Что такое диаметр и радиус окружности. Разница между радиусом и диаметром

Если в задаче известны такие величины, как длина окружности, ее радиус или площадь круга, который ограничен данной окружностью, то вычисление диаметра будет несложным. Существует несколько способов, которыми можно высчитать диаметр окружности. Они довольно просты и вовсе не вызывают никаких трудностей, как многим кажется на первый взгляд.

Как найти диаметр окружности – 1 способ

Когда дано значение радиуса окружности, то можно считать задачу наполовину решенной, поскольку радиус представляет собой расстояние от точки, которая лежит в любом месте на окружности, до центра этой самой окружности. Все, что нужно сделать для нахождения диаметра в этом случае, это умножить данную величину радиуса на 2. Такой способ вычисления объясняется тем, что радиус является половиной диаметра. Поэтому, если известно, чему равен радиус, то и значение половины искомой величины диаметра уже фактически найдено.

Как найти диаметр окружности – 2 способ

Если в задаче дано только значение длины окружности, то для нахождения величины диаметра нужно просто поделить ее на число, известное как π, приблизительное значение которого равно 3,14. То есть, если значение длины равняется 31,4, то разделив его на 3,14, получаем значение диаметра, которое равняется 10.

Как найти диаметр окружности – 3 способ

Если в исходных данных приведено значение площади круга, то диаметр найти тоже просто. Все, что нужно сделать, это извлечь квадратный корень из данной величины и поделить полученный результат на число π. Это значит, что если значение площади равно 64, то при извлечении корня остается число 8. Если разделить полученную 8 на 3,14, то получим величину диаметра, которая равна примерно 2,5.

Как найти диаметр окружности – 4 способ

Внутри окружности нужно начертить при помощи линейки или угольника прямую горизонтальную линию от одной точки до другой. Пересечения этой прямой с линией окружностью пометьте буквами, например, А и В. Не имеет никакого значения, в какой из частей круга будет расположена эта прямая.

После этого нужно начертить еще две окружности. Но таким образом, чтобы точки А и В стали их центрами. Вновь образованные фигуры будут пересекаться в двух точках. Через них нужно провести еще одну прямую линию. После этого измеряем ее длину с помощью линейки. Значение измерения и будет равно длине диаметра, потому что последняя начерченная линия и есть сам диаметр.

Интересно, что еще очень далеко в прошлом для плетения корзин определенного размера прутики брали примерно в 3 раза длиннее. Ученые объяснили и доказали экспериментальным путем, что если длину любой окружности разделить на диаметр, то в результате получается почти одно и то же число.

В процессе выполнения строительных работ в быту или на производстве может появиться необходимость в измерении диаметра трубы, которая уже вмонтирована в систему водоснабжения или канализации. Также знать данный параметр необходимо на стадии проектирования прокладки инженерных коммуникаций.

Отсюда возникает необходимость разобраться с тем, как определить диаметр трубы. Выбор конкретного способа выполнения измерений зависит от размеров объекта и от того, доступно ли расположение трубопровода.

Определение диаметра в бытовых условиях

До того, как замерить диаметр трубы, нужно приготовить следующие инструменты и устройства:

  • рулетка или стандартная линейка;
  • штангенциркуль;
  • фотоаппарат - его задействуют при необходимости.

Если трубопровод доступен для проведения замеров, а торцы труб можно без проблем измерить, тогда достаточно иметь в распоряжении обычную линейку или рулетку. При этом следует учитывать, что используют такой метод, когда к точности предъявляются минимальные требования.

В этом случае выполняют измерение диаметра труб в такой последовательности:

  1. Подготовленные инструменты прикладывают к месту, где находится самая широкая часть торца изделия.
  2. Потом отсчитывают количество делений, соответствующих размеру диаметра.

Данный способ позволяет узнавать параметры трубопровода с точностью, составляющую несколько миллиметров.

Для измерения внешнего диаметра труб с небольшим сечением можно задействовать такой инструмент как штангенциркуль:

  1. Раздвигают его ножки и прикладывают к торцу изделия.
  2. Затем их нужно сдвинуть так, чтобы они оказались плотно прижатыми к наружной стороне стенок трубы.
  3. Ориентируясь на шкалу значений приспособления, узнают требуемый параметр.

Этот метод определения диаметра трубы дает довольно точные результаты, до десятых миллиметра.

