Все о логарифмических неравенствах. Разбор примеров

Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе:

log k (x ) f (x ) ∨ log k (x ) g (x ) ⇒ (f (x ) − g (x )) · (k (x ) − 1) ∨ 0

Вместо галки «∨» можно поставить любой знак неравенства: больше или меньше. Главное, чтобы в обоих неравенствах знаки были одинаковыми.

Так мы избавляемся от логарифмов и сводим задачу к рациональному неравенству. Последнее решается намного проще, но при отбрасывании логарифмов могут возникнуть лишние корни. Чтобы их отсечь, достаточно найти область допустимых значений. Если вы забыли ОДЗ логарифма, настоятельно рекомендую повторить - см. «Что такое логарифм ».

Все, что связано с областью допустимых значений, надо выписать и решить отдельно:

f (x ) > 0; g (x ) > 0; k (x ) > 0; k (x ) ≠ 1.

Эти четыре неравенства составляют систему и должны выполняться одновременно. Когда область допустимых значений найдена, остается пересечь ее с решением рационального неравенства - и ответ готов.

Задача. Решите неравенство:

Для начала выпишем ОДЗ логарифма:

Первые два неравенства выполняются автоматически, а последнее придется расписать. Поскольку квадрат числа равен нулю тогда и только тогда, когда само число равно нулю, имеем:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

Получается, что ОДЗ логарифма - все числа, кроме нуля: x ∈ (−∞ 0)∪(0; +∞). Теперь решаем основное неравенство:

Выполняем переход от логарифмического неравенства к рациональному. В исходном неравенстве стоит знак «меньше», значит полученное неравенство тоже должно быть со знаком «меньше». Имеем:

(10 − (x 2 + 1)) · (x 2 + 1 − 1) < 0;
(9 − x 2) · x 2 < 0;
(3 − x ) · (3 + x ) · x 2 < 0.

Нули этого выражения: x = 3; x = −3; x = 0. Причем x = 0 - корень второй кратности, значит при переходе через него знак функции не меняется. Имеем:

Получаем x ∈ (−∞ −3)∪(3; +∞). Данное множество полностью содержится в ОДЗ логарифма, значит это и есть ответ.

Преобразование логарифмических неравенств

Часто исходное неравенство отличается от приведенного выше. Это легко исправить по стандартным правилам работы с логарифмами - см. «Основные свойства логарифмов ». А именно:

  1. Любое число представимо в виде логарифма с заданным основанием;
  2. Сумму и разность логарифмов с одинаковыми основаниями можно заменить одним логарифмом.

Отдельно хочу напомнить про область допустимых значений. Поскольку в исходном неравенстве может быть несколько логарифмов, требуется найти ОДЗ каждого из них. Таким образом, общая схема решения логарифмических неравенств следующая:

  1. Найти ОДЗ каждого логарифма, входящего в неравенство;
  2. Свести неравенство к стандартному по формулам сложения и вычитания логарифмов;
  3. Решить полученное неравенство по схеме, приведенной выше.

Задача. Решите неравенство:

Найдем область определения (ОДЗ) первого логарифма:

Решаем методом интервалов. Находим нули числителя:

3x − 2 = 0;
x = 2/3.

Затем - нули знаменателя:

x − 1 = 0;
x = 1.

Отмечаем нули и знаки на координатной стреле:

Получаем x ∈ (−∞ 2/3)∪(1; +∞). У второго логарифма ОДЗ будет таким же. Не верите - можете проверить. Теперь преобразуем второй логарифм так, чтобы в основании стояла двойка:

Как видите, тройки в основании и перед логарифмом сократились. Получили два логарифма с одинаковым основанием. Складываем их:

log 2 (x − 1) 2 < 2;
log 2 (x − 1) 2 < log 2 2 2 .

Получили стандартное логарифмическое неравенство. Избавляемся от логарифмов по формуле. Поскольку в исходном неравенстве стоит знак «меньше», полученное рациональное выражение тоже должно быть меньше нуля. Имеем:

(f (x ) − g (x )) · (k (x ) − 1) < 0;
((x − 1) 2 − 2 2)(2 − 1) < 0;
x 2 − 2x + 1 − 4 < 0;
x 2 − 2x − 3 < 0;
(x − 3)(x + 1) < 0;
x ∈ (−1; 3).

Получили два множества:

  1. ОДЗ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Кандидат на ответ: x ∈ (−1; 3).

Осталось пересечь эти множества - получим настоящий ответ:

Нас интересует пересечение множеств, поэтому выбираем интервалы, закрашенные на обоих стрелах. Получаем x ∈ (−1; 2/3)∪(1; 3) - все точки выколоты.

Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе. В презентации представлены решения заданий С3 ЕГЭ - 2014 по математике.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Решение логарифмических неравенств, содержащих переменную в основании логарифма: методы, приемы, равносильные переходы учитель математики МБОУ СОШ № 143 Князькина Т. В.

Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе: log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) − g (x)) · (k (x) − 1) ∨ 0 Вместо галки «∨» можно поставить любой знак неравенства: больше или меньше. Главное, чтобы в обоих неравенствах знаки были одинаковыми. Так мы избавляемся от логарифмов и сводим задачу к рациональному неравенству. Последнее решается намного проще, но при отбрасывании логарифмов могут возникнуть лишние корни. Чтобы их отсечь, достаточно найти область допустимых значений. Не забывайте ОДЗ логарифма! Все, что связано с областью допустимых значений, надо выписать и решить отдельно: f (x) > 0; g (x) > 0; k (x) > 0; k (x) ≠ 1. Эти четыре неравенства составляют систему и должны выполняться одновременно. Когда область допустимых значений найдена, остается пересечь ее с решением рационального неравенства - и ответ готов.

Решите неравенство: Решение Для начала выпишем ОДЗ логарифма Первые два неравенства выполняются автоматически, а последнее придется расписать. Поскольку квадрат числа равен нулю тогда и только тогда, когда само число равно нулю, имеем: x 2 + 1 ≠ 1; x 2 ≠ 0; x ≠ 0 . Получается, что ОДЗ логарифма - все числа, кроме нуля: x ∈ (−∞0)∪(0 ;+ ∞). Теперь решаем основное неравенство: Выполняем переход от логарифмического неравенства к рациональному. В исходном неравенстве стоит знак «меньше», значит полученное неравенство тоже должно быть со знаком «меньше».

Имеем: (10 − (x 2 + 1)) · (x 2 + 1 − 1)

Преобразование логарифмических неравенств Часто исходное неравенство отличается от приведенного выше. Это легко исправить по стандартным правилам работы с логарифмами. А именно: Любое число представимо в виде логарифма с заданным основанием; Сумму и разность логарифмов с одинаковыми основаниями можно заменить одним логарифмом. Отдельно хочу напомнить про область допустимых значений. Поскольку в исходном неравенстве может быть несколько логарифмов, требуется найти ОДЗ каждого из них. Таким образом, общая схема решения логарифмических неравенств следующая: Найти ОДЗ каждого логарифма, входящего в неравенство; Свести неравенство к стандартному по формулам сложения и вычитания логарифмов; Решить полученное неравенство по схеме, приведенной выше.

Решите неравенство: Решение Найдем область определения (ОДЗ) первого логарифма: Решаем методом интервалов. Находим нули числителя: 3 x − 2 = 0; x = 2/3. Затем - нули знаменателя: x − 1 = 0; x = 1. Отмечаем нули и знаки на координатной прямой:

Получаем x ∈ (−∞ 2/3) ∪ (1; +∞). У второго логарифма ОДЗ будет таким же. Не верите - можете проверить. Теперь преобразуем второй логарифм так, чтобы в основании стояла двойка: Как видите, тройки в основании и перед логарифмом сократились. Получили два логарифма с одинаковым основанием. Складываем их: log 2 (x − 1) 2

(f (x) − g (x)) · (k (x) − 1)

Нас интересует пересечение множеств, поэтому выбираем интервалы, закрашенные на обоих стрелах. Получаем: x ∈ (−1; 2/3) ∪ (1; 3) -все точки выколоты. Ответ: x ∈ (−1; 2/3)∪(1; 3)

Решение заданий ЕГЭ-2014 типа С3

Решите систему неравенств Решение. ОДЗ:  1) 2)

Решите систему неравенств 3) -7 -3 - 5 х -1 + + + − − (продолжение)

Решите систему неравенств 4) Общее решение: и -7 -3 - 5 х -1 -8 7 log 2 129 (продолжение)

Решите неравенство (продолжение) -3 3 -1 + − + − х 17 + -3 3 -1 х 17 -4

Решите неравенство Решение. ОДЗ: 

Решите неравенство (продолжение)

Решите неравенство Решение. ОДЗ:  -2 1 -1 + − + − х + 2 -2 1 -1 х 2


С ними находятся внутри логарифмов.

Примеры:

\(\log_3⁡x≥\log_3⁡9\)
\(\log_3⁡ {(x^2-3)}< \log_3⁡{(2x)}\)
\(\log_{x+1}⁡{(x^2+3x-7)}>2\)
\(\lg^2⁡{(x+1)}+10≤11 \lg⁡{(x+1)}\)

Как решать логарифмические неравенства:

Любое логарифмическое неравенство нужно стремиться привести к виду \(\log_a⁡{f(x)} ˅ \log_a{⁡g(x)}\) (символ \(˅\) означает любой из ). Такой вид позволяет избавиться от логарифмов и их оснований, сделав переход к неравенству выражений под логарифмами, то есть к виду \(f(x) ˅ g(x)\).

