На каком промежутке функция монотонно убывает. необходимым условием экстремума

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее названиеэкстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

Числовое множество X считается симметричным относительно нуля, если для любого x ЄX значение -х также принадлежит множеству X .

Функция y = f (х X , считается четной X x ЄX , f (х ) = f (-х ).

У четной функции график симметричен относительно оси Оу.

Функция y = f (х ), которая задана на множестве X , считается нечетной , если выполняются следующие условия: а) множество X симметрично относительно нуля; б) для любого x ЄX , f (х ) = -f (-х ).

У нечетной функции график симметричен относительно начала координат.

Функция у = f (x ), x ЄX , называется периодической на X , если найдется число Т (Т ≠ 0) (период функции), что выполняются следующие условия:

  • х - Т и х + Т из множества X для любого х ЄX ;
  • для любого х ЄX , f (х + T ) = f (х - T ) = f (х).

В случае, когда Т - это период функции, то любое число вида , где m ЄZ , m ≠ 0, это также период этой функции. Наименьший из положительных периодов данной функции (если он существует) называется ее главным периодом.

В случае, когда Т - основной период функции, то для построения ее графика можно построить часть графика на любом из промежутков области определения длины Т , а затем сделать параллельный перенос этого участка графика вдоль оси Ох на ±Т , ±2T , ....

Функция y = f (х ), ограниченна снизу на множестве Х А , что для любого х ЄX , А f (х ). График функции, который ограничен снизу на множестве X , полностью располагается выше прямой у = А (это горизонтальная прямая).

Функция у = f (x ), ограниченна сверху на множестве Х (она при этом должна быть определенной на этом множестве), если есть число В , что для любого х ЄX , f (х ) ≤ В . График функции, который ограничен сверху на множестве X, полностью располагается ниже прямой у = В (это горизонтальная линия).

Функция, считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если она ограничена на этом множестве сверху и снизу, т. е. существуют такие числа А и В , что для любого х ЄX выполняются неравенства A f (x ) ≤ B . График функции, которая ограничена на множестве X , полностью располагается в промежутке между прямыми у = А и у = В (это горизонтальные прямые).

Функция у = f (х ), считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если найдется число С > 0, что для любого x ЄX , │f (х )│≤ С .

Функция у = f (х ), х ЄX , называется возрастающей (неубывающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) < f (х 2) (f (х 1) ≤ f (х 2)). Или функция у называется возрастающей на множестве К , если большему значению аргумента из этого множества соответствует большее значение функции.

Функция у = f (х ), х ЄX, называется убывающей (невозрастающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) > f (х 2) (f (х 1) ≥ f (х 2)). Или функция у называется убывающей на множестве К , если большему значению аргумента из этого множества соответствует меньшее значение функции.

Функция у = f (x ), х ЄX , называется монотонной на подмножестве М СX , если она является убывающей (невозрастающей) или возрастающей (неубывающей) на М .

Если функция у = f (х ), х ЄX , является убывающей или возрастающей на подмножестве М СX , то такая функция называется строго монотонной на множестве М .

Число М называют наибольшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента из множества К значения функции у не больше числа М .

Число m называют наименьшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента х из множества К значения функции у не меньше числа m .

Основные свойства функции , с которых лучше начинать ее изучение и исследование это область ее определения и значения. Следует запомнить, как изображаются графики элементарных функций. Только потом можно переходить к построению более сложных графиков. Тема "Функции" имеет широкие приложения в экономике и других областях знания. Функции изучают на протяжении всего курса математики и продолжают изучать в высших учебных заведениях . Там функции исследуются при помощи первой и второй производных.

возрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

Функция называется неубывающей

\(\blacktriangleright\) Функция \(f(x)\) называется убывающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1f(x_2)\) .

Функция называется невозрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

\(\blacktriangleright\) Возрастающие и убывающие функции называют строго монотонными , а невозрастающие и неубывающие - просто монотонными .

\(\blacktriangleright\) Основные свойства:

I. Если функция \(f(x)\) - строго монотонна на \(X\) , то из равенства \(x_1=x_2\) (\(x_1,x_2\in X\) ) следует \(f(x_1)=f(x_2)\) , и наоборот.

Пример: функция \(f(x)=\sqrt x\) является строго возрастающей при всех \(x\in \) , поэтому уравнение \(x^2=9\) имеет на этом промежутке не более одного решения, а точнее одно: \(x=-3\) .