Когда трубопровод недоступен для обмера и является частью уже функционирующей конструкции водоснабжения или газовой магистрали, поступают следующим образом: штангенциркуль прикладывают к трубе, к ее боковой поверхности. Таким способом обмеряют изделие в тех случаях, если у измерительного приспособления длина ножек превышает половину диаметра трубной продукции.

Нередко в бытовых условиях возникает необходимость узнать, как измерять диаметр трубы, имеющей большое сечение. Существует простой вариант, как это сделать: достаточно знать длину окружности изделия и константу π, равную 3,14.

Сначала при помощи рулетки или куска шнура обмеряют трубу в обхвате. Потом подставляют известные величины в формулу d=l:π, где:

d – определяемый диаметр;

l – длина измеренной окружности.

К примеру, обхват трубы составляет 62,8 сантиметра, тогда d = 62,8:3,14 =20 сантиметров или 200 миллиметров.

Бывают ситуации, когда проложенный трубопровод полностью недоступен. Тогда можно применить метод копирования. Суть его заключается в том, что к трубе прикладывают измерительный инструмент или небольшой по размеру предмет, у которого известны параметры.

К примеру, это может быть коробок спичек, длина которого равна 5 сантиметрам. Потом этот участок трубопровода фотографируют. Последующие вычисления выполняют по фотографии. На снимке измеряют видимую толщину изделия в миллиметрах. Потом нужно перевести все полученные величины в реальные параметры трубы с учетом масштаба произведенной фотосъемки.

Измерение диаметров в производственных условиях

На больших строящихся объектах трубы до начала проведения монтажа в обязательном порядке подвергают входному контролю. Прежде всего, проверяют сертификаты и маркировку, нанесенную на трубную продукцию.

Документация должна содержать определенную информацию, касающуюся труб:

  • номинальные размеры;
  • номер и дата ТУ;
  • марка металла или вид пластика;
  • номер товарной партии;
  • итоги проведенных испытаний;
  • хим. анализ выплавки;
  • тип термической обработки;
  • результаты рентгеновской дефектоскопии.

Кроме этого, на поверхности всех изделий на расстоянии примерно 50 сантиметров от одного из торцов всегда наносят маркировку, содержащую:

  • наименование производителя;
  • номер плавки;
  • номер изделия и его номинальные параметры;
  • дату изготовления;
  • эквивалент углерода.

Длины труб в производственных условиях определяют мерной проволокой. Также не возникает сложностей с тем, как измерить диаметр трубы рулеткой.

Для изделий первого класса допустимой величиной отклонения в одну или другую сторону от заявленной длины являются 15 миллиметров. Для второго класса –100 миллиметров.

У труб наружный диаметр сверяют, пользуясь формулой d = l:π-2Δр-0,2 мм, где кроме вышеописанных значений:

Δр – толщина материала рулетки;

0,2 миллиметра– припуск на прилегание инструмента к поверхности.

Допускается отклонение величины внешнего диаметра от заявленной производителем:

  • для продукции с сечением не более 200 миллиметров–1,5 миллиметра;
  • для больших труб – 0,7%.

В последнем случае для проверки трубной продукции пользуются ультразвуковыми измерительными приборами. Для определения толщины стенок задействуют штангенциркули, у которых деление на шкале соответствует 0,01 миллиметра. Минусовой допуск не должен превышать 5% номинальной толщины. При этом кривизна не может быть более 1,5 миллиметра на 1 погонный метр.


Из вышеописанной информации ясно, что несложно разобраться с тем, как определить диаметр трубы по длине окружности или при помощи несложных измерительных инструментов.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Прямой линии, соединяющий две точки окружности (сферы, гиперсферы) и проходящий через её центр || его длина.

