Производна на сложна функция x x. Комплексни производни

Дадени са примери за изчисляване на производни по формулата за производна на сложна функция.

Съдържание

Вижте също: Доказателство на формулата за производна на комплексна функция

Основни формули

Тук даваме примери за изчисляване на производни на следните функции:
; ; ; ; .

Ако една функция може да бъде представена като сложна функция в следната форма:
,
тогава неговата производна се определя по формулата:
.
В примерите по-долу ще запишем тази формула, както следва:
.
Където .
Тук индексите или , разположени под знака за производна, означават променливите, по които се извършва диференциацията.

Обикновено в таблиците с производни се дават производни на функции от променливата x. Въпреки това, x е формален параметър. Променливата x може да бъде заменена с всяка друга променлива. Следователно, когато диференцираме функция от променлива, ние просто променяме в таблицата с производни променливата x на променливата u.

Прости примери

Пример 1

Намерете производната на сложна функция
.

Нека напишем дадената функция в еквивалентна форма:
.
В таблицата с производни намираме:
;
.

Според формулата за производна на сложна функция имаме:
.
Тук .

Пример 2

Намерете производната
.

Изваждаме константата 5 от знака за производна и от таблицата с производни намираме:
.


.
Тук .

Пример 3

Намерете производната
.

Изваждаме константа -1 за знака на производната и от таблицата на производните намираме:
;
От таблицата на производните намираме:
.

Прилагаме формулата за производна на сложна функция:
.
Тук .

По-сложни примери

В по-сложни примери прилагаме правилото за диференциране на сложна функция няколко пъти. В този случай изчисляваме производната от края. Тоест, ние разделяме функцията на нейните съставни части и намираме производните на най-простите части, използвайки таблица с производни. Ние също използваме правила за диференциране на суми, продукти и фракции. След това правим замествания и прилагаме формулата за производната на сложна функция.

Пример 4

Намерете производната
.

Нека изберем най-простата част от формулата и да намерим нейната производна. .



.
Тук сме използвали нотацията
.

Намираме производната на следващата част от оригиналната функция, използвайки получените резултати. Прилагаме правилото за диференциране на сбора:
.

Още веднъж прилагаме правилото за диференциране на сложни функции.

.
Тук .

Пример 5

Намерете производната на функцията
.

Нека изберем най-простата част от формулата и да намерим нейната производна от таблицата с производни. .

Прилагаме правилото за диференциране на сложни функции.
.
Тук
.

Нека разграничим следващата част, използвайки получените резултати.
.
Тук
.

Нека разграничим следващата част.

.
Тук
.

Сега намираме производната на желаната функция.

.
Тук
.

Вижте също:

Функциите от сложен тип не винаги отговарят на определението за сложна функция. Ако има функция от вида y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, тогава тя не може да се счита за сложна, за разлика от y = sin 2 x.

Тази статия ще покаже концепцията за сложна функция и нейната идентификация. Нека работим с формули за намиране на производната с примери за решения в заключението. Използването на таблицата за производни и правилата за диференциране значително намалява времето за намиране на производната.

Основни определения

Определение 1

Сложна функция е тази, чийто аргумент също е функция.

Означава се така: f (g (x)). Имаме, че функцията g (x) се счита за аргумент f (g (x)).

Определение 2

Ако има функция f и тя е функция котангенс, тогава g(x) = ln x е функцията натурален логаритъм. Откриваме, че комплексната функция f (g (x)) ще бъде записана като arctg(lnx). Или функция f, която е функция, повдигната на 4-та степен, където g (x) = x 2 + 2 x - 3 се счита за цяла рационална функция, получаваме, че f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно g(x) може да бъде комплексно. От примера y = sin 2 x + 1 x 3 - 5 става ясно, че стойността на g има корен кубичен от дробта. Този израз може да се означи като y = f (f 1 (f 2 (x))). Откъдето имаме, че f е синусова функция и f 1 е функция, разположена под корен квадратен, f 2 (x) = 2 x + 1 x 3 - 5 е дробна рационална функция.

Определение 3

Степента на вложеност се определя от всяко естествено число и се записва като y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))) .

Определение 4

Концепцията за композиция на функции се отнася до броя на вложените функции според условията на проблема. За да решите, използвайте формулата за намиране на производната на сложна функция от формата

(f (g (x))) " = f " (g (x)) g " (x)

Примери

Пример 1

Намерете производната на сложна функция от вида y = (2 x + 1) 2.

Решение

Условието показва, че f е квадратна функция и g(x) = 2 x + 1 се счита за линейна функция.

