Хром сильный или слабый электролит. Варианты задач для самостоятельного решения

1. ЭЛЕКТРОЛИТЫ

1.1. Электролитическая диссоциация. Степень диссоциации. Сила электролитов

Согласно теории электролитической диссоциации, соли, кислоты, гидроксиды, растворяясь в воде, полностью или частично распадаются на самостоятельные частицы – ионы.

Процесс распада молекул веществ на ионы под действием полярных молекул растворителя называют электролитической диссоциацией . Вещества, диссоциирующие на ионы в растворах, называют электролитами. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами ; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами ; к ним принадлежат ионы кислотных остатков и гидроксид-ионы.

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации. Степенью диссоциации электролита (α) называется отношение числа его молекул, распавшихся в данном растворе на ионы (n ), к общему числу его молекул в растворе (N ), или

α = .

Степень электролитической диссоциации принято выражать либо в долях единицы, либо в процентах.

Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,03 (3%) до 0,3 (30%)-средними, менее 0,03 (3%)-слабыми электролитами. Так, для 0,1 M раствора CH 3 COOH α = 0,013 (или 1,3 %). Следовательно, уксусная кислота является слабым электролитом. Степень диссоциации показывает, какая часть растворенных молекул вещества распалась на ионы. Степень электролитической диссоциации электролита в водных растворах зависит от природы электролита, его концентрации и температуры.

По своей природе электролиты можно условно разделить на две большие группы: сильные и слабые . Сильные электролиты диссоциируют практически полностью (α = 1).

К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl , HNO 3 , HBr , HI , HClO 4 , H М nO 4 );

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH , NaOH , KOH , RbOH , CsOH , а также гидроксиды щелочноземельных металлов – Ba (OH ) 2 , Ca (OH ) 2 , Sr (OH ) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном в недиссоциированном состоянии (в молекулярной форме). Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

К слабым электролитам относятся:

1) неорганические кислоты (H 2 CO 3 , H 2 S , HNO 2 , H 2 SO 3 , HCN , H 3 PO 4 , H 2 SiO 3 , HCNS , HСlO и др.);

2) вода (H 2 O );

3) гидроксид аммония (NH 4 OH );

4) большинство органических кислот

(например, уксусная CH 3 COOH, муравьиная HCOOH);

5) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости).

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация соляной кислоты (НС l ) записывается следующим образом:

HCl → H + + Cl – .

Основания диссоциируют с образованием катионов металла и гидроксид-ионов. Например, диссоциация КОН

КОН → К + + ОН – .

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато. Например,

H 2 CO 3 H + + HCO 3 – ,

HCO 3 – H + + CO 3 2– .

Первое равновесие – диссоциация по первой ступени – характеризуется константой

.

Для диссоциации по второй ступени:

.

В случае угольной кислоты константы диссоциации имеют следующие значения: K I = 4,3 × 10 –7 , K II = 5,6 × 10 –11 . Для ступенчатой диссоциации всегда K I >K II >K III > ... , т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2 → Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2– .

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Кислые соли рассматривают как продукт, получающийся из многоосновных кислот, в которых не все атомы водорода замещены на металл. Диссоциация кислых солей происходит по ступеням, например:

KHCO 3 K + + HCO 3 – (первая ступень)

Сильные и слабые электролиты

В растворах некоторых электролитов диссоциируют лишь часть молекул. Для количественной характеристики силы электролита было введено понятие степени диссоциации. Отношение числа молекул, диссоциированных на ионы, к общему числу молекул растворенного вещества называется степенью диссоциации a.

где С - концентрация продиссоциированных молекул, моль/л;

С 0 - исходная концентрация раствора, моль/л.

По величине степени диссоциации все электролиты делятся на сильные и слабые. К сильным электролитам относятся те, степень диссоциации которых больше 30% (a > 0,3). К ним относятся:

· сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI);

· растворимые гидроксиды, кроме NH 4 OH;

· растворимые соли.

Электролитическая диссоциация сильных электролитов протекает необратимо

HNO 3 ® H + + NO - 3 .

Слабые электролиты имеют степень диссоциации меньше 2% (a< 0,02). К ним относятся:

· слабые неорганические кислоты (Н 2 СО 3 , Н 2 S, НNO 2 , HCN, H 2 SiO 3 и др.) и все органические, например, уксусная кислота (CH 3 COOH);

· нерастворимые гидроксиды, а также растворимый гидроксид NH 4 OH;

· нерастворимые соли.

Электролиты с промежуточными значениями степени диссоциации называют электролитами средней силы.

Степень диссоциации (a) зависит от следующих факторов:

от природы электролита, то есть от типа химических связей; диссоциация наиболее легко происходит по месту наиболее полярных связей;

от природы растворителя - чем полярнее последний, тем легче идет в нем процесс диссоциации;

от температуры - повышение температуры усиливает диссоциацию;

от концентрации раствора - при разбавлении раствора диссоциация также увеличивается.

