Действия с рациональными числами. Сложение положительных рациональных чисел


В этой статье дан обзор свойств действий с рациональными числами . Сначала озвучены основные свойства, на которых базируются все остальные свойства. После этого даны некоторые другие часто используемые свойства действий с рациональными числами.

Навигация по странице.

Перечислим основные свойства действий с рациональными числами (a , b и c – произвольные рациональные числа):

  • Переместительное свойство сложения a+b=b+a .
  • Сочетательное свойство сложения (a+b)+c=a+(b+c) .
  • Существование нейтрального элемента по сложению – нуля, сложение которого с любым числом не изменяет это число, то есть, a+0=a .
  • Для каждого рационального числа a существует противоположное число −a такое, что a+(−a)=0 .
  • Переместительное свойство умножения рациональных чисел a·b=b·a .
  • Сочетательное свойство умножения (a·b)·c=a·(b·c) .
  • Существование нейтрального элемента по умножению – единицы, умножение на которую любого числа не изменяет это число, то есть, a·1=a.
  • Для каждого отличного от нуля рационального числа a существует обратное число a −1 такое, что a·a −1 =1 .
  • Наконец, сложение и умножение рациональных чисел связаны распределительным свойством умножения относительно сложения: a·(b+c)=a·b+a·c .

Перечисленные свойства действий с рациональными числами являются основными, так как все остальные свойства могут быть получены из них.

Другие важные свойства

Помимо девяти перечисленных основных свойств действий с рациональными числами существует еще ряд очень широко используемых свойств. Дадим их краткий обзор.

Начнем со свойства, которое с помощью букв записывается как a·(−b)=−(a·b) или в силу переместительного свойства умножения как (−a)·b=−(a·b) . Из этого свойства напрямую следует правило умножения рациональных чисел с разными знаками , в указанной статье приведено и его доказательство. Указанное свойство объясняет правило «плюс умножить на минус есть минус, и минус умножить на плюс есть минус».

Вот следующее свойство: (−a)·(−b)=a·b . Из него следует правило умножения отрицательных рациональных чисел , в этой статье Вы найдете и доказательство приведенного равенства. Этому свойству отвечает правило умножения «минус умножить на минус есть плюс».

Несомненно, стоит остановиться на умножении произвольного рационального числа a на нуль: a·0=0 или 0·a=0 . Докажем это свойство. Мы знаем, что 0=d+(−d) для любого рационального d , тогда a·0=a·(d+(−d)) . Распределительное свойство позволяет полученное выражение переписать как a·d+a·(−d) , а так как a·(−d)=−(a·d) , то a·d+a·(−d)=a·d+(−(a·d)) . Так мы пришли к сумме двух противоположных чисел, равных a·d и −(a·d) , их сумма дает нуль, что и доказывает равенство a·0=0 .

Легко заметить, что выше мы перечислили только свойства сложения и умножения, при этом ни слова не сказали о свойствах вычитания и деления. Это связано с тем, что на множестве рациональных чисел действия вычитание и деление задаются как обратные к сложению и умножению соответственно. То есть, разность a−b – это есть сумма a+(−b) , а частное a:b – это есть произведение a·b −1 (b≠0 ).

Учитывая эти определения вычитания и деления, а также основные свойства сложения и умножения, можно доказать любые свойства действий с рациональными числами.

Для примера докажем распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c . Имеет место следующая цепочка равенств a·(b−c)=a·(b+(−c))= a·b+a·(−c)=a·b+(−(a·c))=a·b−a·c , которая и является доказательством.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

То а + b = b + a, а+(b + с) = (а + b) + с.

Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю.

Значит, для любого рационального числа имеем: а + 0 = а, а + (- а)=0.

Умножение рациональных чисел тоже обладает переместительным и сочетательным свойствами. Другими словами, если а, b и с - любые рациональные числа, то ab - ba, a(bc) - (ab)c.

Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1.

Значит, для любого рационального числа а имеем:

а) x + 8 - х - 22; в) a-m + 7-8+m;
б) -х-а + 12+а -12; г) 6,1 -k + 2,8 + p - 8,8 + k - р.