Нека приложим формулата за производна за сложна функция и напишем:

f " (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g " (x) = 2 (2 x + 1) 2 = 8 x + 4

Необходимо е да се намери производната с опростена оригинална форма на функцията. Получаваме:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Оттук нататък имаме това

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Резултатите бяха същите.

При решаването на задачи от този тип е важно да се разбере къде ще се намира функцията на формата f и g (x).

Пример 2

Трябва да намерите производните на сложни функции във формата y = sin 2 x и y = sin x 2.

Решение

Първата нотация на функцията казва, че f е функцията за повдигане на квадрат, а g(x) е функцията синус. Тогава разбираме това

y " = (sin 2 x) " = 2 sin 2 - 1 x (sin x) " = 2 sin x cos x

Вторият запис показва, че f е синусова функция, а g(x) = x 2 означава степенна функция. От това следва, че записваме произведението на сложна функция като

y " = (sin x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

Формулата за производната y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) ще бъде записана като y " = f " (f 1 (f 2 (f 3 (. . . ( f n (x))))) · f 1 " (f 2 (f 3 (. . . (f n (x)))) · · f 2 " (f 3 (. . . (f n (x) ))) )) · . . . fn "(x)

Пример 3

Намерете производната на функцията y = sin (ln 3 a r c t g (2 x)).

Решение

Този пример показва трудността при писане и определяне на местоположението на функциите. Тогава y = f (f 1 (f 2 (f 3 (f 4 (x))))) означава, където f , f 1 , f 2 , f 3 , f 4 (x) е синусовата функция, функцията за повишаване до 3 степен, функция с логаритъм и основа e, арктангенс и линейна функция.

От формулата за дефиниране на сложна функция имаме това

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x)

Получаваме това, което трябва да намерим

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) като производна на синуса според таблицата с производни, след това f " (f 1 (f 2 (f 3 (f 4 ( x)))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) като производна на степенна функция, тогава f 1 " (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) като логаритмична производна, тогава f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) като производна на арктангенса, тогава f 3 " (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. Когато намирате производната f 4 (x) = 2 x, премахнете 2 от знака на производната, като използвате формулата за производна на степенна функция с показател, равен на 1, след което f 4 " (x) = (2 x) " = 2 x " = 2 · 1 · x 1 - 1 = 2 .

Комбинираме междинните резултати и получаваме това

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Анализът на такива функции напомня на кукли за гнездене. Правилата за диференциране не винаги могат да се прилагат изрично с помощта на производна таблица. Често трябва да използвате формула за намиране на производни на сложни функции.

Има някои разлики между сложния външен вид и сложните функции. С ясна способност да разграничите това, намирането на производни ще бъде особено лесно.

Пример 4

Необходимо е да се обмисли даването на такъв пример. Ако има функция от формата y = t g 2 x + 3 t g x + 1, тогава тя може да се разглежда като сложна функция от формата g (x) = t g x, f (g) = g 2 + 3 g + 1 . Очевидно е необходимо да се използва формулата за сложна производна:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g 2 - 1 (x) + 3 g " (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) g " (x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функция под формата y = t g x 2 + 3 t g x + 1 не се счита за сложна, тъй като има сумата от t g x 2, 3 t g x и 1. Обаче t g x 2 се счита за сложна функция, тогава получаваме степенна функция от вида g (x) = x 2 и f, която е допирателна функция. За да направите това, диференцирайте по количество. Разбираме това

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Нека да преминем към намиране на производната на сложна функция (t g x 2) ":

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g " (x) = 2 x cos 2 (x 2)

Получаваме, че y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функциите от сложен тип могат да бъдат включени в сложни функции, а самите сложни функции могат да бъдат компоненти на функции от сложен тип.

Пример 5

Например, разгледайте сложна функция от формата y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

Тази функция може да бъде представена като y = f (g (x)), където стойността на f е функция на логаритъм с основа 3, а g (x) се счита за сумата от две функции във формата h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 и k (x) = ln 2 x · (x 2 + 1) . Очевидно y = f (h (x) + k (x)).

Да разгледаме функцията h(x). Това е отношението l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 към m (x) = e x 2 + 3 3

Имаме, че l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) е сумата от две функции n (x) = x 2 + 7 и p ( x) = 3 cos 3 (2 x + 1) , където p (x) = 3 p 1 (p 2 (p 3 (x))) е комплексна функция с числов коефициент 3, а p 1 е кубична функция, p 2 чрез косинусова функция, p 3 (x) = 2 x + 1 чрез линейна функция.

Открихме, че m (x) = e x 2 + 3 3 = q (x) + r (x) е сумата от две функции q (x) = e x 2 и r (x) = 3 3, където q (x) = q 1 (q 2 (x)) е сложна функция, q 1 е експоненциална функция, q 2 (x) = x 2 е степенна функция.