В качестве примера зависимости степени диссоциации от характера химических связей рассмотрим диссоциацию гидросульфата натрия (NaHSO 4), в молекуле которого имеются следующие типы связей: 1-ионная; 2 - полярная ковалентная; 3 - связь между атомами серы и кислорода малополярная. Наиболее легко происходит разрыв по месту ионной связи (1):

Na 1 O 3 O S 3 H 2 O O 1. NaHSO 4 ® Na + + HSO - 4 , 2. затем по месту полярной связи меньшей степени: HSO - 4 ® H + + SO 2 - 4 . 3. кислотный остаток на ионы не диссоциирует.

Степень диссоциации электролита сильно зависит от природы растворителя. Например, HCl сильно диссоциирует в воде, слабее в этаноле C 2 H 5 OH, почти не диссоциирует в бензоле, в котором практически не проводит электрического тока. Растворители с высокой диэлектрической проницаемостью (e) поляризуют молекулы растворенного вещества и образуют с ними сольватированные (гидратированные) ионы. При 25 0 С e(H 2 O) =78,5, e(C 2 H 5 OH) = 24,2, e(C 6 H 6) = 2,27.

В растворах слабых электролитов процесс диссоциации протекает обратимо и, следовательно, к равновесию в растворе между молекулами и ионами применимы законы химического равновесия. Так, для диссоциации уксусной кислоты

CH 3 COOH « CH 3 COO - + H + .

Константа равновесия К с будет определяться как

К с = К д = СCH 3 COO - · С H + / СCH 3 COOH.

Константу равновесия (К с) для процесса диссоциации называют константой диссоциации (К д). Её значение зависит от природы электролита, растворителя и от температуры, но от концентрации электролита в растворе она не зависит. Константа диссоциации представляет собой важную характеристику слабых электролитов, так как она указывает на прочность их молекул в растворе. Чем меньше константа диссоциации, тем слабее диссоциирует электролит и тем устойчивее его молекулы. Учитывая, что степень диссоциации в отличие от константы диссоциации изменяются с концентрацией раствора, необходимо найти связь между К д и a. Если исходную концентрацию раствора принять равной С, а степень диссоциации, соответствующую этой концентрации a, то число продиссоциированных молекул уксусной кислоты будет равна a · С. Так как

СCH 3 COO - = С H + = a · С,

тогда концентрация нераспавшихся молекул уксусной кислоты будет равна (С - a · С) или С(1- a · С). Отсюда

К д = aС · a С /(С - a · С) = a 2 С / (1- a). (1)

Уравнение (1) выражает закон разбавления Оствальда. Для очень слабых электролитов a<<1, то приближенно К @ a 2 С и

a = (К / С). (2)

Как видно из формулы (2), с уменьшением концентрации раствора электролита (при разбавлении) степень диссоциации увеличивается.

Слабые электролиты диссоциируют по ступеням, например:

1 ступень H 2 СO 3 « H + + НСO - 3 ,

2 ступень НСO - 3 « H + + СO 2 - 3 .

Такие электролиты характеризуются несколькими константами - в зависимости от числа ступеней распада на ионы. Для угольной кислоты

К 1 = Сн + · СНСО - 2 / СН 2 СО 3 = 4,45×10 -7 ; К 2 = Сн + · ССО 2- 3 / СНСО - 3 = 4,7 ×10 -11 .

Как видно, распад на ионы угольной кислоты определяется, главным образом, первой стадией, а вторая может проявляться только при большом разбавлении раствора.

Суммарному равновесию H 2 СO 3 « 2H + + СO 2 - 3 отвечает суммарная константа диссоциации

К д = С 2 н + · ССО 2- 3 / СН 2 СО 3 .

Величины К 1 и К 2 связаны друг с другом соотношением

К д = К 1 · К 2 .

Аналогично ступенчато диссоциируют основания многовалентных металлов. Например, двум ступеням диссоциации гидроксида меди

Cu(OH) 2 « CuOH + + OH - ,

CuOH + « Cu 2+ + OH -

отвечают константы диссоциации

К 1 = СCuOH + · СОН - / СCu(OH) 2 и К 2 = Сcu 2+ · СОН - / СCuOH + .

Так как сильные электролиты диссоциированы в растворе нацело, то сам термин константы диссоциации для них лишен содержания.

Диссоциация различных классов электролитов

С точки зрения теории электролитической диссоциации кислотой называется вещество, при диссоциации которого в качестве катиона образуется только гидратированный ион водорода Н 3 О (или просто Н +).

Основанием называется вещество, которое в водном растворе в качестве аниона образует гидроксид-ионы ОН - и никаких других анионов.

Согласно теории Бренстеда, кислота - это донор протонов, а основание - акцептор протонов.

Сила оснований, как сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации, тем сильнее электролит.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. Такие гидроксиды называются амфотерными. К нимотносятся Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Pb(OH) 2 , Cr(OH) 3 , Al(OH) 3 . Свойства их обусловлены тем, что они в слабой степени диссоциируют по типу кислот и по типу оснований

H + + RO - « ROH « R + + OН - .

Это равновесие объясняется тем, что прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Поэтому при взаимодействии гидроксида бериллия с соляной кислотой получается хлорид бериллия



Be(OH) 2 + HCl = BeCl 2 + 2H 2 O ,

а при взаимодействии с гидроксидом натрия - бериллат натрия

Be(OH) 2 + 2NaOH = Na 2 BeO 2 + 2H 2 O.

