Способы получения солей. Как вырастить кристалл

Выращивание кристаллов соли в домашних условиях – возможность не только быстро пронаблюдать, как подобные явления происходят в природе с другими материалами, но и получить в результате необычную поделку.

При этом такой процесс полностью безопасен и не требует ни глубоких познаний в химии ни каких-либо реактивов, все предметы и вещества есть у любого человека в доме.

Как вырастить кристаллы из соли в домашних условиях: материал и оборудование

1. Первый и самый основной компонент – соль . Для успеха процесса выращивания кристалла, важно чтобы она была как можно более чистой. Поэтому стоит отдавать предпочтение морской соли, т.к. в поваренной слишком много мелкого мусора. Не рекомендуется также приобретать соль с красителями или иными добавками.

2. Вода , которая должна быть также максимально очищена от посторонних примесей. Если нет возможности использовать дистиллированную, то стоит хотя бы предварительно отфильтровать ее.

3. Неметаллическая емкость для роста кристалла . Ее размер может быть ограничен лишь желаемыми размерами кристалла. Важные требования – материал емкости не должен окрашивать воду или окисляться под воздействием солей. Емкость следует тщательно вымыть. Любые посторонние предметы внутри, даже если это небольшие соринки, могут стать основой для роста для других мелких кристалликов, замедлив рост основного.

4. Небольшой кристаллик соли из пачки , кусочек ветки, лист, проволока, нитка или любой другой объект для основы будущего большого кристалла. Подходящий крупный кусочек соли легко найти в почти пустой солонке. Мелкие частички из нее при использовании высыпаются, а большие не пролазят через отверстия и остаются внутри. Необходимо выбрать самый крупный и имеющий форму, максимально близкую к параллелепипеду.

5. Что-то неметаллическое для помешивания раствора – деревянная палочка , пластиковая или керамическая ложка и т.д.

6. Фильтровальная бумага либо марля .

7. Бумажные салфетки или туалетная бумага .

8. Лак для покрытия готового кристалла .

9. Терпение . Недостаточно знать, как вырастить кристаллы из соли в домашних условиях, надо еще уметь ждать. Мало-мальски приличный по размерам кристалл сформируется не раньше, чем через 3-4 недели.

Как видно, никакого сложного или дорогого оборудования не требуется. Все эти предметы и вещества легко найти в хозяйстве абсолютно у любого человека.

Как вырастить кристаллы из соли в домашних условиях: последовательность действий

Технология получения кристалла из соли очень проста, к тому же процесс требует очень небольшого участия человека, в основном нужно лишь время. Емкость с чистой водой ставится в теплую воду (50-60 градусов, больше не надо), и в нее понемногу засыпают соль, постоянно помешивая раствор. Когда он станет насыщенным, т.е. соли в нем будет уже столько, что она дальше не сможет растворяться, его переливают в чистую емкость так, чтобы осадок из старой в нее не попал. Можно даже дополнительно очистить раствор от примесей, пропустив его через фильтровальную бумагу или сложенную в несколько раз марлю.

Добиться нужной температуры воды для подогрева раствора можно и в отсутствие термометра. Для этого смешивают только что закипевший кипяток и воду комнатной температуры в соотношении примерно 1 к 2.

Для традиционной формы кристалла это будет большая крупинка соли, которую легко найти в любой пачке;

Для вытянутого кристалла в раствор опускают нитку так, чтобы она не касалась стенок и донышка;

Если хочется получить кристалл сложной и причудливой конструкции, то на нитку подвешивают маленькую веточку или изогнутую проволоку.

Зная, как вырастить кристаллы из соли в домашних условиях, можно не ограничивать свою фантазию простыми по форме предметами. Чтобы получить не просто кристалл, а действительно оригинальную поделку, в качестве основы можно поместить в раствор проволоку, изогнутую в виде звезды, снежинки или иной подобной несложной формы. В принципе можно использовать абсолютно любой предмет, не подверженный окислению от солей.