1190. Выбрав удобный порядок вычислений, найдите значение выражения:

1191. Сформулируйте словами переместительное свойство умножения ab = ba и проверьте его при:

1192. Сформулируйте словами сочетательное свойство умножения a(bc)=(ab)c и проверьте его при:

1193. Выбирая удобный порядок вычислений, найдите значение выражения:


1194. Какое получится число (положительное или отрицательное), если перемножить:

а) одно отрицательное число и два положительных числа;
б) два отрицательных и одно положительное число;
в) 7 отрицательных и несколько положительных чисел;
г) 20 отрицательных и несколько положительных? Сделайте вывод.

1195. Определите знак произведения:

а) - 2 (- 3) (- 9) (-1,3) 14 (- 2,7) (- 2,9);
б) 4 (-11) (-12) (-13) (-15) (-17) 80 90.

а) В спортивном зале собрались Витя, Коля, Петя, Сережа и Максим (рис. 91, а). Оказалось, что каждый из мальчиков знаком только с двумя другими. Кто с кем знаком? (Ребро графа означает «мы знакомы».)

б) Во дворе гуляют братья и сестры одной семьи. Кто из этих детей мальчики, а кто девочки (рис. 91, б)? (Пунктирные ребра графа означают - "я - сестра", а сплошные - "я - брат".)

1205. Вычислите:

1206. Сравните:

а) 2 3 и 3 2 ; б) (-2) 3 и (-3) 2 ; в) 1 3 и 1 2 ; г) (-1) 3 и (-1) 2 .

1207. Округлите 5,2853 до тысячных; до сотых ; до десятых; до единиц.

1208. Решите задачу:

1) Мотоциклист догоняет велосипедиста. Сейчас между ними 23,4 км. Скорость мотоциклиста в 3,6 раза больше скорости велосипедиста. Найдите скорости велосипедиста и мотоциклиста, если известно, что мотоциклист догонит велосипедиста через ч.
2) Легковая автомашина догоняет автобус. Сейчас между ними 18 км. Скорость автобуса составляет скорости легковой автомашины. Найдите скорости автобуса и легковой автомашины, если известно, что легковая автомашина догонит автобус через ч.

1209. Найдите значение выражения:

1) (0,7245:0,23 - 2,45) 0,18 + 0,07 4;
2) (0,8925:0,17 - 4,65) 0,17+0,098;
3) (-2,8 + 3,7 -4,8) 1,5:0,9;
4) (5,7-6,6-1,9) 2,1:(-0,49).

Проверьте ваши вычисления с помощью микрокалькулятора .
1210. Выбрав удобный порядок вычислений, найдите значение выражения:

1211. Упростите выражение:

1212. Найдите значение выражения:

1213. Выполните действия:

1214. Ученикам дали задание собрать 2,5 т металлолома. Они собрали 3,2 т металлолома. На сколько процентов учащиеся выполнили задание и на сколько процентов они перевыполнили задание?

1215. Автомашина прошла 240 км. Из них 180 км она шла по проселочной дороге, а остальной путь - по шоссе. Расход бензина на каждые 10 км проселочной дороги составил 1,6 л, а по шоссе - на 25% меньше. Сколько литров бензина в среднем расходовалось на каждые 10 км пути?

1216. Выезжая из села, велосипедист заметил на мосту пешехода, идущего в том же направлении, и догнал его через 12 мин. Найдите скорость пешехода, если скорость велосипедиста 15 км/ч, а расстояние от села до моста 1 км 800 м?

1217. Выполните действия:

а) - 4,8 3,7 - 2,9 8,7 - 2,6 5,3 + 6,2 1,9;
б) -14,31:5,3 - 27,81:2,7 + 2,565:3,42+4,1 0,8;
в) 3,5 0,23 - 3,5 (- 0,64) + 0,87 (- 2,5).

С рациональными числами люди, как вы знаете, знакомились постепенно. Вначале при счете предметов возникли натуральные числа. На первых порах их было немного. Так, еще недавно у туземцев островов в Торресовом проливе (отделяющем Новую Гвинею от Австралии) были в языке названия только двух чисел: «урапун» (один) и «оказа» (два). Островитяне считали так: «оказа-урапун» (три), «оказа-оказа» (четыре) и т. д. Все числа, начиная с семи, туземцы называли словом, обозначавшим «много».

Ученые полагают, что слово для обозначения сотни появилось более 7000 лет назад, для обозначения тысячи - 6000 лет назад, а 5000 лет тому назад в Древнем Египте и в Древнем Вавилоне появляются названия для громадных чисел - до миллиона. Но долгое время натуральный ряд чисел считался конечным: люди думали, что существует самое большое число.