функция \(f(x)=-\dfrac 1{x+1}\) является строго возрастающей при всех \(x\in (-1;+\infty)\) , поэтому уравнение \(-\dfrac 1{x+1}=0\) имеет на этом промежутке не более одного решения, а точнее ни одного, т.к. числитель левой части никогда не может быть равен нулю.

III. Если функция \(f(x)\) - неубывает (невозрастает) и непрерывна на отрезке \(\) , причем на концах отрезка она принимает значения \(f(a)=A, f(b)=B\) , то при \(C\in \) (\(C\in \) ) уравнение \(f(x)=C\) всегда имеет хотя бы одно решение.

Пример: функция \(f(x)=x^3\) является строго возрастающей (то есть строго монотонной) и непрерывной при всех \(x\in\mathbb{R}\) , поэтому при любом \(C\in (-\infty;+\infty)\) уравнение \(x^3=C\) имеет ровно одно решение: \(x=\sqrt{C}\) .

Задание 1 #3153

Уровень задания: Легче ЕГЭ

имеет ровно два корня.

Перепишем уравнение в виде: \[(3x^2)^3+3x^2=(x-a)^3+(x-a)\] Рассмотрим функцию \(f(t)=t^3+t\) . Тогда уравнение перепишется в виде: \ Исследуем функцию \(f(t)\) . \ Следовательно, функция \(f(t)\) возрастает при всех \(t\) . Значит, каждому значению функции \(f(t)\) соответствует ровно одно значение аргумента \(t\) . Следовательно, для того, чтобы уравнение имело корни, нужно: \ Чтобы полученное уравнение имело два корня, нужно, чтобы его дискриминант был положительным: \

Ответ:

\(\left(-\infty;\dfrac1{12}\right)\)

Задание 2 #2653

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при которых уравнение \

имеет два корня.

(Задача от подписчиков.)

Сделаем замену: \(ax^2-2x=t\) , \(x^2-1=u\) . Тогда уравнение примет вид: \ Рассмотрим функцию \(f(w)=7^w+\sqrtw\) . Тогда наше уравнение примет вид: \

Найдем производную \ Заметим, что при всех \(w\ne 0\) производная \(f"(w)>0\) , т.к. \(7^w>0\) , \(w^6>0\) . Заметим также, что сама функция \(f(w)\) определена при всех \(w\) . Т.к. к тому же \(f(w)\) непрерывна, то мы можем сделать вывод, что \(f(w)\) возрастает на всем \(\mathbb{R}\) .
Значит, равенство \(f(t)=f(u)\) возможно тогда и только тогда, когда \(t=u\) . Вернемся к изначальным переменным и решим полученное уравнение:

\ Для того, чтобы данное уравнение имело два корня, оно должно быть квадратным и его дискриминант должен быть положительным:

\[\begin{cases} a-1\ne 0\\ 4-4(a-1)>0\end{cases} \quad\Leftrightarrow\quad \begin{cases}a\ne1\\a<2\end{cases}\]

Ответ:

\((-\infty;1)\cup(1;2)\)

Задание 3 #3921

Уровень задания: Равен ЕГЭ

Найдите все положительные значения параметра \(a\) , при которых уравнение

имеет как минимум \(2\) решения.

Перенесем все слагаемые, содержащие \(ax\) , влево, а содержащие \(x^2\) – вправо, и рассмотрим функцию
\

Тогда исходное уравнение примет вид:
\

Найдем производную:
\

Т.к. \((t-2)^2 \geqslant 0, \ e^t>0, \ 1+\cos{2t} \geqslant 0\) , то \(f"(t)\geqslant 0\) при любых \(t\in \mathbb{R}\) .

Причем \(f"(t)=0\) , если \((t-2)^2=0\) и \(1+\cos{2t}=0\) одновременно, что не выполняется ни при каких \(t\) . Следовательно, \(f"(t)> 0\) при любых \(t\in \mathbb{R}\) .

Таким образом, функция \(f(t)\) строго возрастает при всех \(t\in \mathbb{R}\) .

Значит, уравнение \(f(ax)=f(x^2)\) равносильно уравнению \(ax=x^2\) .

Уравнение \(x^2-ax=0\) при \(a=0\) имеет один корень \(x=0\) , а при \(a\ne 0\) имеет два различных корня \(x_1=0\) и \(x_2=a\) .
Нам нужно найти значения \(a\) , при которых уравнение будет иметь не менее двух корней, учитывая также то, что \(a>0\) .
Следовательно, ответ: \(a\in (0;+\infty)\) .

Ответ:

\((0;+\infty)\) .

Задание 4 #1232

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственное решение.

