Что означает открытие гравитационных волн. Открытие гравитационных волн и новая эра астрономии: комментарии российских физиков

Валентин Николаевич Руденко делится историей своего визита в город Кашина (Италия), где он провел неделю на тогда еще только что построенной «гравитационной антенне» – оптическом интерферометре Майкельсона. По дороге к месту назначения таксист интересуется, для чего построена установка. «Тут люди думают, что это для разговора с Богом», – признается водитель.

– Что такое гравитационные волны?

– Гравитационная волна один из «переносчиков астрофизической информации». Существуют видимые каналы астрофизической информации, особая роль в «дальнем видении» принадлежит телескопам. Астрономы освоили также низкочастотные каналы – микроволновой и инфракрасный, и высокочастотные – рентгеновские и гамма-. Кроме электромагнитного излучения, мы можем регистрировать потоки частиц из Космоса. Для этого используют нейтринные телескопы – крупногабаритные детекторы космических нейтрино – частиц, которые слабо взаимодействуют с веществом и поэтому трудно регистрируются. Почти все теоретически предсказанные и лабораторно-исследованные виды «переносчиков астрофизической информации» надежно освоены на практике. Исключение составляла гравитация – самое слабое взаимодействие в микромире и самая мощная сила в макромире.

Гравитация – это геометрия. Гравитационные волны – геометрические волны, то есть волны, которые меняют геометрические характеристики пространства, когда проходят по этому пространству. Грубо говоря, это – волны, деформирующие пространство. Деформация – это относительное изменение расстояния между двумя точками. Гравитационное излучение отличается от всех других типов излучений именно тем, что они геометрические.

– Гравитационные волны предсказал Эйнштейн?

– Формально считается, что гравитационные волны предсказал Эйнштейн, как одно из следствий его общей теории относительности, но фактически их существование становится очевидным уже в специальной теории относительности.

Теория относительности предполагает, что из-за гравитационного притяжения возможен гравитационный коллапс, то есть стягивание объекта в результате коллапсирования, грубо говоря, в точку. Тогда гравитация такая сильная, что из нее даже не может выйти свет, поэтому такой объект образно называется черной дырой.

– В чем заключается особенность гравитационного взаимодействия?

Особенностью гравитационного взаимодействия является принцип эквивалентности. Согласно ему динамическая реакция пробного тела в гравитационном поле не зависит от массы этого тела. Проще говоря, все тела падают с одинаковым ускорением.

Гравитационное взаимодействие – самое слабое из известных нам сегодня.

– Кто первым пытался поймать гравитационную волну?

– Гравитационно-волновой эксперимент первым провел Джозеф Вебер из Мэрилендского университета (США). Он создал гравитационный детектор, который теперь хранится в Смитсоновском музее в Вашингтоне. В 1968-1972 году Джо Вебер провел серию наблюдений на паре пространственно разнесенных детекторов, пытаясь выделить случаи «совпадений». Прием совпадений заимствован из ядерной физики. Невысокая статистическая значимость гравитационных сигналов, полученных Вебером, вызывала критическое отношение к результатам эксперимента: не было уверенности в том, что удалось зафиксировать гравитационные волны. В дальнейшим ученые пытались увеличить чувствительность детекторов веберовского типа. На разработку детектора, чувствительность которого была адекватна астрофизическому прогнозу, ушло 45 лет.

За время начала эксперимента до фиксации прошло много других экспериментов, были зафиксированы импульсы за этот период, но у них была слишком маленькая интенсивность.

– Почему о фиксации сигнала объявили не сразу?

– Гравитационные волны были зафиксированы еще в сентябре 2015 года. Но даже если совпадение было зафиксировано, надо прежде, чем объявлять, доказать, что оно не является случайным. В сигнале, снимаемом с любой антенны, всегда есть шумовые выбросы (кратковременные всплески), и один из них случайно может произойти одновременно с шумовым всплеском на другой антенне. Доказать, что совпадение произошло не случайно можно только с помощью статистических оценок.

– Почему открытия в области гравитационных волн так важны?

– Возможность зарегистрировать реликтовый гравитационный фон и измерить его характеристики, такие как плотность, температура и т.п., позволяет подойти к началу мироздания.

Привлекательным является то, что гравитационное излучение трудно обнаружить, потому что оно очень слабо взаимодействует с веществом. Но, благодаря этому же свойству, оно и проходит без поглощений из самых далеких от нас объектов с самыми таинственными, с точки зрения материи, свойствами.

Можно сказать, что гравитационные излучения проходят без искажения. Наиболее амбициозная цель – исследовать то гравитационное излучение, которое было отделено от первичной материи в Теории Большого Взрыва, которое создалось в момент создания Вселенной.

– Исключает ли открытие гравитационных волн квантовую теорию?

Теория гравитации предполагает существование гравитационного коллапса, то есть стягивание массивных объектов в точку. В то же время, квантовая теория, которую развивала Копенгагенская школа предполагает, что, благодаря принципу неопределенности, нельзя одновременно указать точно такие параметры как координата, скорость и импульс тела. Здесь есть принцип неопределенности, нельзя определить точно траекторию, потому что траектория – это и координата, и скорость и т. д. Можно определить только некий условный доверительный коридор в пределах этой ошибки, которая связана с принципами неопределенности. Квантовая теория категорически отрицает возможность точечных объектов, но описывает их статистически вероятностным образом: не конкретно указывает координаты, а указывает вероятность того, что она имеет определенные координаты.

Вопрос об объединении квантовой теории и теории гравитации – один из фундаментальных вопросов создания единой теории поля.

Над ним сейчас продолжают работать, и слова “квантовая гравитация” означают совершенно передовую область науки, границу знаний и незнаний, где сейчас работают все теоретики мира.

– Что может дать открытие в будущем?

Гравитационные волны неизбежно должны лечь в фундамент современной науки как одна из составляющих нашего знания. Им отводится существенная роль в эволюции Вселенной и с помощью этих волн Вселенную следует изучать. Открытие способствует общему развитию науки и культуры.

Если решиться выйти за рамки сегодняшней науки, то допустимо представить себе линии телекоммуникационной гравитационной связи, реактивные аппараты на гравитационной радиации, гравитационно-волновые приборы интроскопии.

– Имеют ли отношение гравитационные волны к экстрасенсорике и телепатии?

Не имеют. Описанные эффекты – это эффекты квантового мира, эффекты оптики.