Далее емкость накрывают крышкой, салфеткой, листом бумаги, да в общем-то чем угодно, лишь бы защитить раствор от попадания пыли и посторонних предметов. Храниться емкость с растущим кристаллом должна в темном прохладном месте без сквозняков. Не следует допускать и сильных механических воздействий на нее – слишком частых передвижений, встряхиваний и т.д., а также регулярных и значительных изменений температуры или влажности, т.е. к примеру, в ванную комнату кристалл точно помещать не стоит, как и вблизи плиты на кухне или у отопительных приборов.

Естественно, чем больше растет кристалл, тем меньше остается соли в окружающей его воде. Поэтому для ускорения процесса примерно раз в неделю — десять дней в емкость необходимо добавлять новый насыщенный солью раствор. А если кристалл уже вырос из старого стакана или банки, его можно переложить в большую по размеру, постаравшись не уронить или не разломать при этом, т.к. он очень хрупкий.

Вынутый из раствора кристалл обсушивают от остатков воды, аккуратно промакивая мягкой тканью или обычной бумажной салфеткой. Делать это нужно очень осторожно, потому что кристалл не особо прочен. Для сохранности кристалл покрывают бытовым или маникюрным бесцветным лаком. Если этого не сделать, то жизнь этого красивого предмета будет недолгой. В сухом воздухе остатки воды быстро испарятся, и он рассыплется в порошок, а при избыточной влажности наоборот впитает в себя лишнюю жидкость и растечется в бесформенную кучку отдельных небольших кристалликов или вовсе в кашицу.

Из поваренной соли получатся кристаллы белого цвета.

Если хочется других оттенков, то можно:

Воспользоваться другим видом соли (к примеру, медным купоросом для насыщенно-синего цвета);

Покрыть готовый кристалл не прозрачным, а цветным покрытием;

Добавить в раствор на стадии приготовления кристалла пищевые красители, к примеру, те, что применяются в выпечке или для пасхальных яиц. Однако такие вещества очень ярких цветов дать не могут.

Принципиальной разницы в скорости роста и форме готового кристалла при использовании поваренной или морской соли не будет. Однако во втором случае кристалл получится более плотным по структуре и будет более прочным.

Если кристалл растет немного не той формы, какой хочется, то лишние участки можно аккуратно соскоблить ножом или пилочкой для ногтей, помня при этом, что кристалл очень хрупок. Придать кристаллу нужную форму легко, если обработать те участки, рост которых нежелателен, обычным вазелином или другим густым жирным веществом. Если его понадобится удалить, то это можно сделать ацетоном или спиртом.

Чтобы кристалл расщеплялся, будто ветвясь в разные стороны, в раствор добавляют небольшое количество глицерина.

Меры предосторожности

Поваренная соль – абсолютно безвредное для человека вещество, ведь мы каждый день употребляем ее в пищу без последствий для здоровья. Поэтому соблюдать какую-то технику безопасности при выращивании солевого кристалла нет необходимости.

Однако, чтобы в раствор не попадало посторонних предметов, волосы стоит хотя бы собрать, а лучше покрыть косынкой, а руки – вымыть с мылом или даже надеть резиновые перчатки. А если на руках есть царапинки или ранки, надеть перчатки просто необходимо, иначе крепкий солевой раствор будет сильно щипать. Ничего смертельного или вредного, но ощущения не из приятных. Аналогично руки лучше защитить, если используется соль с красителями, и есть вероятность наличия аллергии на эти красители.

Но вот при работе с медным купоросом и прочими более агрессивными солями надо обязательно соблюдать меры предосторожности, стараясь не вдыхать раствор, не допускать его попадания на кожу, а также находиться в хорошо проветриваемом помещении и не допускать к емкости к растущим кристаллам маленьких детей или домашних животных. Использованные для этого химического опыта емкости ни в коем случае нельзя потом использовать для приема или хранения пищи, лекарств, предметов личной гигиены, косметики, в общем, всего того что впоследствии будет непосредственно контактировать с организмом человека.

