Значение параметра а. Системы уравнений с параметром

МКОУ «Лодейнопольская средняя общеобразовательная школа № 68»

_________________________________________________________________________________________________________________________________

Выступление на заседании МО

Методы решения задач

с параметрами

Прокушева Наталья Геннадьевна

г. Лодейное Поле

2013-2014

Задачи с параметрами

Задачи с параметрами относятся к наиболее сложным из задач, предлагающихся как на Едином государственном экзамене, так и на дополнительных конкурсных экзаменах в ВУЗы.

Они играют важную роль в формировании логического мышления и математической культуры. Затруднения, возникающие при их решении связаны с тем, что каждая задача с параметрами представляет собой целый класс обычных задач, для каждой из которых должно быть получено решение.

Если в уравнении (неравенстве) некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение (неравенство) параметрическим.

Как правило, неизвестные обозначаются последними буквами латинского алфавита: x , y , z , …, а параметры – первыми: a , b , c , …

Решить уравнение (неравенство) с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они. Два уравнения (неравенства), содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения (неравенства) является решением второго и наоборот.

Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, – степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

Как начинать решать такие задачи? Не надо бояться задач с параметрами. Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства- привести заданное уравнение (неравенство) к более простому виду, если это возможно: разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д.. затем необходимо внимательно еще и еще прочитать задание.

При решении задач, содержащих параметр, встречаются задачи, которые условно можно разделить на два большие класса. В первый класс можно отнести задачи, в которых надо решить неравенство или уравнение при всех возможных значениях параметра. Ко второму классу отнесем задания, в которых надо найти не все возможные решения, а лишь те из них, которые удовлетворяют некоторым дополнительным условиям.

Наиболее понятный для школьников способ решения таких задач состоит в том, что сначала находят все решения, а затем отбирают те, которые удовлетворяют дополнительным условиям. Но это удается не всегда. Встречаются большое количество задач, в которых найти все множество решений невозможно, да нас об этом и не просят. Поэтому приходится искать способ решить поставленную задачу, не имея в распоряжении всего множества решений данного уравнения или неравенства, например, поискать свойства входящих в уравнение функций, которые позволят судить о существовании некоторого множества решений.

Основные типы задач с параметрами

Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).

Обращаем внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.

Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых:

1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

Наиболее массовый класс задач с параметром - задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.

Основные методы решения задач с параметром

Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

Способ II (графический). В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики или в координатной плоскости (x; y ), или в координатной плоскости (x ; a ).

Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

Перейдем теперь к демонстрации указанных способов решения задач с параметром.

1. Линейные уравнения и неравенства с параметрами

Линейная функция: – уравнение прямой с угловым коэффициентом . Угловой коэффициент равен тангенсу угла наклона прямой к положительному направлению оси .

Линейные уравнения с параметрами вида

Если , уравнение имеет единственное решение.

Если , тоуравнение не имеет решений , когда , и уравнение имеет бесконечно много решений , когда .

Пример 1. Решить уравнение | x | = a .

Решение:

    a > 0, => x 1,2 = ± a

    a = 0, => x = 0

    a < 0, => решений нет.

Ответ: x 1,2 = ±a при a > 0; x = 0 при a = 0; решений нет при a < 0.

Пример 2. Решить уравнение |3 – x | = a .

Решение:

    a > 0, => 3 – x = ± a , => x = 3 ± a

    a = 0, => 3 – x = 0. => x = 3

    a < 0, => решений нет.

Ответ: x 1,2 = 3 ±a при a > 0; x = 3 при a = 0; решений нет при a < 0.

Пример 3. Решить уравнение m ² x m = x + 1.

Решение:

m ² x m = x + 1

m ² x x = m + 1

(m² – 1)x = m + 1


Ответ:
при m ± 1; x Є R при m = –1; решений нет при m = 1.

Пример 4. а решить уравнение: ( a 2 – 4) x = a + 2 .

Решение: Разложим коэффициент при на множители. .

Если , уравнение имеет единственное решение: .

Если , уравнение не имеет решений.

Если , тоуравнение имеет бесконечно много решений .

Пример 6. При всех значениях параметра a решить уравнение:
.

Решение: ОДЗ: . При этом условии уравнение равносильно следующему: . Проверим принадлежность к ОДЗ: , если . Если же , то уравнение не имеет решений.

