Для обнаружения автокорреляции в остатках используется. Обнаружение автокорреляции остатков

В эконометрических исследованиях часто возникают ситуации, когда дисперсия остатков постоянна, но наблюдается статистическая зависимость остатков эконометрической модели между собой. Это явление называют автокорреляцией остатков .

В общем случае автокорреляция (последовательная корреляция) – это взаимосвязь упорядоченных во времени или в пространстве последовательных элементов соответственно временного или пространственного ряда данных.

На рис.5.5 показана зависимость Y от X , а также линия оцененного по этим данным уравнения парной линейной регрессии. Уже по рисунку видно, что оцененная регрессия не очень хороша: зависимость Y от X явно нелинейна. Если использовать проведенную регрессионную прямую, скажем, для прогнозирования дальнейшей динамики Y , результат будет неудовлетворительным.

Рис.5.5. К вопросу об автокорреляции остатков

Как же можно выразить формально неудовлетворительность полученного уравнения регрессии?

Мы видим, например, на рис.5.5, что в этом случае отклонения от линии регрессии не случайно распределены вокруг нее, а обладают определенной закономерностью. Эта закономерность, в частности, выражается в одинаковом, как правило, знаке каждых двух соседних отклонений . Это может являться следствием:

Неверной спецификации модели (ввиду нелинейного характера связи переменных);

Воздействием какого-то фактора, не включенного в модель в качестве объясняющей переменной. Величина такого неучтенного фактора может менять свою динамику в рассматриваемый период, отклоняясь в достаточно длительные промежутки времени в ту или иную сторону от своего среднего значения. Это, очевидно, может служить причиной длительных устойчивых отклонений зависимой переменной от линии регрессии.

Обе указанные причины свидетельствуют о том, что существует возможность улучшить уравнение регрессии путем оценивания какой-то новой нелинейной формулы или включения некоторой новой объясняющей переменной.

Зависимость, показанная на рис.5.5, очевидно, нелинейна. Но это – крайний случай. Далеко не всегда бывает столь же очевидно, что отклонения от регрессионной прямой имеют неслучайный, закономерный характер. Для оценки степени такой неслучайности необходимо ввести количественную меру .

Итак, одним из основных предполагаемых свойств отклонений наблюдаемых значений от регрессионной формулы является их статистическая независимость между собой .

Мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка , т.е. когда ошибки зависят только от ошибок предыдущего периода. Применение обычного метода наименьших квадратов в этом случае дает несмещенные и состоятельные оценки параметров, однако можно показать, что оценка дисперсии оказывается смещенной вниз , что может отрицательно сказаться при проверке гипотез о значимости оценок параметров. Образно говоря, МНК рисует более оптимистичную картину, чем есть на самом деле.



Следовательно, последствия автокорреляции состоят в том, что:

- оценка дисперсии при использовании МНК является заниженной .

Большинство тестов на наличие автокорреляции в ошибках модели (наиболее широко используется тест Дарбина-Уотсона ) используют следующую идею: если корреляция есть у ошибок , то она присутствует и в остатках , получаемых после применения к модели обычного метода наименьших квадратов.

То есть, поскольку значения ошибок остаются неизвестными ввиду неизвестности истинных значений параметров модели, то проверяется статистическая независимость их аналогов – отклонений . При этом проверяется обычно их некоррелированность (являющаяся необходимым, но недостаточным атрибутом независимости ), причем некоррелированность не любых, а соседних величин .

- соседние во времени значения (в случае временных рядов);

- соседние по возрастанию переменной Х значения (в случае перекрестных выборок).

Первого порядка ” означает, что остатки зависят только от остатков предыдущего периода.



Практически, однако, используют тесно связанную с статистику Дарбина-Уотсона, обозначаемую как DW-статистика или как d‑статистика , и рассчитываемую по формуле:

. (5.13)

.




Определение автокорреляции Автокорреляция (последовательная корреляция) – это корреляция между наблюдаемыми показателями во времени (временные ряды) или в пространстве (перекрестные данные). Автокорреляция остатков характеризуется тем, что не выполняется предпосылка 3 0 использования МНК:




Причины чистой автокорреляции 1. Инерция. Трансформация, изменение многих экономических показателей обладает инерционностью. 2. Эффект паутины. Многие экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом) 3. Сглаживание данных. Усреднение данных по некоторому продолжительному интервалу времени.














Пример влияния автокорреляции на случайную выборку Рассмотрим выборку из 50 независимых нормально распределенных с нулевым средним значений i. С целью ознакомления с влиянием автокорреляции будем вводить в нее положительную, а затем отрицательную автокорреляцию.


















Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations: 45 ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ АВТОКОРРЕЛЯЦИЯ ПРИМЕР Зависимость расходов на жилье от располагаемого дохода и индекса цен на жилье











Последствия автокорреляции 1. Истинная автокорреляция не приводит к смещению оценок регрессии, но оценки перестают быть эффективными. 2. Автокорреляция (особенно положительная) часто приводит к уменьшению стандартных ошибок коэффициентов, что влечет за собой увеличение t-статистик. 3. Оценка дисперсии остатков S e 2 является смещенной оценкой истинного значения e 2, во многих случаях занижая его. 4. В силу вышесказанного выводы по оценке качества коэффициентов и модели в целом, возможно, будут неверными. Это приводит к ухудшению прогнозных качеств модели.






Автокорреляционная функция AutocorrelationPartial CorrelationAC PAC Q-Stat Prob. |*******. |******* |******|. |. | |******|. |. | |***** |. |. | |***** |. |. | |**** |. |. | |**** |. |. | |*** |. |. | |*** |. |. | |*** |. |. | |** |. |. | |** |. |. | |*. |. |. | |*. |. |. | |. |. |. | |. |. |. | |. |. |. | *|. |. |. | *|. |. |. | *|. |. |. |





Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations: 45 ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ 3 Расходы на жилье в зависимости от доходов и реальных цен














14 Противоположный эффект в 1960 to Расходы на жилье в зависимости от доходов и реальных цен




Критерий знаков Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Приписать каждому остатку знак (+/-) 3.Построить ряд знаков При истинности гипотезы ряд должен носить случайный характер распределения 4.Подсчитать общее количество серий (последовательностей постоянного знака) - (n) 5.Подсчитать длину самой длинной серии - (n) 6.Сравнить полученные значения с критическими


Критерий знаков Проверяемая гипотеза: H0: автокорреляция отсутствует Приблизительный критерий проверки гипотезы на уровне значимости 2,5% 5,0% : При истинности гипотезы должна выполняться система неравенств: подробности см. в учебнике Айвазян, Мхитарян «Прикладная статистика и основы эконометрики»




Критерий восходящих и нисходящих серий Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить разницу между соседними остатками, t =e t+1 -e t 3.Приписать каждой разнице у знак (+/-) 4.Построить ряд знаков При отсутствии автокорреляции ряд должен носить случайный характер 5.Подсчитать общее количество серий (последовательностей постоянного знака) - (n) 6.Подсчитать длину самой длинной серии - (n) 7.Сравнить полученные значения с критическими






Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить следующие статистики: 3.Сравнить полученные значения (n) с критическим – при нулевой гипотезе (n)> * При n> * При n>60 кр"> * При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> * При n>60 кр" title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить следующие статистики: 3.Сравнить полученные значения (n) с критическим – при нулевой гипотезе (n)> * При n>60 кр"> title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить следующие статистики: 3.Сравнить полученные значения (n) с критическим – при нулевой гипотезе (n)> * При n>60 кр">


60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):" title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):" class="link_thumb"> 56 Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона): 60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> 60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> 60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):" title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):">




Тест Дарбина-Уотсона. Ограничения Ограничения: 1. Тест не предназначен для обнаружения других видов автокорреляции (более чем первого) и не обнаруживает ее. 2. В модели должен присутствовать свободный член. 3. Данные должны иметь одинаковую периодичность (недолжно быть пропусков в наблюдениях). 4. Тест не применим к авторегрессионным моделям, содержащих в качестве объясняющей переменной зависимую переменную с единичным лагом:






Критические точки распределения Дарбина-Уотсона Для более точного определения, какое значение DW свидетельствует об отсутствии автокорреляции, а какое – о ее наличии, построена таблица критических точек распределения Дарбина-Уотсона. По этой таблице для заданного уровня значимости, числа наблюдений n и количества объясняющих переменных m определяются два значения: d l – нижняя граница, d u – верхняя граница




Расположение критических точек распределения Дарбина-Уотсона При положительной корреляции: При отрицательной корреляции: При отсутствии корреляции: 24 0 dLdL dUdU d crit Положительная автокорреляция Отрицательная автокорреляция Отсутствие автокорреляции d crit 4-d L 4-d U






Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations: 45 ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ Как и следовало ожидать- имеем положительную автокорреляцию остатков ТЕСТ ДАРБИНА-УОТСОНА ДЛЯ ПРОЦЕССА AR(1) dLdL dUdU (n = 45, k = 3, 1% level)




Устранение автокорреляции первого порядка. Обобщения Рассмотренное авторегрессионное преобразование может быть обобщено на: 1) Произвольное число объясняющих переменных 2) Преобразования более высоких порядков AR(2), AR(3) и т.д.: Однако на практике значения коэффициента автокорреляции обычно неизвестны и его необходимо оценить. Существует несколько методов оценивания.