Как вырастить кристаллы из соли в домашних условиях: причины неудач

Почему кусочек соли, взятый за основу, растворился вместо того, чтобы формировать вокруг себя кристалл? Это значит, что раствор соли изначально был недостаточно насыщенным. При его приготовлении соль надо понемногу подсыпать до тех пор, пока она уже не перестанет растворяться, а будет выпадать в осадок. Подобрать пропорции пищевой и других солей для приготовления раствора помогут легко находимые в Интернете графики растворимости этих солей в воде определенной температуры.

Если вместо одного в емкости вдруг выросло несколько небольших кристалликов, то это говорит о посторонних примесях в растворе. Это может быть, как недостаточно хорошо профильтрованная вода, так и сор в соли или плохо вымытая емкость, куда был налит раствор.

В чем причина недостаточно равномерной окраски цветного кристалла? Возможно при добавлении красителя его не очень тщательно размешали. А если кристалл большой, и для него солевой раствор приготавливался несколько раз, то в один из разов красителя было добавлено существенно меньше или больше, чем в другие.

Конечно, даже зная, как вырастить кристаллы из соли в домашних условиях и соблюдая все рекомендации, можно получить не совсем то, что хотелось. Это нормально, ведь могут отличаться и условия, в которые растущий кристалл помещен, и используемые для этого вещества. Однако со временем обязательно удастся набить руку, подобрать оптимальные пропорции компонентов и условия для роста кристалла.

Уже алхимики знали, что и земли, и щёлочи могут быть «нейтрализованы» кислотой. В результате такого процесса выделяется вода, а кислота и щёлочь превращаются в соль. Например, гидроксид кальция «гасится» соляной кислотой (можно сказать и наоборот: кислота «гасится» гидроксидом): Са(ОН)2 + 2НС1 = СаС12 + 2Н2O (образовалась соль — хлорид кальция); Ва(ОН)2 + H2SO4 = BaSO4 + Н2O (образовался сульфат бария); NaOH + НС1 = NaCl + + Н2O (образовался хлорид натрия).

В этих реакциях «кислотный признак» (атом водорода) соединился с «основным признаком» (группой ОН) с образованием воды.

То есть и кислота, и основание «исчезли», и в результате реакции нейтрализации получилась вода и хлорид натрия — нейтральное (то есть ни кислотное, ни щелочное) вещество.

Количественный закон для реакций нейтрализации впервые чётко сформулировал немецкий химик Иеремия Вениамин Рихтер (1762-1807) в конце XVIII века. В соответствии с этим законом, кислоты и основания реагируют друг с другом в строго определённых соотношениях.

Хлорид натрия — это обычная (поваренная) соль.

Солями стали называть и другие нейтральные продукты взаимного «уничтожения» кислот и оснований, причём далеко не все соли солёные, как хлорид натрия. Так, в реакции серной кислоты и основания — гидроксида железа Fe(OH)2 образуются соль FeSO4 — сернокислое железо (современное название — сульфат железа (II)) и вода: H2SO4 + Fe(OH)2 = FeSO4 + Н2O. Если серная кислота будет реагировать с гидроксидом трёхвалентного железа, Fe(OH) то получится другая сернокислая соль железа — сульфат железа (III): 3H2SO4 + + 2Fe(OH)3 = Fe2(SO4)3 + 6Н2O.

Запишем для тренировки ещё одну реакцию нейтрализации щёлочи органической (уксусной) кислотой: СН3СООН + NaOH = CH3COONa + H2O; в отличие от неорганических солей, в этой формуле атом металла принято записывать в конце.

Как видим, соли состоят из катиона металла, который «пришёл» из щёлочи, и аниона кислотного остатка, который «взялся» из кислоты. Вообще-то соли можно получать и без участия щелочей и кислот, например, из меди и серы при высокой температуре образуется сульфид меди: Си + S = CuS. Эта же соль образуется, если через раствор медного купороса пропускать сероводород (в воде он образует сероводородную кислоту): CuSO4+H2S = CuS + H2SO4.