Но при выполнении этого перехода есть одна очень важная тонкость:
\(-\) если - число и оно больше 1 - знак неравенства при переходе остается прежним,
\(-\) если основание - число большее 0, но меньшее 1 (лежит между нулем и единицей), то знак неравенства должен меняться на противоположный, т.е.

Примеры:

\(\log_2⁡{(8-x)}<1\)
ОДЗ: \(8-x>0\)
\(-x>-8\)
\(x<8\)

Решение:
\(\log\)\(_2\) \((8-x)<\log\)\(_2\) \({2}\)
\(8-x\)\(<\) \(2\)
\(8-2 \(x>6\)
Ответ: \((6;8)\)

\(\log\)\(_{0,5⁡}\) \((2x-4)\)≥\(\log\)\(_{0,5}\) ⁡\({(x+1)}\)
ОДЗ: \(\begin{cases}2x-4>0\\x+1 > 0\end{cases}\)
\(\begin{cases}2x>4\\x > -1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x>2\\x > -1\end{cases}\) \(\Leftrightarrow\) \(x\in(2;\infty)\)

Решение:
\(2x-4\)\(≤\) \(x+1\)
\(2x-x≤4+1\)
\(x≤5\)
Ответ: \((2;5]\)

Очень важно! В любом неравенстве переход от вида \(\log_a{⁡f(x)} ˅ \log_a⁡{g(x)}\) к сравнению выражений под логарифмами можно делать только если:


Пример . Решить неравенство: \(\log\)\(≤-1\)

Решение:

\(\log\)\(_{\frac{1}{3}}⁡{\frac{3x-2}{2x-3}}\) \(≤-1\)

Выпишем ОДЗ.

ОДЗ: \(\frac{3x-2}{2x-3}\) \(>0\)

\(⁡\frac{3x-2-3(2x-3)}{2x-3}\) \(≥\) \(0\)

Раскрываем скобки, приводим .

\(⁡\frac{-3x+7}{2x-3}\) \(≥\) \(0\)

Умножаем неравенство на \(-1\), не забыв при этом перевернуть знак сравнения.

\(⁡\frac{3x-7}{2x-3}\) \(≤\) \(0\)

\(⁡\frac{3(x-\frac{7}{3})}{2(x-\frac{3}{2})}\) \(≤\) \(0\)

Построим числовую ось и отметим на ней точки \(\frac{7}{3}\) и \(\frac{3}{2}\) . Обратите внимание, точка из знаменателя – выколота, несмотря на то, что неравенство нестрогое. Дело в том, что эта точка не будет решением, так как при подстановке в неравенство приведет нас к делению на ноль.


\(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Теперь на ту же числовую ось наносим ОДЗ и записываем в ответ тот промежуток, который попадает в ОДЗ.


Записываем окончательный ответ.

Ответ: \(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Пример . Решить неравенство: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Решение:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Выпишем ОДЗ.

ОДЗ: \(x>0\)

Приступим к решению.

Решение: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Перед нами типичное квадратно-логарифмическое неравенство. Делаем .

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Раскладываем левую часть неравенства на .

\(D=1+8=9\)
\(t_1= \frac{1+3}{2}=2\)
\(t_2=\frac{1-3}{2}=-1\)
\((t+1)(t-2)>0\)

Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к , имеющей такое же решение, и сделаем обратную замену.

\(\left[ \begin{gathered} t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2 \\ \log_3⁡x<-1 \end{gathered} \right.\)

Преобразовываем \(2=\log_3⁡9\), \(-1=\log_3⁡\frac{1}{3}\).

\(\left[ \begin{gathered} \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Делаем переход к сравнению аргументов. Основания у логарифмов больше \(1\), поэтому знак неравенств не меняется.

\(\left[ \begin{gathered} x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Соединим решение неравенства и ОДЗ на одном рисунке.


Запишем ответ.

Ответ: \((0; \frac{1}{3})∪(9;∞)\)

Решение простейших логарифмических неравенств и неравенств, где основание логарифма фиксировано, мы рассматривали в прошлом уроке .

А что делать, если в основании логарифма стоит переменная?

Тогда нам на помощь придет рационализация неравенств. Чтобы понять, как это работает, давайте рассмотрим, например, неравенство:

$$\log_{2x} x^2 > \log_{2x} x.$$

Как положено, начнем с ОДЗ.