Соли можно определить как электролиты, которые в растворе диссоциируют с образованием катионов, отличных от катионов водорода, и анионов, отличных от гидроксид-ионов.

Средние соли , получаемые при полном замещении ионов водорода соответствующих кислот на катионы металла (либоNH + 4), диссоциируют полностью Na 2 SO 4 « 2Na + + SO 2- 4 .

Кислые соли диссоциируют по ступеням

1 ступень NaHSO 4 « Na + + HSO - 4 ,

2 ступень HSO - 4 « H + + SO 2- 4 .

Степенью диссоциации по 1-й ступени больше, чем по 2-й ступени, причем, чем слабее кислота, тем меньше степень диссоциации по 2-й ступени.

Основные соли, получаемые при неполном замещении гидроксид-ионов на кислотные остатки, диссоциируют также по ступеням:

1 ступень (CuОH) 2 SO 4 « 2 CuОH + + SO 2- 4 ,

2 ступень CuОH + « Cu 2+ + OH - .

Основные соли слабых оснований диссоциируют в основном по 1-й ступени.

Комплексные соли, содержащие сложный комплексный ион, сохраняющий свою стабильность при растворении, диссоциируют на комплексный ион и ионы внешней сферы

K 3 « 3K + + 3 - ,

SO 4 « 2+ + SO 2 - 4 .

В центре комплексного иона находится атом - комплексообразователь. Эту роль обычно выполняют ионы металла. Вблизи комплексообразователей расположены (координированы) полярные молекулы или ионы, а иногда и те и другие вместе, их называют лигандами. Комплексообразователь вместе с лигандами составляет внутреннюю сферу комплекса. Ионы, далеко расположенные от комплексообразователя, менее прочно связанные с ним, находятся во внешней среде комплексного соединения. Внутреннюю сферу обычно заключают в квадратные скобки. Число, показывающее число лигандов во внутренней сфере, называется координационным . Химические связи между комплексными и простыми ионами в процессе электролитической диссоциации сравнительно легко разрываются. Связи, приводящие к образованию комплексных ионов, получили название донорно-акцепторных связей.

Ионы внешней сферы легко отщепляются от комплексного иона. Эта диссоциация называется первичной. Обратимый распад внутренней сферы происходит значительно труднее и носит название вторичной диссоциации

Cl « + + Cl - - первичная диссоциация,

+ « Ag + +2 NH 3 - вторичная диссоциация.

вторичная диссоциация, как диссоциация слабого электролита, характеризуется константой нестойкости

К нест. = × 2 / [ + ] = 6,8×10 -8 .

Константы нестойкости (К нест.) различных электролитов является мерой устойчивости комплекса. Чем меньше К нест. , тем устойчивее комплекс.

Так, среди однотипных соединений:

- + + +
К нест = 1,3×10 -3 К нест =6,8×10 -8 К нест =1×10 -13 К нест =1×10 -21

устойчивость комплекса возрастает при переходе от - к + .

Значения константы нестойкости приводят в справочниках по химии. С помощью этих величин можно предсказать течение реакций между комплексными соединениями при сильном различии констант нестойкости реакция пойдет в сторону образования комплекса с меньшей константой нестойкости.

Комплексная соль с малоустойчивым комплексным ионом называется двойной солью . Двойные соли, в отличие от комплексных, диссоциируют на все ионы, входящие в их состав. Например:

KAl(SO 4) 2 « K + + Al 3+ + 2SO 2- 4 ,

NH 4 Fe(SO 4) 2 « NH 4 + + Fe 3+ + 2SO 2- 4 .

Все вещества можно разделить на электролиты и неэлектролиты. К электролитам относятся вещества, растворы или расплавы которых проводят электрический ток (например, водные растворы или расплавы KCl, H 3 PO 4 , Na 2 CO 3). Вещества неэлектролиты при расплавлении или растворении электрический ток не проводят (сахар, спирт, ацетон и др.).

Электролиты подразделяются на сильные и слабые. Сильные электролиты в растворах или расплавах полностью диссоциируют на ионы. При написании уравнений химических реакций это подчеркивается стрелкой в одном направлении, например:

HCl→ H + + Cl -

Ca(OH) 2 → Ca 2+ + 2OH -

К сильным электролитам относятся вещества с гетерополярной или ионной кристаллической структурой (таблица 1.1).

Таблица 1.1 Сильные электролиты

Слабые электролиты на ионы распадаются лишь частично. Наряду с ионами в расплавах или растворах данных веществ присутствуют в подавляющем большинстве недиссоциированные молекулы. В растворах слабых электролитов параллельно с диссоциацией протекает обратный процесс - ассоциация, т.е соединение ионов в молекулы. При записи уравнения реакции это подчеркивается двумя противоположно направленными стрелками.

CH 3 COOH D CH 3 COO - + H +

К слабым электролитам относятся вещества с гомеополярным типом кристаллической решетки (таблица 1.2).

Таблица 1.2 Слабые электролиты

Равновесное состояние слабого электролита в водном растворе количественно характеризуют степенью электролитической диссоциации и константой электролитической диссоциации.