Пример 7. При всех значениях параметра а решить уравнение: | х + 3| – a | x – 1| = 4.

Решение: Разобьем числовую прямую на 3 части точками, в которых выражения под знаком модуля обращаются в нуль и решим 3 системы:

1) , если . Найденный будет решением, если .

2) , если . Найденный удовлетворяет нужному неравенству, следовательно, является решением при . Если же , то решением является любой .

3) , если . Найденный не удовлетворяет нужному неравенству, следовательно, не является решением при . Если же , то решением является любой x > 1.

Ответ: при ; при ;

п ри ; является также решением при всех .

Пример 8. Найти все а , при каждом из которых хотя бы одно из решений уравнения 15x – 7a = 2 – 3ax + 6a меньше 2 .

Решение: Найдем решения уравнения при каждом . , если . Решим неравенство: .

При уравнение не имеет решений.

Ответ : а Î (–5 , 4) .

Линейные неравенства с параметрами

Например: Решить неравенство: kx < b .

Если k > 0, то
. Если k < 0, то
. Если k = 0, то при b > 0 решением является любой x Є R , а при
решений нет.

Аналогично решите остальные неравенства в рамочке.

Пример 1. Для всех значений параметра а решить неравенство
.

Решение:


. Если скобка перед x положительна, т.е. при
, то
. Если скобка перед x отрицательна, т.е. при
, то
. Если же a = 0 или a = , то решений нет.

Ответ:
при
;
при
;

решений нет при a = 0 или a = .

Пример 2 . Для всех значений параметра а решить неравенство |х – а| – |x + a | < 2a .

Решение:

При a =0 имеем неверное неравенство 0 < 0, т.е. решений нет. Пусть a > 0, тогда при x < –a оба модуля раскрываются с минусом и получаем неверное неравенство 2a < 2a , т.е. решений нет. Если x Є [–a ; a ] , то первый модуль раскрывается с минусом, а второй с плюсом и получаем неравенство –2x < 2a , т.е. x > –a , т.е., решением является любой x Є (–a ; a ]. Если x > a оба модуля раскрываются с плюсом и получаем верное неравенство –2a < 2a , т.е. , решением является любой x Є (a ; +∞). Объединяя оба ответа, получим, что при a > 0 x Є (–a ; +∞).

Пусть a < 0, тогда первое слагаемое больше, чем второе, поэтому разность в левой части неравенства положительна и, следовательно, не может быть меньше отрицательного числа 2a . Т.о., при a < 0 решений нет.

Ответ: x Є (–a ; +∞) при a > 0, решений нет при
.

Замечание. Решение данной задачи получается быстрее и проще, если использовать геометрическую интерпретацию модуля разности двух чисел, как расстояние между точками. Тогда выражение в левой части можно интерпретировать, как разность расстояний от точки х до точек а и –а .

Пример 3. Найти все а , при каждом из которых все решения неравенства
удовлетворяют неравенству 2x a ² + 5 < 0.

Решение:

Решением неравенства |x | ≤ 2 является множество A =[–2; 2], а решением неравенства 2x a ² + 5 < 0 является множество B = (–∞;
) . Чтобы удовлетворить условию задачи, нужно, чтобы множество А входило в множество В (). Это условие выполнится тогда и только тогда, когда .

Ответ: a Є (–∞; –3)U (3; +∞).

Пример 4. Найти все значения a , при которых неравенство
выполняется для всех x из отрезка .

Решение:

Дробь – меньше нуля между корнями, поэтому надо выяснить, какой корень больше.

–3a + 2 < 2a + 4
и –3a + 2 > 2a + 4
. Т.о., при
x Є (–3a + 2; 2a + 4) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

При
x Є (2a + 4; –3a + 2) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

При a = – (когда корни совпадают) решений нет, т.к. в этом случае неравенство приобретает вид: .

Ответ:
.

Пример 5. а неравенство справедливо при всех отрицательных значениях х ?

Решение:

Функция монотонно возрастает, если коэффициент при x неотрицательный, и она монотонно убывает, если коэффициент при x отрицательный.