ОДЗ

$$\left[ \begin{array}{l}x>0,\\ 2x ≠ 1. \end{array}\right.$$

Решение неравенства

Давайте рассуждать, как если бы мы решали неравенство с фиксированным основанием. Если основание больше единицы, избавляемся от логарифмов, и знак неравенства не меняется, если меньше единицы - меняется.

Запишем это в виде системы:

$$\left[ \begin{array}{l} \left\{ \begin{array}{l}2x>1,\\ x^2 > x; \end{array}\right. \\ \left\{ \begin{array}{l}2x<1,\\ x^2 < x; \end{array}\right. \end{array} \right.$$

Для дальнейших рассуждений перенесем все правые части неравенств влево.

$$\left[ \begin{array}{l} \left\{ \begin{array}{l}2x-1>0,\\ x^2 -x>0; \end{array}\right. \\ \left\{ \begin{array}{l}2x-1<0,\\ x^2 -x<0; \end{array}\right. \end{array} \right.$$

Что у нас получилось? Получилось, что нам нужно, чтобы выражения `2x-1` и `x^2 - x` были одновременно либо положительными, либо отрицательными. Такой же результат получится, если мы решим неравенство:

$$(2x-1)(x^2 - x) >0.$$

Это неравенство так же как и исходная система верно, если оба множителя либо положительны, либо отрицательны. Получается можно от логарифмического неравенства перейти к рациональному (учтя при этом ОДЗ).

Сформулируем метод рационализации логарифмических неравенств $$\log_{f(x)} g(x) \vee \log_{f(x)} h(x) \Leftrightarrow (f(x) - 1)(g(x)-h(x)) \vee 0,$$ где `\vee` - это любой знак неравенства. (Для знака `>` мы только что проверили справедливость формулы. Для остальных предлагаю проверить самостоятельно - так запомнится лучше).

Вернемся к решению нашего неравенства. Разложив на скобки (чтобы было лучше видно нули функции), получим

$$(2x-1)x(x - 1) >0.$$

Метод интервалов даст следующую картину:

(Поскольку неравенство строгое и концы интервалов нас не интересуют, они не закрашены.) Как видно, полученные интервалы удовлетворяют ОДЗ. Получили ответ: `(0,\frac{1}{2}) \cup (1,∞)`.

Пример второй. Решение логарифмического неравенства с переменным основанием

$$\log_{2-x} 3 \leqslant \log_{2-x} x.$$

ОДЗ

$$\left\{\begin{array}{l}2-x > 0,\\ 2-x ≠ 1, \\ x > 0. \end{array}\right.$$

$$\left\{\begin{array}{l}x < 2,\\ x ≠ 1, \\ x > 0. \end{array}\right.$$

Решение неравенства

По только что полученному нами правилу рационализации логарифмических неравенств, получим, что данное неравенство тождественно (с учетом ОДЗ) следующему:

$$(2-x -1) (3-x) \leqslant 0.$$

$$(1-x) (3-x) \leqslant 0.$$

Совместив это решение с ОДЗ, получим ответ: `(1,2)`.

Третий пример. Логарифм от дроби

$$\log_x\frac{4x+5}{6-5x} \leqslant -1.$$

ОДЗ

$$\left\{\begin{array}{l} \dfrac{4x+5}{6-5x}>0, \\ x>0,\\ x≠ 1.\end{array} \right.$$

Поскольку система относительно сложная, давайте сразу нанесем решение неравенств на числовую ось:

Таки образом, ОДЗ: `(0,1)\cup \left(1,\frac{6}{5}\right)`.

Решение неравенства

Представим `-1` в виде логарифма с основанием `x`.

$$\log_x\frac{4x+5}{6-5x} \leqslant \log_x x^{-1}.$$

С помощью рационализации логарифмического неравенства получим рациональное неравенство:

$$(x-1)\left(\frac{4x+5}{6-5x} -\frac{1}{x}\right)\leqslant0,$$

$$(x-1)\left(\frac{4x^2+5x - 6+5x}{x(6-5x)}\right)\leqslant0,$$

$$(x-1)\left(\frac{2x^2+5x - 3}{x(6-5x)}\right)\leqslant0.$$

Последние материалы раздела:

Бактерии- древние организмы
Бактерии- древние организмы

Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...

Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т
Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т

МОУ «ООШ с. Озёрки Духовницкого района Саратовской области » Киреевой Татьяны Константиновны 2009 – 2010 год Введение. «Грамотное письмо – не...

Презентация: Монако Презентация на тему
Презентация: Монако Презентация на тему

Религия: Католицизм: Официальная религия - католичество. Однако конституция Монако гарантирует свободу вероисповедания. В Монако есть 5...