Степень электролитической диссоциации α представляет собой отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного электролита:

Степень диссоциации показывает, какая часть от общего количества растворенного электролита распадается на ионы и зависит от природы электролита и растворителя, а также от концентрации вещества в растворе, имеет безразмерную величину, хотя обыкновенно ее выражают в процентах. При бесконечном разбавлении раствора электролита степень диссоциации приближается к единице, что соответствует полной, 100%-ной, диссоциации молекул растворенного вещества на ионы. Для растворов слабых электролитов α <<1. Сильные электролиты в растворах диссоциируют полностью (α =1). Если известно, что в 0,1 М растворе уксусной кислоты степень электрической диссоциации α =0,0132, это означает, что 0,0132 (или 1,32%) общего количества растворённой уксусной кислоты продиссоциировало на ионы, а 0,9868 (или 98,68%) находится в виде недиссоциированных молекул. Диссоциация слабых электролитов в растворе подчиняется закону действия масс.



В общем виде обратимую химическую реакцию можно представить как:

a A + b B D d D + e E

Скорость реакции прямо пропорциональна произведению концентрации реагирующих частиц в степенях их стехиометрических коэффициентов. Тогда для прямой реакции

V 1 =k 1 [A] a [B] b ,

а скорость обратной реакции

V 2 =k 2 [D] d [Е] е.

В некоторый момент времени скорости прямой и обратной реакции выровняются, т.е.

Такое состояние называют химическим равновесием. Отсюда

k 1 [A] a [B] b = k 2 [D] d [Е] е

Сгруппировав постоянные величины с одной стороны, а переменные- с другой стороны, получим:

Таким образом, для обратимой химической реакции в состоянии равновесия произведение равновесных концентраций продуктов реакции в степенях их стехиометрических коэффициентов, отнесенное к такому же произведению для исходных веществ есть величина постоянная при данных температуре и давлении. Численное значение константы химического равновесия К не зависит от концентрации реагирующих веществ. Например, константу равновесия диссоциации азотистой кислоты в соответствии с законом действия масс можно записать в виде:

HNO 2 + H 2 OD H 3 O + + NO 2 -

.

Величину К а называют константой диссоциации кислоты, в данном случае азотистой.

Аналогично выражается и константа диссоциации слабого основания. Например, для реакции диссоциации аммиака:

NH 3 + H 2 O DNH 4 + + OH -

.

Величину К b называют константой диссоциации основания, в данном случае аммиака. Чем выше константа диссоциации электролита, тем сильнее электролит диссоциирует и тем выше концентрации его ионов в растворе при равновесии. Между степенью диссоциации и константой диссоциации слабого электролита существует взаимосвязь:

Это математическое выражение закона разбавления Оствальда: при разбавлении слабого электролита степень его диссоциации увеличивается.Для слабых электролитов при К ≤1∙ 10 -4 и С ≥0,1 моль/л используют упрощенное выражение:

К = α 2 С или α

Пример1 . Вычислите степень диссоциации и концентрацию ионов и [ NH 4 + ] в 0,1 М растворе гидроксида аммония, если К NH 4 OH =1,76∙10 -5


Дано: NH 4 OH

К NH 4 OH =1,76∙10 -5

Решение :

Так как электролит является достаточно слабым (К NH 4 OH =1,76∙10 –5 <1∙ 10 - 4) и раствор его не слишком разбавлен, можно принять, что:


или 1,33%

Концентрация ионов в растворе бинарного электролита равна C ∙α, так как бинарный электролит ионизирует с образованием одного катиона и одного аниона, то = [ NH 4 + ]=0,1∙1,33∙10 -2 =1,33∙10 -3 (моль/л).

Ответ: α=1,33 %; = [ NH 4 + ]=1,33∙10 -3 моль/л.

Теория сильных электролитов

Сильные электролиты в растворах и расплавах полностью диссоциируют на ионы. Однако экспериментальные исследования электропроводности растворов сильных электролитов показывают, что ее величина несколько занижена по сравнению с той электропроводностью, которая должна бы быть при 100 % диссоциации. Такое несоответствие объясняется теорией сильных электролитов, предложенной Дебаем и Гюккелем. Согласно этой теории, в растворах сильных электролитов между ионами существует электростатическое взаимодействие. Вокруг каждого иона образуется “ионная атмосфера” из ионов противоположного знака заряда, которая тормозит движение ионов в растворе при пропускании постоянного электрического тока. Кроме электростатического взаимодействия ионов, в концентрированных растворах нужно учитывать ассоциацию ионов. Влияние межионных сил создает эффект неполной диссоциации молекул, т.е. кажущейся степени диссоциации. Определенная на опыте величина α всегда несколько ниже истинной α. Например, в 0,1 М растворе Na 2 SO 4 экспериментальная величина α =45 %. Для учета электростатических факторов в растворах сильных электролитов пользуются понятием активности (а). Активностью иона называют эффективную или кажущуюся концентрацию, согласно которой ион действует в растворе. Активность и истинная концентрация связаны между собой выражением:

где f – коэффициент активности, который характеризует степень отклонения системы от идеальной из-за электростатических взаимодействий ионов.