Беседовала Анна Уткина

Физики на обсерватории LIGO (Laser Interferometric Gravitational Observatory) впервые гравитационные волны - возмущения пространства-времени, предсказанные сто лет назад создателем общей теории относительности Альбертом Эйнштейном. Об открытии в ходе прямой трансляции, организованной «Лентой.ру» и Московским государственным университетом (МГУ) имени М.В. Ломоносова, ученые физического факультета, участники международной коллаборации LIGO. «Лента.ру» побеседовала с одним из них, российским физиком Сергеем Вятчаниным.

Что такое гравитационные волны?

По закону всемирного тяготения Ньютона два тела притягиваются друг к другу с силой, обратно пропорциональной квадрату расстояния между ними. Эта теория описывает, например, вращение Земли и Луны в плоском пространстве и универсальном времени. Эйнштейн, разработав специальную теорию относительности, понял, что время и пространство - это одна субстанция, и предложил общую теорию относительности - теорию гравитации, основанную на том, что тяготение проявляется как кривизна пространства-времени, которую создает материя.

Доктор физико-математических наук Сергей Вятчанин с 2012 года возглавляет кафедру физики колебаний физического факультета МГУ. Научные интересы сосредоточены на изучении квантово-невозмущающих измерений, лазерных гравитационно-волновых антеннах, механизмах диссипации, фундаментальных шумах и нелинейных оптических эффектах. Ученый сотрудничал с Калифорнийским технологическим институтом в США и Обществом Макса Планка в Германии.

Можно представить упругий круг. Если бросить в него легкий шарик, он покатится по прямой. Если же в центр круга положить тяжелое яблоко, то траектория искривится. Из уравнений общей теории относительности Эйнштейн сразу получил, что возможны гравитационные волны. Но в то время считали (в начале ХХ века) эффект чрезвычайно слабым. Можно сказать, что гравитационные волны - это рябь пространства-времени. Плохо то, что это чрезвычайно слабое взаимодействие.

Если брать аналогичные (электромагнитные) волны, то там был опыт Герца, разместившего излучатель в одном углу комнаты, а приемник в другом. С гравитационными волнами так не получается. Слишком слабое взаимодействие. Остается полагаться только на астрофизические катастрофы.

Как работает гравитационная антенна?

Есть интерферометр Фабри-Перо, две массы, разнесенные на четыре километра. Расстояние между массами контролируется. Если волна падает сверху, то расстояние немного изменяется.

Гравитационное возмущение - это, по сути, искажение метрики?

Можно и так сказать. Математика это описывает как небольшое искривление пространства. Использовать лазер для обнаружения гравитационных волн в 1962 году предложили Герценштейн и Пустовойт. Это была такая советская статья, фантазия... Здорово, но все же полет фантазии. Американцы подумали и решили в 1990-х годах (Кип Торн, Роналд Древер и Рэйнер Вайс) сделать лазерную гравитационную антенну. Причем требуются две антенны, поскольку, если будут события, необходимо использовать схему совпадений. И тогда все началось. Это долгая история. Мы сотрудничаем с Калтехом с 1992 года, а на официальную договорную основу перешли в 1998 году.

Не кажется ли вам, что реальность гравитационных волн не вызывала сомнений?

В общем-то, научное сообщество было уверено в том, что они существуют, и обнаружить их - дело времени. Халсу и Тейлору присудили Нобелевскую премию за фактическое открытие гравитационных волн. Что они сделали? Есть двойные звезды - пульсары. Раз они крутятся, то излучают гравитационные волны. Наблюдать мы их не можем. Но если они излучают гравитационные волны, то отдают энергию. Значит, их вращение замедляется, как будто от трения. Звезды приближаются друг к другу, и можно увидеть изменение частоты. Они посмотрели - и увидели (в 1974 году - прим. «Ленты.ру» ). Это косвенное свидетельство существования гравитационных волн.

Сейчас - прямое?

Сейчас - прямое. Пришел сигнал, который зарегистрировали на двух детекторах.

Достоверность высокая?

Ее достаточно для открытия.

Каков вклад российских ученых в этот эксперимент?

Ключевой. В initial LIGO (раннем варианте антенны - прим. «Ленты.ру» ) использовались десятикилограммовые массы, и висели они на стальных нитях. Наш ученый Брагинский уже тогда высказал идею применения кварцевых нитей. Вышла работа, доказывавшая, что кварцевые нити «шумят» значительно меньше. И вот сейчас массы (в advanced LIGO, современной установке - прим. «Ленты.ру» ) висят на кварцевых нитях.

Второй вклад - экспериментальный и связан с зарядами. Массы, разнесенные на четыре километра, нужно как-то юстировать при помощи электростатических активаторов. Эта система лучше магнитной, которая использовалась ранее, но она чувствует заряд. В частности, каждую секунду через ладонь человека проходит огромное количество частиц - мюонов, которые могут оставить заряд. Сейчас с этой проблемой борются. Наша группа (Валерий Митрофанов и Леонид Прохоров) в этом экспериментально участвует и значительно поднаторела.

В начале 2000-х годов была идея использовать на advanced LIGO сапфировые нити, так как формально у сапфира добротность выше. Почему она важна? Чем выше добротность, тем меньше шум. Это общее правило. Наша группа посчитала так называемые термоупругие шумы и показала, что все же лучше использовать кварц, а не сапфир.

И еще. Чувствительность гравитационной антенны близка к квантовому пределу. Есть так называемый стандартный квантовый предел: если вы измеряете координату, то по принципу неопределенности Гейзенберга вы тут же ее и возмущаете. Если вы непрерывно измеряете координату, то вы все время ее возмущаете. Очень точно измерять координату нехорошо: будет большое обратное флуктуационное влияние. Это показал в 1968 году Брагинский. Подсчитали для LIGO. Оказалось, что для initial LIGO чувствительность выше стандартного квантового предела примерно в десять раз.

Сейчас есть надежда на то, что advanced LIGO дойдет до стандартного квантового предела. Может быть, опустится. Это вообще мечта. Можете себе это представить? У вас будет квантовый макроскопический прибор: две тяжелые массы на расстоянии четырех километров.

Гравитационные волны зарегистрированы 14 сентября 2015 года в 05:51 утра по летнему североамериканскому восточному времени (13:51 по московскому времени) на двух детекторах-близнецах лазерной интерферометрической гравитационно-волновой обсерватории LIGO, расположенных в Ливингстоне (штат Луизиана) и Хэнфорде (штат Вашингтон) в США. Детекторы LIGO обнаружили относительные колебания величиною в десять в минус 19 степени метров (это примерно равно отношению диаметра атома к диаметру яблока) пар разнесенных на четыре километра пробных масс. Возмущения порождены парой черных дыр (в 29 и 36 раз тяжелее Солнца) в последние доли секунды перед их слиянием в более массивный вращающийся гравитационный объект (в 62 раза тяжелее Солнца). За доли секунды три солнечных массы превратились в гравитационные волны, максимальная мощность излучения которых была примерно в 50 раз больше, чем от всей видимой Вселенной. Слияние черных дыр произошло 1,3 миллиарда лет назад (столько времени гравитационное возмущение распространялось до Земли). Анализируя моменты прихода сигналов (детектор в Ливингстоне записал событие на семь миллисекунд раньше детектора в Хэнфорде), ученые предположили, что источник сигнала расположен в южном полушарии. Результаты ученые направили для публикации в журнал Physical Review Letters.