Итеративная процедура Кохрейна-Оркатта (на примере парной регрессии) 1. Определение уравнения регрессии и вектора остатков: 2. В качестве приближенного значения берется его МНК-оценка: 3. Для найденного * оцениваются коэффициенты 0 1: 4. Подставляем в (*) и вычисляем Возвращаемся к этапу 2. Критерий остановки: разность между текущей и предыдущей оценками * стала меньще заданной точности.


Итеративная процедура Хилдрета-Лу (поиск по сетке) 1. Определение уравнения регрессии и вектора остатков: 2. Оцениваем регрессию для каждого возможного значения [ 1,1] с некоторым достаточно малым шагом, например 0,001; 0,01 и т.д. 3. Величина *, обеспечивающая минимум стандартной ошибки регрессии принимается в качестве оценки автокорреляции остатков.


Итеративные процедуры оценивания коэффициента. Выводы 1. Сходимость процедур достаточно хорошая. 2. Метод Кохрейна-Оркатта может «попасть» в локальный (а не глобальный) минимум. 3. Время работы процедуры Хилдрета-Лу значительно сокращается при наличии априорной информации об области возможных значений. Процедура Дарбина представляет собой традиционный МНК снелинейными ограничениями типа равенств: Способы решения: 1. Решать задачу нелинейного программирования. 2. Двухшаговый МНК Дарбина (полученный коэффициент автокорреляции используется в поправке Прайса-Винстена). 3. Итеративная процедура расчета. Процедура Дарбина (на примере парной регрессии)


Процедура Дарбина Ограничения на коэффициенты записываются в явном виде ============================================================ Dependent Variable: LGHOUS Method: Least Squares Sample(adjusted): LGHOUS=C(1)*(1-C(2))+C(2)*LGHOUS(-1)+C(3)*LGDPI-C(2)*C(3) *LGDPI(-1)+C(4)*LGPRHOUS-C(2)*C(4)*LGPRHOUS(-1) ============================================================ Coefficient Std. Error t-Statistic Prob. ============================================================ C(1) C(2) C(3) C(4) ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat ============================================================


Dependent Variable: LGHOUS Method: Least Squares Sample(adjusted): Included observations: 44 after adjusting endpoints Convergence achieved after 21 iterations ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS AR(1) ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ Либо в список регрессоров включается авторегриссионный член 1 порядка AR(1) Процедура Дарбина


Dependent Variable: LGHOUS LGHOUS=C(1)*(1-C(2))+C(2)*LGHOUS(-1)+C(3)*LGDPI-C(2)*C(3) *LGDPI(-1)+C(4)*LGPRHOUS-C(2)*C(4)*LGPRHOUS(-1) ============================================================ Coefficient Std. Error t-Statistic Prob. ============================================================ C(1) C(2) C(3) C(4) ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS AR(1) ============================================================ Процедура Дарбина


Итеративная процедура метода Дарбина 1. Считается регрессия и находятся остатки. 2. По остаткам находят оценку коэффициента автокорреляции остатков. 3. Оценка коэффициента автокорреляции используется для пересчета данных и цикл повторяется. Процесс останавливается, как только обеспечивается достаточная точность (результаты перестают существенно улучшаться).


Обобщенный метод наименьших квадратов. Замечания 1. Значимый коэффициент DW может указывать просто на ошибочную спецификацию. 2. Последствия автокорреляции остатков иногда бывают незначительными. 3. Качество оценок может снизиться из-за уменьшения числа степеней свободы (нужно оценивать дополнительный параметр). 4. Значительно возрастает трудоемкость расчетов. Не следует применять обобщенный МНК автоматически



Автокорреляция в остатках обычно встречается при регрессионном анализе временных рядов, и почти не встречается при анализе пространственных выборок. Чаще встречается положительная автокорреляция. Она в большинстве случаев вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов. При положительной автокорреляции остатки изменяются монотонно с течением времени наблюдения, а при отрицательной - следует частое изменение знака остатка.

Среди основных причин автокорреляции можно выделить следующие:

а) ошибки спецификации - неучет в модели какой-то важной объясняющей переменной или неверный выбор вида функции, что ведет к систематическим отклонениям точек наблюдения от линии регрессии,

б) инерция - запаздывание реакции экономической системы на изменение факторов,

в) сглаживание данных.

