(моль.К); удельное электрическое сопротивление 20,0.10 -4 (Ом.м), температурный коэффициент линейного расширения 20,6.10 -6 К -1 . Стронций парамагнитен, атомная магнитная восприимчивость при комнатной температуре 91,2.10 -6 . Пластичен, мягок, легко режется ножом.

Стронций по химическим свойствам сходен с Ca и Ba. В соединениях имеет степень окисления +2. Быстро окисляется на воздухе, при комнатной температуре взаимодействует с водой , при повышенной — с водородом , азотом , фосфором , серой и галогенами.

Среднее содержание стронция в земной коре 3,4.10 -2 % (по массе). Магматические средние горные породы содержат несколько больше стронция (8,0.10 -2 %), чем (4,5.10 -2 %), (4,4.10 -2 %), (3.10 -2 %) и (1.10 -3 %) горные породы . Известно около 30 минералов стронция, важнейшими из которых являются целестин SrSO 4 и стронцианит SrCO 3 ; помимо этого практически всегда присутствует в минералах кальция , калия и бария , входя в виде изоморфной примеси в их кристаллической решётке. Поскольку из 4 природных изотопов стронция один (87 Sr) постоянно накапливается в результате Я-распада 87 Rb, изотопный состав стронция (отношение 87 Sr/ 86 Sr) используется в геохимических исследованиях для установления генетических взаимоотношений между различными комплексами пород, а также для определения их радиометрического возраста (при условии одновременного определения содержания рубидия в исследуемых объектах). Радиоактивный 90 Sr служит загрязнения окружающей среды (до прекращения атмосферных ядерных испытаний был одним из главных факторов радиоактивного загрязнения).

Применение и использование

Основное сырьё для получения стронция — целестиновые и стронцианитовые руды . Металлический стронций получают алюмотермическим восстановлением оксида стронция в вакууме. Применяют при изготовлении алюминиевых сплавов и некоторых сталей, электровакуумных приборов и некоторых оптических стёкол. Соли стронция, окрашивающие пламя в интенсивный красный цвет, используются в пиротехнике. 90 Sr применяют в медицине как источник ионизирующего излучения.

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...