Домножим правую и левую части уравнения на \(2^{\sqrt{x+1}}\) (т.к. \(2^{\sqrt{x+1}}>0\) ) и перепишем уравнение в виде: \

Рассмотрим функцию \(y=2^t\cdot \log_{\frac{1}{9}}{(t+2)}\) при \(t\geqslant 0\) (т.к. \(\sqrt{x+1}\geqslant 0\) ).

Производная \(y"=\left(-2^t\cdot \log_9{(t+2)}\right)"=-\dfrac{2^t}{\ln9}\cdot \left(\ln 2\cdot \ln{(t+2)}+\dfrac{1}{t+2}\right)\) .

Т.к. \(2^t>0, \ \dfrac{1}{t+2}>0, \ \ln{(t+2)}>0\) при всех \(t\geqslant 0\) , то \(y"<0\) при всех \(t\geqslant 0\) .

Следовательно, при \(t\geqslant 0\) функция \(y\) монотонно убывает.

Уравнение можно рассматривать в виде \(y(t)=y(z)\) , где \(z=ax, t=\sqrt{x+1}\) . Из монотонности функции следует, что равенство возможно только в том случае, если \(t=z\) .

Значит, уравнение равносильно уравнению: \(ax=\sqrt{x+1}\) , которое в свою очередь равносильно системе: \[\begin{cases} a^2x^2-x-1=0\\ ax \geqslant 0 \end{cases}\]

При \(a=0\) система имеет одно решение \(x=-1\) , которое удовлетворяет условию \(ax\geqslant 0\) .

Рассмотрим случай \(a\ne 0\) . Дискриминант первого уравнения системы \(D=1+4a^2>0\) при всех \(a\) . Следовательно, уравнение всегда имеет два корня \(x_1\) и \(x_2\) , причем они разных знаков (т.к. по теореме Виета \(x_1\cdot x_2=-\dfrac{1}{a^2}<0\) ).

Это значит, что при \(a<0\) условию \(ax\geqslant 0\) подходит отрицательный корень, при \(a>0\) условию подходит положительный корень. Следовательно, система всегда имеет единственное решение.

Значит, \(a\in \mathbb{R}\) .

Ответ:

\(a\in \mathbb{R}\) .

Задание 5 #1234

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень из отрезка \([-1;0]\) .

Рассмотрим функцию \(f(x)=2x^3-3x(ax+x-a^2-1)-3a-a^3\) при некотором фиксированном \(a\) . Найдем ее производную: \(f"(x)=6x^2-6ax-6x+3a^2+3=3(x^2-2ax+a^2+x^2-2x+1)=3((x-a)^2+(x-1)^2)\) .

Заметим, что \(f"(x)\geqslant 0\) при всех значениях \(x\) и \(a\) , причем равна \(0\) только при \(x=a=1\) . Но при \(a=1\) :
\(f"(x)=6(x-1)^2 \Rightarrow f(x)=2(x-1)^3 \Rightarrow\) уравнение \(2(x-1)^3=0\) имеет единственный корень \(x=1\) , не удовлетворяющий условию. Следовательно, \(a\) не может быть равно \(1\) .

Значит, при всех \(a\ne 1\) функция \(f(x)\) является строго возрастающей, следовательно, уравнение \(f(x)=0\) может иметь не более одного корня. Учитывая свойства кубической функции, график \(f(x)\) при некотором фиксированном \(a\) будет выглядеть следующим образом:


Значит, для того, чтобы уравнение имело корень из отрезка \([-1;0]\) , необходимо: \[\begin{cases} f(0)\geqslant 0\\ f(-1)\leqslant 0 \end{cases} \Rightarrow \begin{cases} a(a^2+3)\leqslant 0\\ (a+2)(a^2+a+4)\geqslant 0 \end{cases} \Rightarrow \begin{cases} a\leqslant 0\\ a\geqslant -2 \end{cases} \Rightarrow -2\leqslant a\leqslant 0\]

Таким образом, \(a\in [-2;0]\) .

Ответ:

\(a\in [-2;0]\) .

Задание 6 #2949

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \[(\sin^2x-5\sin x-2a(\sin x-3)+6)\cdot (\sqrt2a+8x\sqrt{2x-2x^2})=0\]

имеет корни.

(Задача от подписчиков)

ОДЗ уравнения: \(2x-2x^2\geqslant 0 \quad\Leftrightarrow\quad x\in \) . Следовательно, для того, чтобы уравнение имело корни, нужно, чтобы хотя бы одно из уравнений \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad {\small{\text{или}}}\quad \sqrt2a+8x\sqrt{2x-2x^2}=0\] имело решения на ОДЗ.