Величайший древнегреческий математик и физик Архимед (287-212 гг. до н. э.) придумал способ описания громадных чисел. Самое большое число, которое умел называть Архимед, было настолько велико, что для его цифровой записи понадобилась бы лента в две тысячи раз длиннее, чем расстояние от Земли до Солнца.

Но записывать такие громадные числа еще не умели. Это стало возможным только после того, как индийскими математиками в VI в. была придумана цифра нуль и ею стали обозначать отсутствие единиц в разрядах десятичной записи числа.

При разделе добычи и в дальнейшем при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести «ломаные числа» - обыкновенные дроби. Действия над дробями еще в средние века считались самой сложной областью математики. До сих пор немцы говорят про человека, попавшего в затруднительное положение, что он «попал в дроби».

Чтобы облегчить действия с дробями, были придуманы десятичные дроби . В Европе их ввел в Х585 г. голландский математик и инженер Симон Стевин.

Отрицательные числа появились позднее, чем дроби. Долгое время такие числа считали «несуществующими», «ложными» прежде всего из-за того, что принятое истолкование для положительных и отрицательных чисел «имущество - долг» приводило к недоумениям: можно сложить или вычесть «имущества» или «долги», но как понимать произведение или частное «имущества» и «долга»?

Однако несмотря на такие сомнения и недоумения, правила умножения и деления положительных и отрицательных чисел были предложены в III в. греческим математиком Диофантом (в виде: «Вычитаемое, умноженное на прибавляемое, дает вычитаемое; вычитаемое на вычитаемое дает прибавляемое» и т. д.), а позже индийский математик Б х а с к а р а (XII в.) выразил те же правила в понятиях «имущество», «долг» («Произведение двух имуществ или двух долгов есть имущество; произведение имущества и долга есть долг». То же правило и при делении).

Было установлено, что свойства действий над отрицательными числами те же, что и над положительными (например, сложение и умножение обладают переместительным свойством). И наконец с начала прошлого века отрицательные числа стали равоправными с положительными.

В дальнейшем в математике появились новые числа - иррациональные, комплексные и другие. О них вы узнаете в старших классах.

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Книги и учебники согласно календарному плануванння по математике 6 класса скачать , помощь школьнику онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

На этом уроке мы вспомним основные свойства действий с числами. Мы не только повторим основные свойства, но и научимся применять их к рациональным числам. Все полученные знания закрепим с помощью решения примеров.

Основные свойства действий с числами:

Первые два свойства - это свойства сложения, следующие два - умножения. Пятое свойство относится к обеим операциям.

Ничего нового в этих свойствах нет. Они были справедливы и для натуральных, и для целых чисел. Они также верны для рациональных чисел и будут верны для чисел, которые мы будем изучать дальше (например, иррациональных).

Перестановочные свойства:

От перестановки слагаемых или множителей результат не меняется.

Сочетательные свойства: , .

Сложение или умножение нескольких чисел можно делать в любом порядке.

Распределительное свойство: .

Свойство связывает обе операции - сложение и умножение. Также если его читать слева направо, то его называют правилом раскрытия скобок, а если в обратную сторону - правилом вынесения общего множителя за скобки.

Следующие два свойства описывают нейтральные элементы для сложения и умножения: прибавление нуля и умножение на единицу не меняют исходного числа.

Еще два свойства, которые описывают симметричные элементы для сложения и умножения, сумма противоположных чисел равна нулю; произведение обратных чисел равно единице.

Следующее свойство: . Если число умножить на ноль, в результате всегда будет ноль.

Последнее свойство, которое мы рассмотрим: .

Умножив число на , получаем противоположное число. У этого свойства есть особенность. Все остальные рассмотренные свойства нельзя было доказать, используя остальные. Это же свойство можно доказать, используя предыдущие.

Умножение на

Докажем, что если умножить число на , то получим противоположное число. Используем для этого распределительное свойство: .

Оно верно для любых чисел. Подставим вместо числа и :

Слева в скобках стоит сумма взаимно противоположных чисел. Их сумма равна нулю (у нас есть такое свойство). Слева теперь . Справа , получаем: .

Теперь слева у нас стоит ноль, а справа - сумма двух чисел. Но если сумма двух чисел равна нулю, то эти числа взаимно противоположны. Но у числа только одно противоположное число: . Значит, - это и есть : .

Свойство доказано.