Коэффициенты активности ионов зависят от величины µ, называемой ионной силой раствора. Ионная сила раствора является мерой электростатического взаимодействия всех ионов, присутствующих в растворе и равнаполовине суммы произведений концентраций (с) каждого из присутствующих в растворе ионов на квадрат его зарядового числа (z) :

.

В разбавленных растворах (µ<0,1М) коэффициенты активности меньше единицы и уменьшаются с ростом ионной силы. Растворы с очень низкой ионной силой (µ < 1∙10 -4 М) можно считать идеальными. В бесконечно разбавленных растворах электролитов активность можно заменить истинной концентрацией. В идеальной системе a = c и коэффициент активности равен 1. Это означает, что электростатические взаимодействия практически отсутствуют. В очень концентрированных растворах (µ>1М) коэффициенты активности ионов могут быть больше единицы. Связь коэффициента активности с ионной силой раствора выражается формулами:

при µ <10 -2

при 10 -2 ≤ µ ≤ 10 -1

+ 0,1z 2 µ при 0,1<µ <1

Константа равновесия, выраженная через активности, называется термодинамической. Например, для реакции

a A + b B d D + e E

термодинамическая константа имеет вид:

Она зависит от температуры, давления и природы растворителя.

Поскольку активность частицы , то

где К С - концентрационная константа равновесия.

Значение К С зависит не только от температуры, природы растворителя и давления, но и от ионной силы m . Так как термодинамические константы зависят от наименьшего числа факторов то, следовательно, являются наиболее фундаментальными характеристиками равновесия. Поэтому в справочниках приводятся именно термодинамические константы. Величины термодинамических констант некоторых слабых электролитов приведены в приложении данного пособия. =0,024 моль/л.

С ростом заряда иона коэффициент активности и активность иона уменьшается.

Вопросы для самоконтроля:

  1. Что такое идеальная система? Назовите основные причины отклонения реальной системы от идеальной.
  2. Что называют степенью диссоциации электролитов?
  3. Приведите примеры сильных и слабых электролитов.
  4. Какая взаимосвязь существует между константой диссоциации и степенью диссоциации слабого электролита? Выразите её математически.
  5. Что такое активность? Как связаны активность иона и его истинная концентрация?
  6. Что такое коэффициент активности?
  7. Как влияет заряд иона на величину коэффициента активности?
  8. Что такое ионная сила раствора, ее математическое выражение?
  9. Запишите формулы для расчета коэффициентов активности индивидуальных ионов в зависимости от ионной силы раствора.
  10. Сформулируйте закон действия масс и выразите его математически.
  11. Что такое термодинамическая константа равновесия? Какие факторы влияют на ее величину?
  12. Что такое концентрационная константа равновесия? Какие факторы влияют на ее величину?
  13. Как связаны термодинамическая и концентрационная константы равновесия?
  14. В каких пределах могут изменяться величины коэффициента активности?
  15. В чем заключаются основные положения теории сильных электролитов?

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования этих веществ и разберёмся, что же последние собой представляют и чем отличаются друг от друга. Но начнём с экскурса в историю.

История

Самые старые известные электролиты - это соли и кислоты, открытые ещё в Древнем мире. Однако представления о строении и свойствах электролитов развивались со временем. Теории этих процессов эволюционировали, начиная с 1880 годов, когда был сделан ряд открытий, связанный с теориями свойств электролитов. Наблюдались несколько качественных скачков в теориях, описывающих механизмы взаимодействия электролитов с водой (ведь только в растворе они приобретают те свойства, благодаря которым их используют в промышленности).

Сейчас мы подробно разберём несколько теорий, оказавших наибольшее влияние на развитие представлений об электролитах и их свойствах. И начнём с самой распространённой и простой теории, которую каждый из нас проходил в школе.

Теория электролитической диссоциации Аррениуса

в 1887 году шведский химик и Вильгельм Оствальд создали теорию электролитической диссоциации. Однако тут тоже не всё так просто. Сам Аррениус был сторонником так называемой физической теории растворов, которая не учитывала взаимодействие составляющих вещества с водой и утверждала, что в растворе существуют свободные заряженные частицы (ионы). Кстати, именно с таких позиций сегодня рассматривают электролитическую диссоциацию в школе.

Поговорим всё-таки о том, что даёт эта теория и как она объясняет нам механизм взаимодействия веществ с водой. Как и у любой другой, у неё есть несколько постулатов, которые она использует:

1. При взаимодействии с водой вещество распадается на ионы (положительный - катион и отрицательный - анион). Эти частицы подвергаются гидратации: они притягивают молекулы воды, которые, кстати, заряжены с одной стороны положительно, а с другой - отрицательно (образуют диполь), в результате формируются в аквакомплексы (сольваты).

2. Процесс диссоциации обратим - то есть если вещество распалось на ионы, то под действием каких-либо факторов оно вновь может превратиться в исходное.

3. Если подключить к раствору электроды и пустить ток, то катионы начнут движение к отрицательному электроду - катоду, а анионы к положительно заряженному - аноду. Именно поэтому вещества, хорошо растворимые в воде, проводят электрический ток лучше, чем сама вода. По той же причине их назвали электролитами.