Последствия автокорреляции в остатках такие же, как и в случае гетероскедастичности (потеря эффективности, смещение дисперсий оценок параметров, занижение стандартных ошибок и завышение t -статистик параметров), а это может повлечь признание незначимых факторов значимыми. Вследствие перечисленных обстоятельств, прогнозные качества модели ухудшаются.

При анализе временных рядов вместо индекса i часто будем использовать время t , а вместо числа наблюдений n будем писать - продолжительность интервала наблюдения временного ряда.

Мы будем рассматривать автокорреляцию первого порядка, так как в большинстве практических случаев автокорреляционная функция быстро убывает.

Коэффициент автокорреляции 1-го порядка в остатках:

Если этот коэффициент корреляции существенно отличен от 0, то можно говорить о наличии автокорреляции.

Обнаружение автокорреляции в остатках

1. Графический метод - при использовании этого метода строится график: ε t есть функция от ε t - 1 . Если в графике прослеживается отчетливая положительная или отрицательная тенденция, то, скорее всего, имеет место соответствующая автокорреляция в остатках.

2. Метод рядов

В моменты времени определяются знаки отклонений, например:

- для 20-ти наблюдений.

Рядом называют непрерывную последовательность одинаковых знаков (ряд ограничен скобками, в примере приведено 5 рядов). Количество знаков называют длиной ряда. Если рядов мало по сравнению с числом наблюдений, то вполне вероятна положительная автокорреляция, если рядов много, - то отрицательная.

Для более детального анализа используется следующая процедура:

Пусть - число знаков «+»,

Число знаков «-»,

Количество рядов.


При достаточном количестве наблюдений и при отсутствии автокорреляции в остатках случайная величина имеет асимптотически нормальное распределение со следующими параметрами:

Тогда, если k лежит внутри интервала

то гипотеза об отсутствии автокорреляции не отклоняется; если лежит левее данного интервала, то есть положительная автокорреляция, а если правее - то отрицательная автокорреляция. Здесь γ - уровень значимости гипотезы об отсутствии автокорреляции. Для небольших и существует таблица Сведа-Эйзенхарта, в которой по значениям и находятся и .

Если k 1 < k < k 2 , то автокорреляция отсутствует, если k < k 1 - есть положительная автокорреляция, если k > k 2 - есть отрицательная автокорреляция.

учитывая, что и , получим:

Процедура обнаружения автокорреляции по критерию DW такова:

1. Вычисляется критерий DW , для чего должна быть выполнена регрессия y на x и определены остатки. Затем выдвигается гипотеза об отсутствии автокорреляции в остатках.

2. По таблице критических значений теста Дарбина-Уотсона для назначенного уровня значимости γ , числа наблюдений n и числа факторов p определяются верхняя du и нижняя dl критические точки

3. Строятся области: I-от 0 до dl ; II-от dl до du; III-от du до 4-du ; IV- от 4-ul до 4-dl и V-от 4-dl до 4.

Это поясняется табл. 9.1.

таблица 9.1

При использовании критерия следует учитывать следующие ограничения:

а) он применим лишь для модели с ненулевым свободным членом,

в) временной ряд должен иметь одинаковую периодичность, то есть не должно быть пропусков наблюдений,

Поясним это:

где - коэффициент авторегрессии, - количество наблюдений, - дисперсия коэффициента c 1 в уравнении авторегрессии y t = a + bx t + c 1 y t - 1 +…+ ε t , c 1 - коэффициент при в упомянутом уравнении.

Как использовать h- статистику?

Для назначенного уровня значимости γ выдвигают гипотезу об отсутствии автокорреляции в остатках, т.е. полагают, что в модели AR(1) остатков и статистика h имеет стандартное нормальное распределение: .

По таблице функции Лапласа определяют критическую точку такую, что . Если , то отклоняется. В противном случае не отклоняется и автокорреляция не признается.

Методы устранения автокорреляции

1. Обобщенный МНК (ОМНК)

Рассмотрим исходную модель в моменты времени t и t -1:

Есть случайная величина, так как и - случайные величины,

Так как и .

Остаток не коррелирует ни с одним регрессором, следовательно, можно применить классический МНК. Оценка параметра b вычисляется непосредственно, а оценка параметра a вычисляется так: .

ОМНК может применяться для данных, начиная с момента , т.е. первое наблюдение теряется; его можно восстановить для и , используя поправку Прайса-Уинстена:

Если наше предположение о том, что остатки описанные - моделью первого порядка соответствуют действительности, то можно показать, что .