Выясним знак коэффициента при

a ≤ –3,

a ≥ 1; (a ² + 2 a – 3) < 0 <=> –3 < a < 1.

a ≤ –3,

Пусть a ≥ 1. Тогда функция f (x ) монотонно не убывает, и условие задачи будет выполнено, если f (x ) ≤ 0 <=> 3a ² – a – 14 ≤ 0 <=>
.

a ≤ –3,

Вместе с условиями a ≥ 1; получим:

Пусть –3 < a < 1. Тогда функция f (x ) монотонно убывает, и условие задачи никогда не может быть выполнено.

Ответ :
.

2. Квадратные уравнения и неравенства с параметрами

Квадратичная функция:
.

В множестве действительных чисел это уравнение исследуется по следующей схеме.

Пример 1 . При каких значениях a уравнение x ² – ax + 1 = 0 не имеет действительных корней?

Решение:

x ² – ax + 1 = 0

D = a ² – 4 · 1 = a ² – 4


a ² – 4 < 0 + – +

( a – 2)( a + 2) < 0 –2 2

Ответ : при a Є (–2; 2)

Пример 2. При каких значениях а уравнение а (х ² – х + 1) = 3 х + 5 имеет два различных действительных корня?

Решение:

а (х ² – х + 1) = 3 х + 5, а ≠ 0

ах ² – ах+ а – 3 х – 5 = 0

ах ² – ( а + 3) х + а – 5 = 0

D = ( a +3)² – 4 a ( a – 5) = a ² +6 a + 9 – 4 a ² + 20 a = –3 a ² + 26 a + 9

3 a ² + 26 a + 9 > 0

3 a ² – 26 a – 9 < 0

D = 26² – 4 · 3 · (–9) = 784

a 1 =
; a 2 =
+ – +

0 9

Ответ: при a Є (–1/3; 0) U (0; 9)

Пример 3. Решить уравнение
.

Решение:



ОДЗ : x ≠1, x a

x – 1 + x a = 2, 2 x = 3 + a ,

1)
; 3 + a ≠ 2; a ≠ –1

2)
; 3 +
a ≠ 2 a ; a ≠ 3

Ответ:
при a Є (–∞; –1) U (–1; 3) U (3; +∞);

решений нет при a = –1; 3 .

Пример 4 . Решить уравнение | x ²–2 x –3 | = a .

Решение:

Рассмотрим функции y = | x ²–2 x –3 | и y = a .

При a < 0 нет решений;
при a = 0 и a > 4 два решения;
при 0 < a < 4 – четыре решения;
при a = 4 – три решения.

Ответ:

при a < 0 нет решений;
при a = 0 и a > 4 два решения;
при 0 < a < 4 – четыре решения;
при a = 4 – три решения.

Пример 5. Найти все значения a , при каждом из которых уравнение | x ²–( a +2) x +2 a | = | 3 x –6 |
имеет ровно два корня. Если таких значений a больше одного, в ответе укажите их произведение.

Решение:

Разложим квадратный трехчлен x ²–( a +2) x +2 a на множители.
;
;
;

Получим | ( x –2)( x a ) | = 3 | x –2 |.
Это уравнение равносильно совокупности

Поэтому данное уравнение имеет ровно два корня, если a + 3 = 2 и a – 3 = 2.
Отсюда находим, что искомыми значениями a являются a 1 = –1; a 2 = 5; a 1 · a 2 = –5.

Ответ: –5.

Пример 6. Найти все значения a , при которых корни уравнения ax ² – 2( a + 1) x a + 5 = 0 положительны .

Решение:

Контрольная точка a = 0, т.к. меняет суть уравнения.

1. a = 0 –2x + = 0;

Ответ: a Є U .

Пример 7. При каких значениях параметра a уравнение | x ² – 4 x + 3 | = ax имеет 3 корня.

Решение:

Построим графики функций y = | x ² – 4 x + 3 | и y = ax .

На отрезке построен график функции
.
Данное уравнение будет иметь три корня, если график функции y = ax будет являться касательной к графику y = x ²+ 4 x – 3 на
отрезке .

Уравнение касательной имеет вид y = f (x 0 ) + f ’(x 0 )(x x 0 ),



Т.к. уравнение касательной y = a , получим систему уравнений

Т.к. x 0 Є ,

Ответ: при a = 4 – 2
.

Квадратные неравенства с параметрами

Пример. Найдите все значения параметра a , при каждом из которых среди решений неравенства
нет ни одной точки отрезка .