4. электролита характеризует процент вещества, подвергшегося растворению. Этот показатель зависит от свойств растворителя и самого растворённого вещества, от концентрации последнего и от внешней температуры.

Вот, по сути, и все основные постулаты этой несложной теории. Ими мы будем пользоваться в этой статье для описания того, что же происходит в растворе электролита. Примеры этих соединений разберём чуть позже, а сейчас рассмотрим другую теорию.

Теория кислот и оснований Льюиса

По теории электролитической диссоциации, кислота - это вещество, в растворе которого присутствует катион водорода, а основание - соединение, распадающееся в растворе на гидроксид-анион. Существует другая теория, названная именем известного химика Гилберта Льюиса. Она позволяет несколько расширить понятие кислоты и основания. По теории Льюиса, кислоты - или молекулы вещества, которые имеют свободные электронные орбитали и способны принять электрон от другой молекулы. Несложно догадаться, что основаниями будут являться такие частицы, которые способны отдать один или несколько своих электронов в "пользование" кислоте. Очень интересно здесь то, что кислотой или основанием может быть не только электролит, но и любое вещество, даже нерастворимое в воде.

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных - Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Сильные и слабые электролиты

Каждое вещество взаимодействует с водой индивидуально. Какие-то растворяются в ней хорошо (например, поваренная соль), а какие-то совсем не растворяются (например, мел). Таким образом, все вещества делятся на сильные и слабые электролиты. Последние представляют собой вещества, плохо взаимодействующие с водой и оседающие на дне раствора. Это означает, что они имеют очень низкую степень диссоциации и высокую энергию связей, которая не позволяет при нормальных условиях распадаться молекуле на составляющие её ионы. Диссоциация слабых электролитов происходит либо очень медленно, либо при повышении температуры и концентрации этого вещества в растворе.

Поговорим о сильных электролитах. К ним можно отнести все растворимые соли, а также сильные кислоты и щёлочи. Они легко распадаются на ионы и очень трудно собрать их в осадки. Ток в электролитах, кстати, проводится именно благодаря ионам, содержащимся в растворе. Поэтому лучше всех проводят ток сильные электролиты. Примеры последних: сильные кислоты, щёлочи, растворимые соли.

Факторы, влияющие на поведение электролитов

Теперь разберёмся, как влияет изменение внешней обстановки на Концентрация напрямую влияет на степень диссоциации электролита. Более того, это соотношение можно выразить математически. Закон, описывающий эту связь, называется законом разбавления Оствальда и записывается так: a = (K / c) 1/2 . Здесь a - это степень диссоциации (берётся в долях), К - константа диссоциации, разная для каждого вещества, а с - концентрация электролита в растворе. По этой формуле можно узнать много нового о веществе и его поведении в растворе.

Но мы отклонились от темы. Кроме концентрации, на степень диссоциации также влияет температура электролита. Для большинства веществ её увеличение повышает растворимость и химическую активность. Именно этим можно объяснить протекание некоторых реакций только при повышенной температуре. При нормальных условиях они идут либо очень медленно, либо в обе стороны (такой процесс называется обратимым).

Мы разобрали факторы, определяющие поведение такой системы, как раствор электролита. Сейчас перейдём к практическому применению этих, без сомнения, очень важных химических веществ.

Промышленное использование

Конечно, все слышали слово "электролит" применительно к аккумуляторам. В автомобиле используют свинцово-кислотные аккумуляторы, роль электролита в котором выполняет 40-процентная серная кислота. Чтобы понять, зачем там вообще нужно это вещество, стоит разобраться в особенностях работы аккумуляторов.

Так в чём принцип работы любого аккумулятора? В них происходит обратимая реакция превращения одного вещества в другое, в результате которой высвобождаются электроны. При заряде аккумулятора происходит взаимодействие веществ, которого не получается при нормальных условиях. Это можно представить как накопление электроэнергии в веществе в результате химической реакции. При разряде же начинается обратное превращение, приводящее систему к начальному состоянию. Эти два процесса вместе составляют один цикл заряда-разряда.

Рассмотрим вышеизложенный процесс на конкретном примере - свинцово-кислотном аккумуляторе. Как нетрудно догадаться, этот источник тока состоит из элемента, содержащего свинец (а также диокисд свинца PbO 2) и кислоты. Любой аккумулятор состоит из электродов и пространства между ними, заполненного как раз электролитом. В качестве последнего, как мы уже выяснили, в нашем примере используется серная кислота концентрацией 40 процентов. Катод такого аккумулятора делают из диоксида свинца, а анод состоит из чистого свинца. Всё это потому, что на этих двух электродах протекают разные обратимые реакции с участием ионов, на которые продиссоциировала кислота:

  1. PbO 2 + SO 4 2- + 4H + + 2e - = PbSO 4 + 2H 2 O (реакция, происходящая на отрицательном электроде - катоде).
  2. Pb + SO 4 2- - 2e - = PbSO 4 (Реакция, протекающая на положительном электроде - аноде).