Такое на первый взгляд не очень совместимо.

Вот это и парадоксально. То есть получается фантастика. Вроде бы отдает шарлатанством, а на самом деле - нет, все честно. Но пока это мечты. Стандартный квантовый предел не достигнут. Там еще нужно работать и работать. Но уже видно, что это близко.

Есть надежда, что это случится?

Да. Нужно преодолевать стандартный квантовый предел, и наша группа участвовала в разработке методов того, как это сделать. Это так называемые квантовые невозмущающие измерения, какая конкретно схема измерений нужна - такая или иная... Ведь когда вы теоретически исследуете, расчеты ничего не стоят, а эксперимент - дорог. В LIGO достигнута точность десять в минус 19 степени метров.

Вспомним детский пример. Если мы уменьшим Землю до размеров апельсина, а затем его уменьшим во столько же раз, то получим размер атома. Так вот, если мы атом уменьшим во столько же раз, то мы получим десять в минус 19 степени метров. Это сумасшедшая вещь. Это достижение цивилизации.

Это очень важно, да. Так что означает для науки открытие гравитационных волн? Есть мнение, что это может изменить наблюдательные методы астрономии.

Что у нас есть? Астрономия в обычном диапазоне. Радиотелескопы, инфракрасные телескопы, рентгеновские обсерватории.

Все в электромагнитных диапазонах?

Да. Кроме того, есть нейтринные обсерватории. Есть регистрация космических частиц. Это еще один канал информации. Если гравитационная антенна будет выдавать астрофизическую информацию, то исследователи получат в свое распоряжение сразу несколько каналов наблюдения, по которым можно проверять теорию. Предложено множество космологических теорий, конкурирующих между собой. Можно будет что-то отсеять. Например, когда на Большом адронном коллайдере открыли бозон Хиггса, сразу отпало несколько теорий.

То есть это будет способствовать отбору работающих космологических моделей. Еще вопрос. Можно ли использовать гравитационную антенну для прецизионного измерения ускоренного расширения Вселенной?

Пока чувствительность очень мала.

А в перспективе?

В перспективе можно использовать и для измерения реликтового гравитационного фона. Но любой экспериментатор вам скажет: «Ай-я-яй!» То есть пока до этого далеко. Дай бог, чтобы мы зарегистрировали астрофизическую катастрофу.

Столкновение черных дыр...

Да. Ведь это же катастрофа. Не дай бог рядом там оказаться. Нас бы не было. А здесь - фончик такой... Пока... «надежды юношей питают, отраду старцам подают».

Может ли служить открытие гравитационных волн еще одним подтверждением существования черных дыр? Ведь встречаются еще те, кто не верит, что они есть.

Да. Как работают в LIGO? Идет запись сигнала, для объяснения которого ученые разрабатывают шаблоны и сравнивают их с данными наблюдений. Столкновение нейтронных звезд, нейтронная звезда падает на черную дыру, взрыв сверхновой, черная дыра сливается с черной дырой... Будем менять параметры, например соотношение масс, начальный момент... Что мы должны увидеть? Идет запись, и в момент сигнала оценивается работоспособность шаблонов. Если шаблон, разработанный для столкновения двух черных дыр, подошел к сигналу, то это - доказательство. Но не абсолютное.

Лучшего объяснения нет? Открытие гравитационных волн проще всего объясняется столкновением черных дыр?

На данный момент - да. Сейчас научное сообщество считает, что это было слияние черных дыр. Но коллективное сообщество - это мнение многих, консенсус. Конечно, если возникнут какие-то новые факторы, от него можно отказаться.

Когда удастся зарегистрировать гравитационные волны не от столь массивных объектов? Не означает ли это, что нужно строить новые и более чувствительные обсерватории?

Есть программа следующего поколения LIGO. Это - второе. Будет третье. Там очень много вариантов. Можно увеличивать расстояние, увеличивать мощность, подвес. Сейчас все это обсуждается. На уровне мозгового штурма. Если будет подтверждаться наблюдение гравитационного сигнала, то будет легче получить деньги на усовершенствование обсерватории.

Ожидается бум строительства гравитационных обсерваторий?

Не знаю. Это дорогое удовольствие (LIGO обошлось примерно в 370 миллионов долларов - прим. «Ленты.ру» ). Ведь американцы предложили Австралии построить в Южном полушарии антенну и согласились для этого предоставить все оборудование. Австралия отказалась. Слишком дорогая игрушка. Содержание обсерватории заняло бы весь научный бюджет страны.

Россия принимает финансовое участие в LIGO?

Мы сотрудничаем с американцами. Что дальше будет - непонятно. Пока у нас отношения с учеными хорошие, но политики же всем правят... Поэтому нужно смотреть. Они нас ценят. Мы выдаем результаты действительно на уровне. Но не они же решают, дружить с Россией или нет.

К сожалению, да.

Это жизнь, подождем.

Обсерватория LIGO финансируется Национальным научным фондом США. Исследования в LIGO проводятся в рамках одноименной коллаборации более чем тысячей ученых из США и 14 других стран, включая Россию, представленную двумя группами из МГУ и Института прикладной физики Российской академии наук (Нижний Новгород).

В России не планируется строительство гравитационной обсерватории?

Пока не планируется. В 1980-х годах в Государственном астрономическом институте имени Штернберга МГУ хотели построить в Баксанском ущелье такую же гравитационную антенну, только в меньшем масштабе. Но пришла перестройка, и все надолго накрылось медным тазом. Сейчас ГАИШ МГУ пытается что-то сделать, но пока антенна не заработала...

Что еще можно попробовать проверить при помощи гравитационной антенны?

Справедливость теории гравитации. Ведь большинство существующих теорий основаны на теории Эйнштейна.

Ее никто до сих пор не может опровергнуть.

Она занимает лидирующее положение. Альтернативные теории устроены так, что в основном приводят к тем же экспериментальным следствиям, что и она. И это естественно. Поэтому нужны новые факты, которые бы отметали неверные теории.

Кратко как бы вы сформулировали значение открытия?

Фактически началась гравитационная астрономия. И впервые волны кривизны пространства попались на крючок. Не косвенно, а прямо. Человек восторгается собой: ай да я, ай да сукин сын!