Това показва, че h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

Когато се премине към израз на формата k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x), е ясно, че функцията е представена под формата на комплекс s ( x) = ln 2 x = s 1 ( s 2 (x)) с цяло рационално число t (x) = x 2 + 1, където s 1 е квадратна функция, а s 2 (x) = ln x е логаритмична с база e.

От това следва, че изразът ще приеме формата k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x).

Тогава разбираме това

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Въз основа на структурите на функцията стана ясно как и какви формули трябва да се използват за опростяване на израза при диференцирането му. За да се запознаете с такива проблеми и за концепцията за тяхното решение, е необходимо да се обърнете към точката на диференциране на функция, тоест намиране на нейната производна.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter

Ако ж(х) И f(u) – диференцируеми функции на техните аргументи съответно в точки хИ u= ж(х), тогава комплексната функция също е диференцируема в точката хи се намира по формулата

Типична грешка при решаването на производни задачи е механичното прехвърляне на правилата за диференциране на прости функции към сложни функции. Нека се научим да избягваме тази грешка.

Пример 2.Намерете производната на функция

Грешно решение:изчислете натуралния логаритъм на всеки член в скоби и потърсете сбора на производните:

Правилно решение:отново определяме къде е „ябълката“ и къде е „каймата“. Тук естественият логаритъм на израза в скоби е „ябълка“, тоест функция върху междинния аргумент u, а изразът в скоби е „кайма“, тоест междинен аргумент uчрез независима променлива х.

След това (използвайки формула 14 от таблицата с производни)

В много задачи от реалния живот изразът с логаритъм може да бъде малко по-сложен, поради което има урок

Пример 3.Намерете производната на функция

Грешно решение:

Правилно решение.Още веднъж определяме къде е „ябълката“ и къде е „каймата“. Тук косинусът на израза в скоби (формула 7 в таблицата с производни) е „ябълка“, приготвя се в режим 1, който засяга само него, а изразът в скоби (производната на степента е номер 3) в таблицата с производни) е „кайма“, приготвя се по режим 2, който засяга само него. И както винаги, свързваме две производни със знака на продукта. Резултат:

Производната на сложна логаритмична функция е честа задача в тестовете, затова силно препоръчваме да посетите урока „Производна на логаритмична функция“.

Първите примери бяха за сложни функции, в които междинният аргумент на независимата променлива беше проста функция. Но в практическите задачи често е необходимо да се намери производната на сложна функция, където междинният аргумент или сам по себе си е сложна функция, или съдържа такава функция. Какво да правим в такива случаи? Намерете производни на такива функции, като използвате таблици и правила за диференциране. Когато се намери производната на междинния аргумент, тя просто се замества на правилното място във формулата. По-долу са дадени два примера как се прави това.

Освен това е полезно да знаете следното. Ако една сложна функция може да бъде представена като верига от три функции

тогава неговата производна трябва да се намери като произведение на производните на всяка от тези функции:

Много от задачите ви за домашна работа може да изискват да отворите ръководствата си в нови прозорци. Действия със сили и корениИ Действия с дроби .

Пример 4.Намерете производната на функция

Прилагаме правилото за диференциране на сложна функция, като не забравяме, че в получения продукт от производни има междинен аргумент по отношение на независимата променлива хне се променя:

Подготвяме втория множител на произведението и прилагаме правилото за диференциране на сумата:

Вторият член е коренът, така че

Така открихме, че междинният аргумент, който е сума, съдържа сложна функция като един от термините: повдигането на степен е сложна функция, а това, което се повдига на степен, е междинен аргумент по отношение на независимия променлива х.

Затова отново прилагаме правилото за диференциране на сложна функция:

Преобразуваме степента на първия фактор в корен и когато диференцираме втория фактор, не забравяйте, че производната на константата е равна на нула:

Сега можем да намерим производната на междинния аргумент, необходим за изчисляване на производната на сложна функция, изисквана в изложението на проблема г:

Пример 5.Намерете производната на функция

Първо използваме правилото за диференциране на сумата:

Получихме сумата от производните на две комплексни функции. Нека намерим първия:

Тук повишаването на синуса на степен е сложна функция, а самият синус е междинен аргумент за независимата променлива х. Следователно ще използваме правилото за диференциране на сложна функция по пътя изваждане на фактора извън скоби :

Сега намираме втория член на производните на функцията г:

Тук повдигането на косинус на степен е сложна функция f, а самият косинус е междинен аргумент в независимата променлива х. Нека отново използваме правилото за диференциране на сложна функция:

Резултатът е търсената производна:

Таблица с производни на някои сложни функции

За сложни функции, въз основа на правилото за диференциране на сложна функция, формулата за производна на проста функция приема различна форма.