Если читать реакции слева направо - получаем процессы, происходящие при разряде аккумулятора, а если справа налево - при заряде. В каждом эти реакции разные, но механизм их протекания в общем описывается одинаково: происходят два процесса, в одном из которых электроны "поглощаются", а в другом, наоборот, "выходят". Самое главное то, что число поглощённых электронов равно числу вышедших.

Собственно, кроме аккумуляторов, существует масса применений этих веществ. Вообще, электролиты, примеры которых мы привели, - это лишь крупинка того многообразия веществ, которые объединены под этим термином. Они окружают нас везде, повсюду. Вот, например, тело человека. Думаете, там нет этих веществ? Очень ошибаетесь. Они находятся везде в нас, а самое большое количество составляют электролиты крови. К ним относятся, например, ионы железа, которые входят в состав гемоглобина и помогают транспортировать кислород к тканям нашего организма. Электролиты крови также играют ключевую роль в регуляции водно-солевого баланса и работе сердца. Эту функцию выполняют ионы калия и натрия (существует даже процесс, происходящий в клетках, который назвается калий-натриевым насосом).

Любые вещества, которые вы в силах растворить хоть немного, - электролиты. И нет такой отрасли промышленности и нашей с вами жизни, где бы они ни применялись. Это не только аккумуляторы в автомобилях и батарейки. Это любое химическое и пищевое производство, военные заводы, швейные фабрики и так далее.

Состав электролита, кстати, бывает разным. Так, можно выделить кислотный и щелочной электролит. Они принципиально отличаются своими свойствами: как мы уже говорили, кислоты являются донорами протонов, а щёлочи - акцепторами. Но со времением состав электролита меняется вследствие потери части вещества концентрация либо уменьшается, либо увеличивается (всё зависит от того, что теряется, вода или электролит).

Мы каждый день сталкиваемся с ними, однако мало кто точно знает определение такого термина, как электролиты. Примеры конкретных веществ мы разобрали, поэтому перейдём к немного более сложным понятиям.

Физические свойства электролитов

Теперь о физике. Самое важное, что нужно понимать при изучении этой темы - как передаётся ток в электролитах. Определяющую роль в этом играют ионы. Эти заряженные частицы могут переносить заряд из одной части раствора в другую. Так, анионы стремятся всегда к положительному электроду, а катионы - к отрицательному. Таким образом, действуя на раствор электрическим током, мы разделяем заряды по разным сторонам системы.

Очень интересна такая физическая характеристика, как плотность. От неё зависят многие свойства обсуждаемых нами соединений. И зачастую всплывает вопрос: "Как поднять плотность электролита?" На самом деле ответ прост: необходимо понизить содержание воды в растворе. Так как плотность электролита большей частью определяется то она большей частью зависит от концентрации последней. Существует два способа осуществить задуманное. Первый достаточно простой: прокипятить электролит, содержащийся в аккумуляторе. Для этого нужно зарядить его так, чтобы температура внутри поднялась чуть выше ста градусов по цельсию. Если этот способ не помогает, не переживайте, существует ещё один: просто-напросто заменить старый электролит новым. Для этого нужно слить старый раствор, прочистить внутренности от остатков серной кислоты дистиллированной водой, а затем залить новую порцию. Как правило, качественные растворы электролита сразу имеют нужную величину концентрации. После замены можете надолго забыть о том, как поднять плотность электролита.

Состав электролита во многом определяет его свойства. Такие характеристики, как электропроводность и плотность, например, сильно зависят от природы растворённого вещества и его концентрации. Существует отдельный вопрос о том, сколько электролита в аккумуляторе может быть. На самом деле его объём напрямую связан с заявленной мощностью изделия. Чем больше серной кислоты внутри аккумулятора, тем он мощнее, т. е. тем большее напряжение способен выдавать.

Где это пригодится?

Если вы автолюбитель или просто увлекаетесь автомобилями, то вы и сами всё понимаете. Наверняка вы даже знаете, как определить, сколько электролита в аккумуляторе находится сейчас. А если вы далеки от автомобилей, то знание свойств этих веществ, их применения и того, как они взаимодействуют друг с другом будет совсем не лишним. Зная это, вы не растеряетесь, если вас попросят сказать, какой электролит в аккумуляторе. Хотя даже если вы не автолюбитель, но у вас есть машина, то знание устройства аккумулятора будет совсем не лишним и поможет вам в ремонте. Будет гораздо легче и дешевле сделать всё самому, нежели ехать в автоцентр.

А чтобы лучше изучить эту тему, мы рекомендуем почитать учебник химии для школы и вузов. Если вы хорошо знаете эту науку и прочитали достаточно учебников, лучшим вариантом будут "Химические источники тока" Варыпаева. Там изложены подробно вся теория работы аккумуляторов, различных батарей и водородных элементов.

Заключение

Мы подошли к концу. Подведём итоги. Выше мы разобрали всё, что касается такого понятия, как электролиты: примеры, теория строения и свойств, функции и применение. Ещё раз стоит сказать, что эти соединения составляют часть нашей жизни, без которой не могли бы существовать наши тела и все сферы промышленности. Вы помните про электролиты крови? Благодаря им мы живём. А что насчёт наших машин? С помощью этих знаний мы сможем исправить любую проблему, связанную с аккумулятором, так как теперь понимаем, как поднять плотность электролита в нём.