1,3 миллиарда лет назад, далеко-далеко от Земли, Солнечной системы и даже нашей Галактики предельно сблизились две черные дыры, одна массой в 29 Солнц, а другая — в 36. 20 миллисекунд — неуловимо мало для человека — и они сливаются в одну большую черную дыру, а избыток выделившейся при столкновении энергии заставляет пространство-время пойти рябью от места космической катастрофы. 14 сентября 2015 года, в 13:51 по московскому времени эта волна дошла до Земли и заставила колебаться разнесенные на четыре километра друг от друга зеркала гравитационных телескопов возле американских городов Ливингстона и Хэнфорда.

Правда, колебаться совсем чуть-чуть, почти незаметно: с амплитудой в 10 -19 м (это во столько раз меньше размера атома, во сколько апельсин меньше всей нашей планеты). Хитрая оптическая схема для регистрации таких возмущений, измерения на грани квантового предела точности, десятки лет теоретических работ и несколько месяцев аккуратных проверок результатов. 11 февраля на пресс-конференциях в Вашингтоне, Москве, Лондоне, Париже и других городах физики из международной коллаборации LIGO сообщили: человечество впервые зарегистрировало гравитационные волны и это не может быть ошибкой. Впереди нас ждут гравитационные телескопы, новая физика и, кто знает, может быть, даже новая реальность.

Что это такое?

Представим себе натянутую ткань и несколько камней разного веса, которые мы будем на нее класть. Чем тяжелее камень, тем больше он продавливает ткань — точно так же массивные гравитационные объекты, согласно теории относительности Эйнштейна, продавливают ткань пространства-времени, окутывающую наш мир (точнее, эта ткань и есть наш мир, но сейчас не об этом).

Проще всего объяснить воздействие массивных объектов на пространство-время на примере черных дыр — они настолько компактные и тяжелые, что продавливают пространство-время на колоссальные глубины миллиардов миллионов Марианских впадин.

Даже время в их окрестностях начинает течь медленнее, а все объекты, попавшие в гигантскую воронку, уже не могут выйти наружу. Звезды, пыль, кванты света — все остается в ловушке навечно.

Но что будет, если мы не просто положим камни, но еще начнем их вращать? По ткани пойдет рябь складок. Так и массивные гравитационные объекты, двигающиеся с переменным ускорением, порождают вокруг себя распространяющуюся рябь пространства-времени — те самые гравитационные волны, предсказанные Альбертом Эйнштейном еще сто лет назад.

Что излучает гравитационные волны?

Гравитационные волны излучает любой объект, который обладает массой и движется с переменным ускорением — от вращающейся черной дыры до тормозящей машины и читателя этого текста (вряд ли же вы смотрите на экран не моргая — и вот оно, ускорение). Просто гравитационные волны от последних двух объектов вызывают такие скромные колебания пространства, что с точки зрения современной квантовой физики их просто невозможно зарегистрировать.

Поэтому физики надеялись найти гравитационные волны только от массивных объектов, двигающихся с очень большими перепадами ускорений. А точнее, от пары таких объектов — просто по второму закону Ньютона, если одно тяжелое тело движется с большим переменным ускорением, значит, должна быть большая сила, «задающая» это движение. Проще всего этой силе появиться от воздействия какого-нибудь массивного объекта неподалеку. Идеальные кандидаты в такие пары тяжеловесов — сталкивающиеся галактики и двойные системы из «живущих» вместе черных дыр или нейтронных звезд.

Неужели гравитационные волны не пытались найти до этого?

Пытались, и не один раз. Одни из первых экспериментов по обнаружению гравитационных волн ставили еще в 70-е годы на физическом факультете МГУ в группе под руководством профессора Владимира Брагинского. Тогда прибор, установленный в подвале здания, вроде бы зарегистрировал сигнал, сильный и стабильно повторяющийся каждый вечер. Назревала сенсация. Праздник испортил сам Брагинский, который понял, что прибор регистрировал сейсмический шум от дружного захода нескольких трамваев в расположенное неподалеку депо.

Исследователи из международной коллаборации BICEP были куда менее аккуратны, чем советские физики. В прошлом году они заявили о неопровержимых следах гравитационных волн в реликтовом излучении, сохранившемся с первых мгновений после Большого взрыва. Но сенсационная древность оказалась ошибкой: при обработке данных ученые не учли влияние космической пыли.

Неоднократные попытки обнаружить гравитационные волны делались и на других гравитационных телескопах, в том числе на детекторах коллаборации LIGO.

Что такое вообще LIGO и гравитационные телескопы?

LIGO (Laser Interferometer Gravitational-Wave Observatory) — это название обсерватории и одновременно международной коллаборации ученых 14 стран. Россию в LIGO представляют два научных коллектива: группа Александра Сергеева из Института прикладной физики РАН (Нижний Новгород) и группа под руководством профессора физического факультета МГУ Валерия Митрофанова. Последнюю, кстати, до недавнего времени возглавлял тот же Владимир Брагинский.

В составе LIGO как обсерватории есть детектор и два интерферометра: один установлен в Ливингстоне (штат Луизиана, США), а другой — в Хэнфорде (штат Вашингтон, США). Гравитационные волны распространяются со скоростью света, и поэтому сигнал пришел на них лишь с небольшой задержкой в 10 миллисекунд.

Сами интерферометры представляют собой большие Г-образные антенны с плечами по четыре км. Внутри у них собраны оптические схемы высокой добротности (то есть с низким уровнем посторонних шумов), в которые запускаются лазерные пучки. Под действием гравитационной волны одно плечо должно сжаться, а другое, наоборот, растянуться. В результате лазерные пучки проходят по плечам немного разное расстояние и к выходу добираются с небольшим зазором между собой. Выйдя, они снова собираются вместе и формируют интерференционную картину, по характеристикам которой можно восстановить, как менялись плечи антенны и какова была та гравитационная волна, которая все это вызвала.

Обсерватория LIGO начала свою работу еще в 2002 году, но тогда ее точности было недостаточно для регистрации гравитационных волн. В 2010 году LIGO закрылась для модернизации и вновь заработала только в 2014 году (Advanced LIGO). Каждый элемент конструкции был в буквальном смысле отточен до предела: например, зеркала, между которыми бегают лазерные пучки (они установлены на концах каждого плеча), изготавливались на специальном заводе. Похожий телескоп параллельно с LIGO построила и европейская коллаборация VIRGO, но в сентябре прошлого года он не функционировал.

Какой сигнал зарегистрировали ученые?