1) Рассмотрим первое уравнение \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &\sin x=2a+2\\ &\sin x=3\\ \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \sin x=2a+2\] Данное уравнение должно иметь корни на \(\) . Рассмотрим окружность:

Таким образом, мы видим, что для любых \(2a+2\in [\sin 0;\sin 1]\) уравнение будет иметь одно решение, а для всех остальных – не будет иметь решений. Следовательно, при \(a\in \left[-1;-1+\sin 1\right]\) уравнение имеет решения.

2) Рассмотрим второе уравнение \[\sqrt2a+8x\sqrt{2x-2x^2}=0 \quad\Leftrightarrow\quad 8x\sqrt{x-x^2}=-a\]

Рассмотрим функцию \(f(x)=8x\sqrt{x-x^2}\) . Найдем ее производную: \ На ОДЗ производная имеет один ноль: \(x=\frac34\) , который к тому же является точкой максимума функции \(f(x)\) .
Заметим, что \(f(0)=f(1)=0\) . Значит, схематично график \(f(x)\) выглядит так:

Следовательно, для того, чтобы уравнение имело решения, нужно, чтобы график \(f(x)\) пересекался с прямой \(y=-a\) (на рисунке изображен один из подходящих вариантов). То есть нужно, чтобы \ . При этих \(x\) :

Функция \(y_1=\sqrt{x-1}\) является строго возрастающей. Графиком функции \(y_2=5x^2-9x\) является парабола, вершина которой находится в точке \(x=\dfrac{9}{10}\) . Следовательно, при всех \(x\geqslant 1\) функция \(y_2\) также строго возрастает (правая ветвь параболы). Т.к. сумма строго возрастающих функций есть строго возрастающая, то \(f_a(x)\) – строго возрастает (константа \(3a+8\) не влияет на монотонность функции).

Функция \(g_a(x)=\dfrac{a^2}{x}\) при всех \(x\geqslant 1\) представляет собой часть правой ветви гиперболы и является строго убывающей.

Решить уравнение \(f_a(x)=g_a(x)\) - значит найти точки пересечения функций \(f\) и \(g\) . Из их противоположной монотонности следует, что уравнение может иметь не более одного корня.

При \(x\geqslant 1\) \(f_a(x)\geqslant 3a+4, \ \ \ 0. Следовательно, уравнение будет иметь единственное решение в том случае, если:


\\cup

Ответ:

\(a\in (-\infty;-1]\cup (рис. 128).

1. Рассмотрим функцию на промежутке (0, + 00).
Пусть х1 < х 2 . Так как х 1 и х 2 - , то из х 1 < x 2 следует (см. пример 1 из § 33), т. е. f(x 1) > f(x 2).

Итак, из неравенства х 1 < х 2 следует, что f(x 1) > f(x 2). Это значит, что функция убывает на открытом луче (0, + 00) (рис. 129).


2. Рассмотрим функцию на промежутке (-оо, 0). Пусть х 1 < х 2 , х 1 и х 2 - отрицательные числа. Тогда - х 1 > - х 2 , причем обе части последнего неравенства - положительные числа, а потому (мы снова воспользовались неравенством, доказанным в примере 1 из § 33). Далее имеем , откуда получаем .

Итак, из неравенства х 1 < х 2 следует, что f(x 1) >f(x 2) т.е. функция убывает на открытом луче (- 00 , 0)

Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция, а исследование функции на возрастание и убывание называют исследованием функции на монотонность.



Решение.

1) Построим график функции у = 2х 2 и возьмем ветвь этой параболы при х < 0 (рис. 130).

2) Построим и выделим его часть на отрезке (рис. 131).


3) Построим гиперболу и выделим ее часть на открытом луче (4, + 00) (рис. 132).
4) Все три «кусочка» изобразим в одной системе координат - это и есть график функции у = f(x) (рис. 133).

Прочитаем график функции у = f(x).

1. Область определения функции - вся числовая прямая.

2. у = 0 при х = 0; у > 0 при х > 0.

3. Функция убывает на луче (-оо, 0], возрастает на отрезке , убывает на луче , выпукла вверх на отрезке , выпукла вниз на луче }

Последние материалы раздела:

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...

Другое название индейцев сиу сканворд
Другое название индейцев сиу сканворд

Равнинные сиу являлись самой западной частью племен группы сиу и, соответственно, принадлежали к сиуязычной семье. Их ранняя история ничем не...