Автокорреляция – это корреляционная зависимость между текущими значениями некоторой переменной и значениями этой же переменной, сдвинутыми на несколько периодов времени назад. Автокорреляция случайной составляющей e модели – это корреляционная зависимость текущих и предыдущих значений случайной составляющей модели. Величина l называется запаздыванием , сдвигом во времени или лагом .

Автокорреляция случайных возмущений модели нарушает одну из предпосылок регрессионного анализа: условие

не выполняется.

Автокорреляция может быть вызвана несколькими причинами, имеющими различную природу. Во-первых, иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результирующей переменной. Во-вторых, в ряде случаев причину автокорреляции следует искать в формулировке модели. Модель может не включать фактор, оказывающий существенное воздействие на результат, влияние которого отражается на возмущениях, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t : автокорреляция обычно встречается при анализе временных рядов.

Постоянная направленность воздействия не включенных в модель переменных является наиболее частой причиной так называемой положительной автокорреляции .

Иллюстрацией положительной автокорреляции может служить следующий пример.

Пример 5.2. Пусть исследуется спрос Y на прохладительные напитки в зависимости от дохода X по ежемесячным и сезонным наблюдениям. Зависимость, отражающая увеличение спроса с ростом дохода, может быть представлена линейной функцией регрессии y = ax + b , изображенной вместе с результатами наблюдений на рис. 5.2.

Рис. 5.2. Положительная автокорреляция

На величину спроса Y оказывают влияние не только доход X (учтенный фактор), но и другие факторы, которые не учтены в модели. Одним из таких факторов является время года.

Положительная автокорреляция означает постоянное в одном направлении действие неучтенных факторов на результирующую переменную. Так спрос на прохладительные напитки всегда выше линии регрессии летом (т.е. для летних наблюдений e > 0) и ниже зимой (т.е. для зимних наблюдений e < 0) (рис. 5.2). g

Аналогичная картина может иметь место в макроэкономическом анализе с учетом циклов деловой активности.

Отрицательная автокорреляция означает разнонаправленное действие неучтенных в модели факторов на результат: за положительными значениями случайной составляющей e в одних наблюдениях следуют, как правило, отрицательные в следующих, и наоборот. Графически это выражается в том, что результаты наблюдений y i «слишком часто» «перескакивают» через график уравнения регрессии. Возможная схема рассеяния наблюдений в этом случае представлена на рис. 5.3.


Рис. 5.3. Отрицательная автокорреляция

Последствия автокорреляции в определенной степени сходны с последствиями гетероскедастичности. Среди них при применении МНК обычно выделяют следующие.

1. МНК-оценки параметров, оставаясь несмещенными и линейными, перестают быть эффективными. Следовательно, они перестают обладать свойствами наилучших линейных несмещенных оценок.

2. Стандартные ошибки коэффициентов регрессии будут рассчитываться со смещением. Часто они являются заниженными, что влечет за собой увеличение t -статистик. Это может привести к признанию статистически значимыми объясняющих переменных, которые в действительности таковыми не являются. Смещенность возникает вследствие того, что выборочная остаточная дисперсия (m – число объясняющих переменных модели), которая используется при вычислении указанных величин (см. формулы (2.18) и (2.19)), является смещенной. Во многих случаях она занижает истинное значение дисперсии возмущений s 2 .

Вследствие вышесказанного все выводы, получаемые на основе соответствующих t - и F - статистик, а также интервальные оценки будут ненадежными. Следовательно, статистические выводы, получаемые при проверке качества оценок (параметров модели и самой модели в целом), могут быть ошибочными и приводить к неверным заключениям по построенной модели.

Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными. Однако при моделировании временных рядов нередко встречается ситуация, когда остатки содержат тенденцию или циклические колебания. Это свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят об автокорреляции остатков.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

  • 1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
  • 2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными.

Существуют два наиболее распространенных метода определения автокорреляции остатков:

  • 1) построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции.
  • 2) использование критерия Дарбина -- Уотсона и расчет величины:

Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина -- Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 и Н1* состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках.

Далее по специальным таблицам определяются критические значения критерия Дарбина -- Уотсона dL и dU для заданного числа наблюдений n, числа независимых переменных модели k и уровня значимости б . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

есть положительная автокорреляция. Принимается гипотеза H1 с вероятностью (1- б ).

зона неопределенности.

автокорреляция остатков нет.

зона неопределенности.

есть отрицательная автокорреляция. Принимается гипотеза H1* с вероятностью (1-б).

Если фактическое значение критерия Дарбина -- Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.

Есть несколько существенных ограничений на применение критерия Дарбина -- Уотсона:

  • 1. Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии.
  • 2. Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка.
  • 3. Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.

Последние материалы раздела:

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...