Решение:

Сначала решим неравенство при всех значениях параметра, а потом найдем те из них, для которых среди решений нет ни одной точки отрезка .
Пусть
, ax = t ²

t ≥ 0

При такой замене переменных ОДЗ неравенства выполняется автоматически. x можно выразить через t , если a ≠ 0. Поэтому случай, когда a = 0, рассмотрим отдельно.
1.Пусть a = 0, тогда х > 0, и заданный отрезок является решением.
2.Пусть a ≠ 0, тогда
и неравенство
примет вид
,

Решение неравенства зависит от значений a , поэтому придется рассмотреть два случая.
1) Если a >0, то
при
, или в старых переменных,

Решение не содержит ни одной точки заданного отрезка , тогда и только тогда, когда выполнены условия a ≤ 7,

16a ≥ 96. Отсюда, a Є .
2). Если а < 0, то
;
; t Є (4a ; a ). Так как t ≥ 0, то решений нет.

Ответ: .

    Иррациональные уравнения с параметрами

При решении иррациональных уравнений и неравенств с параметром, во-первых, следует учитывать область допустимых значений. Во-вторых, если обе части неравенства – неотрицательные выражения, то такое неравенство можно возводить в квадрат с сохранением знака неравенства.
Во многих случаях иррациональные уравнения и неравенства после замены переменных сводятся к квадратным.

Пример 1. Решить уравнение
.

Решение:

ОДЗ: x + 1 ≥ 0, x ≥ –1, a ≥ 0.

x + 1 = a ².

Если x = a ² – 1, то условие выполняется.

Ответ: x = a ² – 1 при а ≥ 0; решений нет при a < 0.

Пример 2. Решить уравнение
.

Решение:

ОДЗ: x + 3 ≥ 0, x ≥ –3,

a – x ≥ 0; x a ;

x + 3 = a – x ,

2x = a – 3,

<=>
<=>
<=> a ≥ –3.

Ответ:
при a ≥ –3; решений нет при a < –3.

Пример 3. Сколько корней имеет уравнение
в зависимости от значений параметра а ?

Решение:

Область допустимых значений уравнения: x Є [–2; 2]

Построим графики функций. График первой функции – это верхняя половина окружности x ² + y ² = 4. График второй функции – биссектрисы первого и второго координатных углов. Из графика первой функции вычтем график второй и получим график функции
. Если заменить у на а , то последний график функции есть множество точек (х; а), удовлетворяющих исходному уравнению.

По графику видим ответ.

Ответ: при а Є (–∞; –2) U (1; +∞), корней нет;

при а Є [–2; 2), два корня;

при а = 1, один корень.

Пример 4. При каких значениях параметра а уравнение
имеет единственное решение?

Решение:

1 способ (аналитический):

Ответ:

2 способ (графический):

Ответ: при а ≥ –2 уравнение имеет единственное решение

Пример 5. При каких значениях параметра а уравнение = 2 + х имеет единственное решение.

Решение:

Рассмотрим графический вариант решения данного уравнения, то есть построим две функции:
у 1 = 2 + х и у 2 =

Первая функция является линейной и проходит через точки (0; 2) и (–2; 0).
График второй функции содержит параметр. Рассмотрим сначала график этой функции при а = 0 (рис.1). При изменении значения параметра график будет передвигаться по оси ОХ на соответсвующее значение влево (при положительных а ) или вправо (при отрицательных а ) (рис.2)



Из рисунка видно, что при а < –2 графики не пересекают друг друга, а следовательно не имеют общих решений. Если же значение параметра а больше либо равно –2, то графики имеют одну точку пересечения, а следовательно одно решение.

Ответ: при a ≥ –2 уравнение имеет единственное решение.

    Тригонометрические уравнения с параметрами.

Пример 1. Решите уравнение sin (– x + 2 x – 1) = b + 1.

Решение:


Учитывая нечетность функции
, данное уравнение сведем к равносильному
.

1. b = –1

3. b =–2

4. | b + 1| > 1

Решений нет.

5. b Є(–1; 0)

6. b Є(–2; –1)

Пример 2. Найдите все значения параметра p, при которых уравнение
не имеет решений.

Решение:

Выразим cos 2x через sinx .