Всё рассказать невозможно, да мы и не ставили такой цели. Ведь это далеко не всё, что можно рассказать об этих удивительных веществах.

Сильные электролиты при растворении в воде практически полностью диссоциируют на ионы независимо от их концентрации в растворе.

Поэтому в уравнениях диссоциации сильных электролитов ставят знак равенства (=).

К сильным электролитам относятся:

Растворимые соли;

Многие неорганические кислоты: HNO3, H2SO4, HCl, HBr, HI;

Основания, образованные щелочными металлами (LiOH, NaOH, KOH и т.д.) и щелочно-земельными металлами (Ca(OH)2, Sr(OH)2, Ba(OH)2).

Слабые электролиты в водных растворах лишь частично (обратимо) диссоциируют на ионы.

Поэтому в уравнениях диссоциации слабых электролитов ставят знак обратимости (⇄).

К слабым электролитам относятся:

Почти все органические кислоты и вода;

Некоторые неорганические кислоты: H2S, H3PO4, H2CO3, HNO2, H2SiO3 и др.;

Нерастворимые гидроксиды металлов: Mg(OH)2, Fe(OH)2, Zn(OH)2 и др.

Ионные уравнения реакций

Ионные уравнения реакций
Химические реакции в растворах электролитов (кислот, оснований и солей) протекают при участии ионов. Конечный раствор может остаться прозрачным (продукты хорошо растворимы в воде) , но один из продуктом окажется слабым электролитом; в других случаях будет наблюдаться выпадение осадка или выделение газа.

Для реакций в растворах при участии ионов составляют не только молекулярное уравнение, но также полное ионное и краткое ионное.
В ионных уравнениях по предложению французского химика К. -Л. Бертолле (1801 г.) все сильные хорошо растворимые электролиты записывают в виде формул ионов, а осадки, газы и слабые электролиты - в виде молекулярных формул. Образование осадков отмечают знаком "стрелка вниз" (↓), образование газов - знаком "стрелка вверх" (). Пример записи уравнения реакции по правилу Бертолле:

а) молекулярное уравнение
Na2CO3 + H2SO4 = Na2SO4 + CO2 + H2O
б) полное ионное уравнение
2Na+ + CO32− + 2H+ + SO42− = 2Na+ + SO42− + CO2 + H2O
(CO2 - газ, H2O - слабый электролит)
в) краткое ионное уравнение
CO32− + 2H+ = CO2 + H2O

Обычно при записи ограничиваются кратким ионным уравнением, причем твердые вещества-реагенты обозначают индексом (т) , газобразные реагенты - индексом (г) . Примеры:

1) Cu(OH)2(т) + 2HNO3 = Cu(NO3)2 + 2H2O
Cu(OH)2(т) + 2H+ = Cu2+ + 2H2O
Cu(OH)2 практически нерастворим в воде
2) BaS + H2SO4 = BaSO4↓ + H2S
Ba2+ + S2− + 2H+ + SO42− = BaSO4↓ + H2S
(полное и краткое ионное уравнения совпадают)
3) CaCO3(т) + CO2(г) + H2O = Ca(HCO3)2
CaCO3(т) + CO2(г) + H2O = Ca2+ + 2HCO3−
(большинство кислых солей хорошо растворимы в воде) .


Если в реакции не участвуют сильные электролиты, ионный вид уравнения отсутствует:

Mg(OH)2(т) + 2HF(р) = MgF2↓ + 2H2O

БИЛЕТ №23

Гидролиз солей

Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц.

Гидролиз, дословно, - это разложение водой. Давая такое определение реакции гидролиза солей, мы подчеркиваем, что соли в растворе находятся в виде ионов, и что движущей силой реакции является образование малодиссоциирующих частиц (общее правило для многих реакций в растворах).

Гидролиз происходит лишь в тех случаях, когда ионы, образующиеся в результате электролитической диссоциации соли - катион, анион, или оба вместе, - способны образовывать с ионами воды слабодиссоциирующие соединения, а это, в свою очередь, происходит тогда, когда катион - сильно поляризующий (катион слабого основания) , а анион - легко поляризуется (анион слабой кислоты). При этом изменяется рН среды. Если же катион образует сильное основание, а анион - сильную кислоту, то они гидролизу не подвергаются.

1.Гидролиз соли слабого основания и сильной кислоты проходит по катиону, при этом может образоваться слабое основание или основная соль и рН раствора уменьшится

2.Гидролиз соли слабой кислоты и сильного основания проходит по аниону, при этом может образоваться слабая кислота или кислая соль и рН раствора увеличится

3.Гидролиз соли слабого основания и слабой кислоты обычно проходит нацело с образованием слабой кислоты и слабого основания; рН раствора при этом незначительно отличается от 7 и определяется относительной силой кислоты и основания

4.Гидролиз соли сильного основания и сильной кислоты не протекает

Вопрос 24 Классификация оксидов

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Солеобразующие оксиды Например,

CuO + 2HCl → CuCl 2 + H 2 O.

CuO + SO 3 → CuSO 4 .

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...