Вот что рассказывает Валерий Митрофанов. «Сначала был постоянный фоновый шум, и вдруг в какой-то момент с определенной частотой стали раскачиваться пробные массы детектора, те самые зеркала. Потом — раз, и обрыв. Причем сигнал был сразу на двух детекторах: сначала гравитационная волна подошла к одному, а потом с небольшой задержкой к другому».

Частота сигнала составила 150 Гц (именно с такой частотой и амплитудой 10 -19 м колебались зеркала, которые становились то ближе, то дальше друг от друга) , а после обработки была найдена его причина: слияние двух черных дыр на расстоянии 1,3 миллиарда световых лет от Земли. Масса одной из них равнялась 29 солнечным, а другой — 36. Масса получившийся черной дыры оказалась чуть меньше: недостача энергии в три солнечные массы как раз излучилась во время столкновения в виде гравитационных волн.

Светимость (то есть полная излученная энергия) этой вспышки в 50 раз превысила светимость всей видимой Вселенной. Будь это свет, а не гравитация, в обозримом космосе стало бы ослепительно светло.

Светимость? Частота? Я окончательно запутался

Еще раз: ученые увидели гравитационные волны. Это не свет (то есть электромагнитные волны, или распространяющиеся в пространстве сцепленные колебания магнитного и электрического полей), и не звук (механические колебания в твердой, жидкой или газообразной среде, то есть распространяющиеся волны повышенного/пониженного давления). Просто все эти явления (свет, звук и гравитация) можно описать одними и теми же уравнениями и терминами волновой физики.

Так, у каждой волны есть частота колебаний, измеряемая в герцах (Гц). Человеческий слух способен воспринимать звуки на частоте 20 герц — 20 килогерц. Частота пришедшей гравитационной волны составили 150 Гц, но это не значит, что ее можно услышать, если очень хорошенько прислушаться. На пресс-конференции в Вашингтоне ученые даже включили тревожный звук от этого столкновения где-то в невообразимом далёко, но это была просто красивая интерпретация, что было бы, зарегистрируй исследователи не гравитационную волну, а точно такую же по всем параметрам (частота, амплитуда, форма) волну звуковую.

Точно так же и со светимостью. Это просто термин для определения интенсивности потока излучения, примененный в непривычном, но корректном контексте. Например, в случае лампочек: чем интенсивнее они излучают, тем ярче светятся, и тем больше их светимость. Для сталкивающихся черных дыр: чем больше была их масса и чем резче ускорения, тем более мощные гравитационные волны они запустят в пространство. Почему же тогда это событие в 50 светимостей Вселенной не сжало в гармошку всю планету Земля, а только каким-то потусторонним ветерком поколебало сложно устроенные зеркала? А потому, что гравитационное взаимодействие гораздо слабее электромагнитного (поэтому-то его так сложно обнаружить) — настолько, что мы замечаем только наше притяжение к Земле, но например, никак не к вековому дубу, как бы близко мы к нему не подходили.

А это не может быть ошибкой?

Ученые на 100% уверены в своих выводах. При этом раньше у них уже были ложные срабатывания, но посторонние об этом никогда не узнавали, так что с точки зрения аккуратности им точно можно доверять.

«Во-первых, это прямой метод регистрации гравитационных волн, — говорит Валерий Митрофанов. — А во-вторых, результаты совпали с предсказаниями теоретиков. У нас был шаблон сигнала гравитационной волны от слияния двух черных дыр, рассчитанный с помощью квантовой физики. Сигнал регистрировался, только если он попадал в этот шаблон — так и случилось 14 сентября, и именно благодаря этому шаблону мы можем восстановить массы дыр».

Кстати, утечка информации о скором объявлении результатов появилась еще в середине сентября. Тогда многие обсуждали, что среди прочего сигнал мог быть просто подмешан в данные контролирующими проект учеными для проверки его готовности. Сейчас все участники коллаборации однозначно отрицают такую возможность: событие пришлось не на рабочий пуск системы, а на тестово-инженерный, в котором ложные «впрыски» по инструкции не предполагаются.

А Росссия участвовала?

Да. Как уже сказано, от России в коллаборации LIGO принимают участие две лаборатории из Москвы и Нижнего Новгорода. Они разрабатывали конструкцию телескопа (например, именно российские физики предложили подвешивать зеркала на кварцевых нитях вместо стальных, что снизило посторонние шумы в системе) и боролись с квантовыми эффектами, искажающими сигналы сверхчувствительных антенн.

«Мы получили квантовый прибор макроскопических размеров, — рассказывает профессор МГУ Сергей Вятчанин. — Это предельное достижение цивилизации на данный момент: LIGO почти достиг квантового предела измерений. Нам удалось зарегистрировать смещение двух макроскопических объектов массой в несколько килограммов и разнесенных на несколько километров, с точностью, предрекаемой квантовой неопределенностью Гейзенберга».

Особо отмечает вклад наших физиков в исследования и один из инициаторов проекта, почетный профессор Калифорнийского технического института Кип Торн. По его словам, именно Владимир Брагинский, признанный мировой специалист в области квантовой гравитации, первым предложил искать гравитационные волны от черных дыр и первым обратил внимание на необходимость учитывать в измерениях квантовые эффекты.

Пойдем по восходящей. Сначала ученые надеются обзавестись третьим гравитационным телескопом для своей системы, который будет расположен уже не на Земле, а в космосе. Тогда по характерным задержкам сигналов гравитационных волн исследователи смогут восстанавливать точное положение источников — так же, как сейчас можно узнать свое точное положение на Земле, обменявшись сигналами с тремя спутниками GPS.

«Это начало новой, гравитационно-волновой астрономии, — говорит Валерий Митрофанов. — Древние люди наблюдали Вселенную только в видимом свете. Потом появились рентгеновские телескопы, радиотелескопы, гамма-телескопы, нейтринные наблюдения, а теперь мы увидим небо в гравитационных волнах, которые, кстати, ничем не экранируются».

«Эти волны не может остановить никакая материя, и с ними мы сможем понять о Вселенной гораздо больше, чем теперь. А загадок много — например, загадка темной материи».

Кроме того, гравитационный телескоп может сканировать сразу все небо: его не нужно настраивать в какую-то определенную точку пространства или на одну частоту. Поэтому в перспективе многие уникальные астрофизические события первыми будут фиксироваться именно на гравитационном телескопе — он сможет определить точное местоположение объектов, и дальше по этим данным будут настраивать уже другие средства наблюдения.

Не без этого. Теперь ученые надеются увидеть реликтовые гравитационные волны — те самые, которые стали распространяться по Вселенной почти сразу после Большого взрыва.
«Это позволит заглянуть в самое начало времен, — говорит профессор МГУ Фарит Халили. — Гравитационное взаимодействие раньше всех перестало взаимодействовать с веществом, и поэтому наблюдение реликтового излучения, возможно, позволит поженить гравитационные взаимодействия и электромагнитные».