1. Производна на сложна степенна функция, където u х
2. Производна на корена на израза
3. Производна на експоненциална функция
4. Частен случай на експоненциална функция
5. Производна на логаритмична функция с произволна положителна основа А
6. Производна на комплексна логаритмична функция, където u– диференцируема функция на аргумента х
7. Производна на синус
8. Производна на косинус
9. Производна на тангенс
10. Производна на котангенс
11. Производна на арксинус
12. Производна на аркосинус
13. Производна на арктангенс
14. Производна на аркотангенс

Много лесен за запомняне.

Е, нека не отиваме далеч, нека веднага разгледаме обратната функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Експоненциалният и естественият логаритъм са уникално прости функции от производна гледна точка. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някакво постоянно число (константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като е линейна функция, помните ли?);

Производно на продукта

Тук всичко е подобно: нека въведем нова функция и да намерим нейното увеличение:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За целта ще използваме едно просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише в по-прост вид. Затова го оставяме в този вид в отговора.

    Имайте предвид, че тук е частното на две функции, така че прилагаме съответното правило за диференциране:

    В този пример продуктът на две функции:

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциални и логаритмични функции почти никога не се срещат в Единния държавен изпит, но няма да е излишно да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки в обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка), а след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример за сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За нашия пример,.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а аз след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристика на сложните функции: когато редът на действията се промени, функцията се променя.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливи и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. Във връзка с оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставете шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно действията да се номерират. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциация:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

В „старите“ учебници се нарича още „верижно“ правило. Така че, ако y = f (u) и u = φ (x), това е

y = f (φ (x))

    комплексно - съставна функция (композиция от функции) тогава

Където , след изчисление се разглежда при u = φ (x).



Имайте предвид, че тук взехме „различни“ композиции от едни и същи функции и резултатът от диференциацията естествено се оказа, че зависи от реда на „смесване“.

Верижното правило естествено се разпростира до композиции от три или повече функции. В този случай ще има три или повече „връзки“ във „веригата“, която съставлява производното. Ето една аналогия с умножението: „имаме“ таблица с производни; “там” - таблица за умножение; „при нас“ е верижното правило, а „там“ е правилото за умножение в „колона“. При изчисляването на такива „сложни“ производни, разбира се, не се въвеждат спомагателни аргументи (u¸v и т.н.), но след като са отбелязали за себе си броя и последователността на функциите, участващи в състава, съответните връзки са „нанизани“ по посочения ред.

. Тук с “x” за получаване на стойността на “y” се извършват пет операции, тоест има композиция от пет функции: “външна” (последната от тях) - експоненциална - e  ; след това в обратен ред, мощност. (♦) 2; тригонометричен sin(); успокоен. () 3 и накрая логаритмичен ln.(). Ето защо

Със следните примери ще „убием няколко заека с един камък“: ще упражним диференцирането на сложни функции и ще добавим към таблицата с производни на елементарни функции. Така:

4. За степенна функция - y = x α - пренаписвайки я с помощта на добре познатата „основна логаритмична идентичност“ - b=e ln b - във формата x α = x α ln x получаваме

5. За произволна експоненциална функция, използвайки същата техника, която ще имаме

6. За произволна логаритмична функция, използвайки добре известната формула за преход към нова база, последователно получаваме

.

7. За диференциране на тангенса (котангенса) използваме правилото за диференциране на коефициентите:

За да получим производните на обратни тригонометрични функции, ние използваме връзката, която е изпълнена от производните на две взаимно обратни функции, тоест функциите φ (x) и f (x), свързани с отношенията:

Това е съотношението

Тя е от тази формула за взаимно обратни функции

И
,

И накрая, нека обобщим тези и някои други производни, които също лесно се получават в следващата таблица.

Последни материали в раздела:

Кой беше първият руски цар?
Кой беше първият руски цар?

„Самата история говори за нас. Паднаха силни царе и държави, но православната ни Рус се разширява и просперира. От разпръснати малки княжества...

Джунгарско ханство: произход и история
Джунгарско ханство: произход и история

През 17-ти и 18-ти век на територията на западните покрайнини на съвременна Монголия, Тува, Алтай и Източен Туркестан се намира могъщата империя Ойрат...

Интегриран урок по литература и реторика на тема: „Речта на Тарас Булба за партньорството. Монологът на Булба за партньорството
Интегриран урок по литература и реторика на тема: „Речта на Тарас Булба за партньорството. Монологът на Булба за партньорството

Темата за героизма, смелостта и великата сила на руския патриотизъм се чува в обръщението на казашкия атаман към неговите другари преди решителната и ужасна битка.