Пусть
тогда задача свелась к нахождению всех значений p , при которых уравнение не имеет решений на [–1; 1]. Уравнение алгоритмически не решается, поэтому решим задачу, используя график. Запишем уравнение в виде , и теперь эскиз графика левой части
строится несложно.
Уравнение не имеет решений, если прямая y = p + 9 не пересекает график на отрезке [–1; 1], т. е.

Ответ: p Є (–∞; –9) U (17; +∞).

Системы уравнений с параметрами

    Системы двух линейных уравнений с параметрами

Система уравнений

Решениями системы двух линейных уравненийявляются точки пересечения двух прямых: и .

Возможны 3 случая:

1. Прямые не параллельны . Тогда и их нормальные вектора не параллельны, т.е. . В этом случае система имеет единственное решение.

2. Прямые параллельны и не совпадают. Тогда и их нормальные вектора параллельны, но сдвиги различны, т.е. .

В этом случае система решений не имеет .

3. Прямые совпадают. Тогда их нормальные вектора параллельны и сдвиги совпадают, т.е. . В этом случае система имеет бесконечно много решений – все точки прямой.

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О . Это железное требование. Хорошо. Запомним.)

А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

Принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x 1 – x 2 . Теорема Виета здесь в этот раз бессильна.

Что ж, считаем корни по общей формуле:

Теперь вспоминаем, что корень квадратный – величина заведомо неотрицательная . Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

И эта функция f(a) должна принимать наибольшее значение . А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная ! Вперёд и с песнями!)

Дифференцируем нашу функцию и приравниваем производную к нулю:

Получили единственную критическую точку a = 2 . Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

Слева от двойки производная положительна, а справа от двойки – отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке . Вне этого отрезка нашей функции f (a ) попросту не существует . Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

Всё. Вот теперь наша задача полностью решена.

Ответ: 2.

Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное – не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

Пример 4

Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?

Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

Итак, а ≠ 0 .

При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным . То есть, первое наше требование будет D > 0 .

D = 4(a-1) 2 – 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a

Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) – величина неотрицательная . Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль – функция чётная и сжигает минус. Точно так же, как и квадрат.

Значит, ответом на вопрос задачи является решение вот такой системы:

Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

Отлично. Корни получены. Теперь начинаем формировать наше расстояние:


Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

Неравенство – не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль – величина неотрицательная.

Итак, смело умножаем обе части неравенства на положительное число |a |. Знак неравенства сохраняется :

Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая – когда параметр а , стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

Итак!

Случай 1 (a>0, |a|=a)

В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно – случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются .

Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a >0 . С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a<0) эквивалентно неравенству a<0, а условия a>0 и a<0 – это два взаимно исключающих требования.

Упрощаем нашу совокупность с учётом главного условия a>0:

Вот так. А теперь решаем самое обычное квадратное неравенство:

Нас интересует промежуток между корнями . Стало быть,

Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

Случай 2 ( a< 0, | a |=- a )

В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

С учётом общего требования a<0 , мы снова, как и в предыдущем случае, проводим максимальные упрощения: вычёркиваем вторую систему в силу противоречивости двух требований -3а < 0 и нашего общего условия a<0 для всего случая 2 .

И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1 ! Решение этого неравенства выглядело вот так:

Осталось лишь пересечь этот интервал с нашим новым условием a<0.

Пересекаем:

Вот и второй кусочек ответа готов:

Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

С нулём. Вот так:

А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему) :

Готово дело. Эти два интервала – это пока ещё только решение неравенства

Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

Ещё у нас есть условие положительного дискриминанта ! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества :

Но есть одна проблемка. Мы не знаем , как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа :

Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:


Всё, задача полностью решена и можно записывать окончательный ответ.

Ответ:

Ну как? Уловили суть? Тогда решаем самостоятельно.)

1. Найдите все значения параметра b , при которых уравнение

ax 2 + 3 x +5 = 0

имеет единственный корень.

2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

x 2 – (14 a -9) x + 49 a 2 – 63 a + 20 = 0

меньше 9.

3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

x 2 – 4 ax + 5 a = 0

равна 6.

4. Найдите все значения параметра а, при каждом из которых уравнение

x 2 + 2( a -2) x + a + 3 = 0

имеет два различных корня, расстояние между которыми больше 3.

Ответы (в беспорядке):

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....