Профессор говорит о давней мечте физиков — разработке стройной теории квантовой гравитации, в рамках которой едиными терминами и уравнениями описываются как электромагнитные взаимодействия, так и гравитационные. Задача-максимум на этом пути и вовсе «теория всего» или, как ее еще называют, теория великого объединения. В ней воедино сливаются уже все четыре известных физических взаимодействия (кроме гравитационного и электромагнитного есть еще слабые и сильные взаимодействия, объясняющие существование элементарных частиц).

Частью такой теории должна стать и теория относительности Эйнштейна. «Мы сможем заглянуть в ту область, где заканчивается общая теория относительности, поскольку в черной дыре она предсказывает сингулярность, — рассказывает профессор МГУ Игорь Биленко. — Возможно, мы увидим новую физику, которая включает общую теорию относительности как одну из своих составляющих, один из частных случаев».

Наконец, кое-что с этого пира может перепасть и нам, простым людям, не мечтающим о теории великого объединения. «Когда Герц открыл электромагнитные волны, он и не знал, что это приведет к линиям электропередач, мобильным телефонам и интернету, — говорит доцент МГУ Сергей Стрыгин. — Возможно, человечество когда-нибудь научится не просто детектировать гравитационные волны, но и использовать их в своих целях».

Что это будет? Передача информации сквозь время, как в фильме «Интерстеллар», научным консультантом которого был как раз Кип Торн? Путешествия во времени? Что-то невообразимо сумасшедшее? Пока мы не можем ничего предсказывать — только ждать и смотреть.

Вчера мир потрясла сенсация: ученые наконец-то обнаружили гравитационные волны, существование которых предсказывал Эйнштейн еще сто лет назад. Это прорыв. Искажение пространства-времени (это и есть гравитационные волны - сейчас объясним, что к чему) обнаружили в обсерватории ЛИГО, а одним из ее основателей является - кто бы вы думали? - Кип Торн, автор книги .

Рассказываем, почему открытие гравитационных волн так важно, что сказал Марк Цукерберг и, конечно, делимся историей от первого лица. Кип Торн как никто другой знает, как устроен проект, в чем его необычность и какое значение ЛИГО имеет для человечества. Да-да, все так серьезно.

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн - столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры - очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром»

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны .

И знаете что? Совсем недавно , что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

Так, по мнению ученых, выглядит катастрофа – слияние черных дыр, — .

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие - начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной - объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны - наши первые замечательные образцы», - сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью : «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне. На рисунке из книги «Интерстеллар. Наука за кадром» - пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение - тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Гравитационные волны, проходящие через детектор ЛИГО.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами. Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Фото из книги «Интерстеллар. Наука за кадром»

Сейчас ЛИГО - интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» - когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

Столкновение двух невращающихся черных дыр. Модель из книги «Интерстеллар. Наука за кадром»

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами - как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания - прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

Люди разгадали далеко на все загадки Вселенной. Все еще впереди.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Аппарат BICEP2 . Изображение из книги «Интерстеллар. Наука за кадром»

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след - поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, - в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов - инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Не так уж и далек день, когда люди покинут пределы нашей галактики.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн - самое большое открытие в современной науке. Альберт Эйнштейн - один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет - думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору . Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.

Гравитационные волны – изображение художника

Гравитационные волны - возмущения метрики пространства-времени, отрывающиеся от источника и распространяющиеся подобно волнам (так называемая «рябь пространства-времени»).

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

Поляризованная гравитационная волна

Гравитационные волны предсказываются общей теорией относительности (ОТО), многими другими . Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами , на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов - ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

В рамках ОТО гравитационные волны описываются решениями уравнений Эйнштейна волнового типа, представляющими собой движущееся со скоростью света (в линейном приближении) возмущение метрики пространства-времени. Проявлением этого возмущения должно быть, в частности, периодическое изменение расстояния между двумя свободно падающими (то есть не испытывающими влияния никаких сил) пробными массами. Амплитудой h гравитационной волны является безразмерная величина - относительное изменение расстояния. Предсказываемые максимальные амплитуды гравитационных волн от астрофизических объектов (например, компактных двойных систем) и явлений (взрывов , слияний , захватов чёрными дырами и т. п.) при измерениях в весьма малы (h =10 −18 -10 −23). Слабая (линейная) гравитационная волна согласно общей теории относительности переносит энергию и импульс, двигается со скоростью света, является поперечной, квадрупольной и описывается двумя независимыми компонентами, расположенными под углом 45° друг к другу (имеет два направления поляризации).

Различные теории по-разному предсказывают скорость распространения гравитационных волн. В общей теории относительности она равна скорости света (в линейном приближении). В других теориях гравитации она может принимать любые значения, в том числе до бесконечности. По данным первой регистрации гравитационных волн их дисперсия оказалась совместимой с безмассовым гравитоном, а скорость оценена как равная скорости света.

Генерация гравитационных волн

Система из двух нейтронных звезд порождает рябь пространства-времени

Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора, то есть ~ . Однако если некоторый объект движется ускоренно, то это означает, что на него действует некоторая сила со стороны другого объекта. В свою очередь, этот другой объект испытывает обратное действие (по 3-му закону Ньютона), при этом оказывается, что m 1 a 1 = − m 2 a 2 . Получается, что два объекта излучают гравитационные волны только в паре, причём в результате интерференции они взаимно гасятся почти полностью. Поэтому гравитационное излучение в общей теории относительности всегда носит по мультипольности характер как минимум квадрупольного излучения. Кроме того, для нерелятивистских излучателей в выражении для интенсивности излучения имеется малый параметр где - гравитационный радиус излучателя, r - его характерный размер, T - характерный период движения, c - скорость света в вакууме.

Наиболее сильными источниками гравитационных волн являются:

  • сталкивающиеся (гигантские массы, очень небольшие ускорения),
  • гравитационный коллапс двойной системы компактных объектов (колоссальные ускорения при довольно большой массе). Как частный и наиболее интересный случай - слияние нейтронных звёзд. У такой системы гравитационно-волновая светимость близка к максимально возможной в природе планковской светимости.