  • ru (геометр.)
  • Величина сферического треугольника ""Y"" равна величине противолежащего ему треугольника ""ABCʹ"", в котором сторона ""АВ"" общая с треугольником ""Р"", а третий угол ""Сʹ"" лежит при конечной точке диаметра сферы, идущего от ""С"" через центр сферы.
  • На катете прямоугольного треугольнике как на диаметре построена окружность.
  • любого круглого или кажущегося круглым тела, вместилища, пространства.
    • Круглый бассейн имеет сажени три в диаметре .
    • На спине у каждого был вшит чёрный круг, вершка два в диаметре .
  • максимальное расстояние между двумя точками множества (см. w:Гипотеза Борсука ).
    • ru (матем.)
    • Всякое ""n""-мерное выпуклое тело диаметра ""d"" может быть разбито на ""n"" + 1 частей меньшего диаметра .
  • в два раза больше радиуса
  • два радиуса
  • два радиуса на одной линии
  • двойной радиус окружности
  • делит круг на половинки
  • делит окружность пополам
  • линия, делящая круг пополам
  • м. греч. поперечник, говоря о круге или шаре. Истинный диаметр светила, астроном. поперечник планеты в линейной мере; видимый диаметр, поперечник в градусах и в долях его, служащий мерою угла, под которым планета видна. Диаметральный, поперечный; поперек супротивный: толщина веревок меряется по окру ясности, а толщина бревен и деревьев диаметрально, в отрубе, в поперечнике
  • мера круга
  • отрезок прямой, соединяющий две точки окружности, проходящий через центр
  • отрезок, соединяющий две точки окружности и проходящий через ее центр
  • поперечник круга
  • радиус плюс радиус
  • радиус, переходящий в радиус
  • радиус, умноженный на два
  • самая длинная хорда
  • толщина круглоты
  • у всех советских сигарет он был равен 7,62 мм
  • удвоенный радиус
  • хорда, проходящая через центр окружности
  • шапочный размер
  • радиус + радиус
  • (греч., от dia - чрез, поперек, и metreo - меряю). Прямая линия, проходящая через центр круга или шара и соединяющая две противоположные точки окружности.
  • греч., от dia, чрез, поперек, и metreo, меряю. Поперечник: прямая линия, проходящая чрез центр круга или шара и ограниченная их окружностью.
  • линия, проходящая чрез центр сомкнутой кривой и разделяющая ее пополам.
  • прямая, проходящая через центр круга; она делит пополам окружность и площадь круга; равна двум радиусам.
  • Толщина круглоты.
  • Два радиуса.
  • Отрезок прямой, соединяющий две точки окружности, проходящий через центр.
  • У всех советских сигарет он был равен 7,62 мм.
  • Гиперонимы к слову диаметр

      • длина
      • отрезок
      • поперечник
      • расстояние
      • хорда

    Данный урок посвящён изучению окружности и круга. Также учитель научит отличать замкнутые и незамкнутые линии. Вы познакомитесь с основными свойствами окружности: центром, радиусом и диаметром. Выучите их определения. Научитесь определять радиус, если известен диаметр, и наоборот.

    Если заполнить пространство внутри окружности, например начертить окружность с помощью циркуля на бумаге или картоне и вырезать, то получим круг (рис. 10).

    Рис. 10. Круг

    Круг - это часть плоскости, ограниченная окружностью.

    Условие: Витя Верхоглядкин начертил в своей окружности (рис. 11) 11 диаметров. А когда пересчитал радиусы, получил 21. Правильно ли он сосчитал?

    Рис. 11. Иллюстрация к задаче

    Решение: радиусов должно быть в два раза больше, чем диаметров, поэтому:

    Витя сосчитал неправильно.

    Список литературы

    1. Математика. 3 класс. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] - 2-е изд. - М.: Просвещение, 2012. - 112 с.: ил. - (Школа России).
    2. Рудницкая В.Н., Юдачёва Т.В. Математика, 3 класс. - М.: ВЕНТАНА-ГРАФ.
    3. Петерсон Л.Г. Математика, 3 класс. - М.: Ювента.
    1. Mypresentation.ru ().
    2. Sernam.ru ().
    3. School-assistant.ru ().

    Домашнее задание

    1. Математика. 3 класс. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] - 2-е изд. - М.: Просвещение, 2012., ст. 94 № 1, ст. 95 № 3.

    2. Разгадайте загадку.

    Мы живём с братишкой дружно,

    Нам так весело вдвоём,

    Мы на лист поставим кружку (рис. 12),

    Обведём карандашом.

    Получилось то, что нужно -

    Называется …

    3. Необходимо определить диаметр окружности, если известно, что радиус равен 5 м.

    4. * С помощью циркуля начертите две окружности с радиусами: а) 2 см и 5 см; б) 10 мм и 15 мм.

    Последние материалы раздела:

    Ол взмш при мгу: отделение математики Заочные математические школы для школьников
    Ол взмш при мгу: отделение математики Заочные математические школы для школьников

    Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

    Интересные факты о физике
    Интересные факты о физике

    Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

    Дмитрий конюхов путешественник биография
    Дмитрий конюхов путешественник биография

    Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...