Такое свойство, которое можно доказать, используя предыдущие свойства, называют теоремой

Почему здесь нет свойств вычитания и деления? Например, можно было бы записать распределительное свойство для вычитания: .

Но так как:

  • вычитание любого числа можно эквивалентно записать в виде сложения, заменив число на противоположное:

  • деление можно записать в виде умножения на обратное число:

Значит, свойства сложения и умножения вполне можно применять для вычитания и деления. В итоге список свойства, которые необходимо запомнить, получается короче.

Все рассмотренные нами свойства не являются исключительно свойствами рациональных чисел. Всем этим правилам подчиняются и другие числа, например, иррациональные. Например, сумма и противоположного ему числа равна нулю: .

Теперь мы перейдем к практической части, решим несколько примеров.

Рациональные числа в жизни

Те свойства предметов, которые мы можем описать количественно, обозначить каким-нибудь числом, называются величинами : длина, вес, температура, количество.

Одну и ту же величину можно обозначить и целым, и дробным числом, положительным или отрицательным.

Например, ваш рост м - дробное число. Но ведь можно сказать, что он равен см - это уже целое число (рис. 1).


Рис. 1. Иллюстрация к примеру

Еще один пример. Отрицательная температура по шкале Цельсия будет положительной по шкале Кельвина (рис. 2).


Рис. 2. Иллюстрация к примеру

При строительстве стены дома один человек может ширину и высоту измерить в метрах. У него получаются дробные величины. Все вычисления дальше он будет проводить с дробными (рациональными) числами. Другой человек может все измерить в количестве кирпичей в ширину и высоту. Получив только целые значения, он и вычисления будет проводить с целыми числами.

Сами величины не бывают ни целыми, ни дробными, ни отрицательными, ни положительными. Но число, которым мы описываем значение величины, уже является вполне конкретным (например, отрицательным и дробным). Это зависит от шкалы измерений. И когда мы от реальных величин переходим к математической модели, то работаем с конкретным типом чисел

Начнем со сложения. Слагаемые можно переставлять так, как нам удобно, и действия выполнять можно в любом порядке. Если слагаемые разных знаков оканчиваются на одну цифру, то удобно сначала выполнять действия с ними. Для этого поменяем слагаемые местами. Например:

Обыкновенные дроби с одинаковыми знаменателями легко складываются.

Противоположные числа в сумме дают ноль. Числа с одинаковыми десятичными «хвостами» легко вычитаются. Используя эти свойства, а также переместительный закон сложения, можно облегчить вычисление значения, например, следующего выражения:

Числа с дополняющими друга десятичными «хвостами» легко складываются. С целыми и дробными частями смешанных чисел удобно работать по отдельности. Используем эти свойства при вычислении значения следующего выражения:

Перейдем к умножению. Есть пары чисел, которые легко перемножить. Используя переместительное свойство, можно переставить множители так, чтобы они оказались рядом. Количество минусов в произведении можно посчитать сразу и сделать вывод о знаке результата.

Рассмотрим такой пример:

Если из сомножителей равен нулю, то произведение равно нулю, например: .

Произведение обратных чисел равно единице, а умножение на единицу не меняет значение произведения. Рассмотрим такой пример:

Рассмотрим пример с использованием распределительного свойства. Если раскрыть скобки, то каждое умножение выполняется легко.


Рисунок. Арифметические действия над рациональными числами.


Текст:

Правила при действиях с рациональными числами:
. при сложении чисел с одинаковыми знаками необходимо сложить их модули и перед суммой поставить их общий знак;
. при сложении двух чисел с разными знаками из числа с большим модулем вычитают число с меньшим модулем и перед полученной разностью ставят знак числа, имеющего больший модуль;
. при вычитании одного числа из другого нужно к уменьшаемому прибавить число, противоположное вычитаемому: а - b = а + (-b)
. при умножении двух чисел с одинаковыми знаками перемножаются их модули и перед полученным произведением ставится знак плюс;
. при умножении двух чисел с разными знаками перемножаются их модули и перед полученным произведением ставится знак минус;
. при делении чисел с одинаковыми знаками модуль делимого делят на модуль делителя и перед полученным частным ставится знак плюс;
. при делении чисел с разными знаками модуль делимого делят на модуль делителя и перед полученным частным ставится знак минус;
. при делении и умножении нуля на любое число, не равное нулю, получается нуль:
. на нуль делить нельзя.

Последние материалы раздела:

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...