Гравитационные волны, излучаемые системой двух тел

Два тела, движущиеся по круговым орбитам вокруг общего центра масс

Два гравитационно связанных тела с массами m 1 и m 2 , движущиеся нерелятивистски (v << c ) по круговым орбитам вокруг их общего центра масс на расстоянии r друг от друга, излучают гравитационные волны следующей энергии, в среднем за период:

Вследствие этого система теряет энергию, что приводит к сближению тел, то есть к уменьшению расстояния между ними. Скорость сближения тел:

Для Солнечной системы, например, наибольшее гравитационное излучение производит подсистема и . Мощность этого излучения примерно 5 киловатт. Таким образом, энергия, теряемая Солнечной системой на гравитационное излучение за год, совершенно ничтожна по сравнению с характерной кинетической энергией тел.

Гравитационный коллапс двойной системы

Любая двойная звезда при вращении её компонент вокруг общего центра масс теряет энергию (как предполагается - за счёт излучения гравитационных волн) и, в конце концов, сливается воедино. Но для обычных, некомпактных, двойных звёзд этот процесс занимает очень много времени, много большее настоящего возраста . Если же двойная компактная система состоит из пары нейтронных звёзд, чёрных дыр или их комбинации, то слияние может произойти за несколько миллионов лет. Сначала объекты сближаются, а их период обращения уменьшается. Затем на заключительном этапе происходит столкновение и несимметричный гравитационный коллапс. Этот процесс длится доли секунды, и за это время в гравитационное излучение уходит энергия, составляющая по некоторым оценкам более 50 % от массы системы.

Основные точные решения уравнений Эйнштейна для гравитационных волн

Объёмные волны Бонди - Пирани - Робинсона

Эти волны описываются метрикой вида . Если ввести переменную и функцию , то из уравнений ОТО получим уравнение

Метрика Такено

имеет вид , -функции, удовлетворяют тому же уравнению.

Метрика Розена

Где удовлетворяют

Метрика Переса

При этом

Цилиндрические волны Эйнштейна - Розена

В цилиндрических координатах такие волны имеют вид и выполняются

Регистрация гравитационных волн

Регистрация гравитационных волн достаточно сложна ввиду слабости последних (малого искажения метрики). Приборами для их регистрации являются детекторы гравитационных волн. Попытки обнаружения гравитационных волн предпринимаются с конца 1960-х годов. Гравитационные волны детектируемой амплитуды рождаются при коллапсе двойного . Подобные события происходят в окрестностях ориентировочно раз в десятилетие.

С другой стороны, общая теория относительности предсказывает ускорение взаимного вращения двойных звёзд из-за потери энергии на излучение гравитационных волн, и этот эффект надёжно зафиксирован в нескольких известных системах двойных компактных объектов (в частности, пульсаров с компактными компаньонами). В 1993 году «за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации» открывателям первого двойного пульсара PSR B1913+16 Расселу Халсу и Джозефу Тейлору мл. была присуждена Нобелевская премия по физике. Ускорение вращения, наблюдаемое в этой системе, полностью совпадает с предсказаниями ОТО на излучение гравитационных волн. Такое же явление зафиксировано ещё в нескольких случаях: для пульсаров PSR J0737-3039, PSR J0437-4715, SDSS J065133.338+284423.37 (обычно сокращённо J0651) и системы двойных RX J0806. Например, расстояние между двумя компонентами A и B первой двойной звезды из двух пульсаров PSR J0737-3039 уменьшается примерно на 2,5 дюйма (6,35 см) в день из-за потерь энергии на гравитационные волны, причём это происходит в согласии с ОТО. Все эти данные интерпретируются как непрямые подтверждения существования гравитационных волн.

По оценкам наиболее сильными и достаточно частыми источниками гравитационных волн для гравитационных телескопов и антенн являются катастрофы, связанные с коллапсами двойных систем в ближайших галактиках. Ожидается, что в ближайшем будущем на усовершенствованных гравитационных детекторах будет регистрироваться несколько подобных событий в год, искажающих метрику в окрестности на 10 −21 -10 −23 . Первые наблюдения сигнала оптико-метрического параметрического резонанса, позволяющего обнаружить воздействие гравитационных волн от периодических источников типа тесной двойной на излучение космических мазеров, возможно, были получены на радиоастрономической обсерватории РАН, Пущино.

Ещё одной возможностью детектирования фона гравитационных волн, заполняющих Вселенную, является высокоточный тайминг удалённых пульсаров - анализ времени прихода их импульсов, которое характерным образом изменяется под действием проходящих через пространство между Землёй и пульсаром гравитационных волн. По оценкам на 2013 год, точность тайминга необходимо поднять примерно на один порядок, чтобы можно было задетектировать фоновые волны от множества источников в нашей Вселенной, и эта задача может быть решена до конца десятилетия.

Согласно современным представлениям, нашу Вселенную заполняют реликтовые гравитационные волны, появившиеся в первые моменты после . Их регистрация позволит получить информацию о процессах в начале рождения Вселенной. 17 марта 2014 года в 20:00 по московскому времени в Гарвард-Смитсоновском центре астрофизики американской группой исследователей, работающей над проектом BICEP 2, было объявлено о детектировании по поляризации реликтового излучения ненулевых тензорных возмущений в ранней Вселенной, что также является открытием этих реликтовых гравитационных волн. Однако почти сразу этот результат был оспорен, поскольку, как выяснилось, не был должным образом учтён вклад . Один из авторов, Дж. М. Ковац (Kovac J. M. ), признал, что «с интерпретацией и освещением данных эксперимента BICEP2 участники эксперимента и научные журналисты немного поторопились».

Экспериментальное подтверждение существования

Первый зафиксированный гравитационно-волновой сигнал. Слева данные с детектора в Хэнфорде (H1), справа - в Ливингстоне (L1). Время отсчитывается от 14 сентября 2015, 09:50:45 UTC. Для визуализации сигнала он отфильтрован частотным фильтром с полосой пропускания 35-350 Герц для подавления больших флуктуаций вне диапазона высокой чувствительности детекторов, также были применены полосовые режекторные фильтры для подавления шума самих установок. Верхний ряд: напряжения h в детекторах. GW150914 сначала прибыл на L1 и через 6 9 +0 5 −0 4 мс на H1; для визуального сравнения данные с H1 показаны на графике L1 в обращённом и сдвинутом по времени виде (чтобы учесть относительную ориентацию детекторов). Второй ряд: напряжения h от гравитационно-волнового сигнала, пропущенные через такой же полосный фильтр 35-350 Гц. Сплошная линия - результат численной относительности для системы с параметрами, совместимыми с найденными на базе изучения сигнала GW150914, полученный двумя независимыми кодами с результирующим совпадением 99,9. Серые толстые линии - области 90 % доверительной вероятности формы сигнала, восстановленные из данных детекторов двумя различными методами. Тёмно-серая линия моделирует ожидаемые сигналы от слияния чёрных дыр, светло-серая не использует астрофизических моделей, а представляет сигнал линейной комбинацией синусоидально-гауссовых вэйвлетов. Реконструкции перекрываются на 94 %. Третий ряд: Остаточные ошибки после извлечения отфильтрованного предсказания сигнала численной относительности из отфильтрованного сигнала детекторов. Нижний ряд: представление частотной карты напряжений, показывающее возрастание доминирующей частоты сигнала со временем.

11 февраля 2016 года коллаборациями LIGO и VIRGO. Сигнал слияния двух чёрных дыр с амплитудой в максимуме около 10 −21 был зарегистрирован 14 сентября 2015 года в 9:51 UTC двумя детекторами LIGO в Хэнфорде и Ливингстоне через 7 миллисекунд друг от друга, в области максимальной амплитуды сигнала (0,2 секунды) комбинированное отношение сигнал-шум составило 24:1. Сигнал был обозначен GW150914. Форма сигнала совпадает с предсказанием общей теории относительности для слияния двух чёрных дыр массами 36 и 29 солнечных; возникшая чёрная дыра должна иметь массу 62 солнечные и параметр вращения a = 0,67. Расстояние до источника около 1,3 миллиарда , излучённая за десятые доли секунды в слиянии энергия - эквивалент около 3 солнечных масс.

История

История самого термина «гравитационная волна», теоретического и экспериментального поиска этих волн, а также их использования для исследований явлений недоступных иными методам.

  • 1900 - Лоренц предположил, что гравитация «…может распространятся со скоростью, не большей скорости света»;
  • 1905 - Пуанкаре впервые ввёл термин гравитационная волна (onde gravifique). Пуанкаре, на качественном уровне, снял устоявшиеся возражения Лапласа и показал, что связанные с гравитационными волнами поправки к общепринятым законам тяготения Ньютона порядка сокращаются, таким образом, предположение о существовании гравитационных волн не противоречит наблюдениям;
  • 1916 - Эйнштейн показал, что в рамках ОТО механическая система будет передавать энергию гравитационным волнам и, грубо говоря, любое вращение относительно неподвижных звёзд должно рано или поздно остановиться, хотя, конечно, в обычных условиях потери энергии порядка ничтожны и практически не поддаются измерению (в этой работе он ещё ошибочно полагал, что механическая система, постоянно сохраняющая сферическую симметрию, может излучать гравитационные волны);
  • 1918 - Эйнштейн вывел квадрупольную формулу, в которой излучение гравитационных волн оказывается эффектом порядка , тем самым исправив ошибку в своей предыдущей работе (осталась ошибка в коэффициенте, энергия волны в 2 раза меньше);
  • 1923 - Эддингтон - поставил под сомнение физическую реальность гравитационных волн «…распространяются… со скоростью мысли». В 1934 году, при подготовке русского перевода своей монографии «Теория относительности», Эддингтон добавил несколько глав, включая главы с двумя вариантами расчётов потерь энергии вращающимся стержнем, но отметил, что использованные методы приближенных расчётов ОТО, по его мнению, неприменимы к гравитационно связанным системам, поэтому сомнения остаются;
  • 1937 - Эйнштейн совместно с Розеном исследовал цилиндрические волновые решения точных уравнений гравитационного поля. В ходе этих исследований у них возникли сомнения, что гравитационные волны, возможно, являются артефактом приближенных решений уравнений ОТО (известна переписка относительно рецензии на статью Эйнштейна и Розена «Существуют ли гравитационные волны?»). Позднее он нашёл ошибку в рассуждениях, окончательный вариант статьи с фундаментальными правками был опубликован уже в «Journal of the Franklin Institute»;
  • 1957 - Герман Бонди и Ричард Фейнман предложили мысленный эксперимент «трость с бусинками» в котором обосновали существование физических последствий гравитационных волн в ОТО;
  • 1962 - Владислав Пустовойт и Михаил Герценштейн описали принципы использования интерферометров для обнаружения длинноволновых гравитационных волн;
  • 1964 - Филип Петерс и Джон Мэтью теоретически описали гравитационные волны, излучаемые двойными системами;
  • 1969 - Джозеф Вебер, основатель гравитационно-волновой астрономии, сообщает об обнаружении гравитационных волн с помощью резонансного детектора - механической гравитационной антенны. Эти сообщения порождают бурный рост работ в этом направлении, в частности, Ренье Вайс, один из основателей проекта LIGO, начал эксперименты в то время. На настоящий момент (2015) никому так и не удалось получить надёжных подтверждений этих событий;
  • 1978 - Джозеф Тейлор сообщил об обнаружении гравитационного излучения в двойной системе пульсара PSR B1913+16. Исследования Джозефа Тейлора и Рассела Халса заслужили Нобелевскую премию по физике за 1993 год. На начало 2015 года три пост-кеплеровских параметра, включающих уменьшение периода вследствие излучения гравитационных волн, было измерено, как минимум, для 8 подобных систем;
  • 2002 - Сергей Копейкин и Эдвард Фомалонт произвели с помощью радиоволной интерферометрии со сверхдлинной базой измерения отклонения света в гравитационном поле Юпитера в динамике, что для некоторого класса гипотетических расширений ОТО позволяет оценить скорость гравитации - отличие от скорости света не должно превышать 20 % (данная трактовка не общепринята);
  • 2006 - международная команда Марты Бургей (Обсерватория Паркса, Австралия) сообщила о существенно более точных подтверждениях ОТО и соответствия ей величины излучения гравитационных волн в системе двух пульсаров PSR J0737-3039A/B;
  • 2014 - астрономы Гарвард-Смитсоновского центра астрофизики (BICEP) сообщили об обнаружении первичных гравитационных волн при измерениях флуктуаций реликтового излучения. На настоящий момент (2016) обнаруженные флуктуации считаются не имеющими реликтового происхождения, а объясняются излучением пыли в Галактике;
  • 2016 - международная команда LIGO сообщила об обнаружении события прохождения гравитационных волн GW150914. Впервые сообщено о прямом наблюдении взаимодействующих массивных тел в сверхсильных гравитационных полях со сверхвысокими относительными скоростями (< 1,2 × R s , v/c > 0.5), что позволило проверить корректность ОТО с точностью до нескольких постньютоновских членов высоких порядков. Измеренная дисперсия гравитационных волн не противоречит сделанным ранее измерениям дисперсии и верхней границы массы гипотетического гравитона (< 1,2 × 10 −22 эВ), если он в некотором гипотетическом расширении ОТО будет существовать.


Последние материалы раздела:

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...

Третичное образование Третичное образование
Третичное образование Третичное образование

Чешская система образования развивалась на протяжении длительного периода. Обязательное образование было введено с 1774 года. На сегодняшний день в...