Соли получаются не только в реакциях кислоты со щёлочью, но также в реакции кислоты с основным оксидом: H2SO4 + FeO = FeSO4 + Н2O; в реакции основания с кислотным оксидом: 2NaOH + СO2 = Na2CO3 + Н2O; в реакции кислотного оксида с основным: СаО + SiO2 = CaSiO, (эта реакция идёт при сплавлении веществ). Соль может образоваться и непосредственно при взаимодействии металла с кислотой; в этой реакции также выделяется водород.

Например, железо при растворении в серной кислоте образует соль — сульфат железа: Fe + H2SO4 = FeSO4 + Н2. С помощью именно этой реакции получали водород для наполнения воздушных шаров во времена Лавуазье.

В случае щелочных и щёлочноземельных металлов их реакцию с сильными кислотами, например реакцию натрия с соляной кислотой 2Na + 2НС1 = 2NaCl + + Н2, можно проводить только на бумаге, чтобы избежать несчастных случаев при взрыве. Конечно, не все кислоты и не все металлы вступают в такие реакции.

Прежде всего, металлы должны быть активными; к ним относятся щелочные и щёлочноземельные металлы (натрий, калий, кальций), магний, алюминий, цинк, в меньшей степени — железо, хром и др. С другой стороны, есть немало металлов, устойчивых к действию большинства кислот. Это в первую очередь так называемые благородные металлы — золото, платина, родий, иридий и др. Некоторые более активные металлы могут вытеснять из их солей менее активные, при этом получается другая соль, например: Fe + CuSO4 = FeSO4 + Сu. По способности вытеснять друг друга из растворов солей металлы можно расположить в ряд, который иногда называют рядом активности (а раньше называли вытеснительным рядом).

Соли получаются и в случае «перекрёстных» реакций, когда основный оксид реагирует с кислотой, а кислотный оксид реагирует с основанием. В этих реакциях образуются (если, конечно, реакция пойдёт, что бывает не всегда) соль и вода: ZnО + 2НС1 = ZnС12 + Н2О; SО2 + Ва(ОН)2 = BaSО3 + Н2О. Последнюю реакцию легче понять, представив её двухступенчатой.

Пусть сначала сернистый ангидрид прореагирует с водой: SO2 + Н2О = H2SО3 и образует сернистую кислоту, а затем эта кислота уже сможет вступить в обычную реакцию нейтрализации с гидроксидом бария. Возможны и реакции между солями.

Но такие реакции идут не всегда.

Например, они пойдут, если в результате реакции образуется осадок: Na2SО4 + ВаС12 = 2NaCl + BaSО4v (сульфат бария в воде не растворяется). Если же в реакции между двумя солями осадка не образуется, то такая реакция не пойдёт.

Например, если смешать сульфат натрия с хлоридом не бария, а цинка, то получится просто смесь солей: Na2SО4 + ZnС12 = 2NaCl + ZnSО4.

А можно ли из соли получить «обратно» металл, не используя другой, более активный металл?

Такой процесс возможен, если через раствор (например, медного купороса) или расплав (например, поваренной соли) пропустить электрический ток. Таким способом в промышленности и получают многие металлы: натрий, алюминий, медь и др. Активные металлы (натрий, калий и др.) с водой реагируют, поэтому таким способом их нельзя получить из водного раствора — только из расплава, причём в отсутствие кислорода.

Наконец, некоторые соли, образованные слабыми кислотами, могут реагировать с сильными кислотами, которые «вытесняют» слабые. Примером может служить реакция серной кислоты с карбонатом натрия (содой).

Карбонат — это соль слабой угольной кислоты Н2СО3, поэтому сильная серная кислота вытесняет слабую угольную из её солей: Na2СO3 + H2SO4 = Na2SO4 + H2CО3.

Угольная кислота не только слабая, но и неустойчивая (это разные понятия, например, борная кислота Н3ВО3 очень слабая, но вполне устойчивая), и выделившаяся в упомянутой реакции угольная кислота сразу же распадается на воду и углекислый газ: Н2СО3 = Н2О + СО2. Поэтому химики практически никогда не записывают в качестве продукта реакции формулу Н2СО3, а сразу пишут СО2 + Н2О.

Cтраница 2


Реакции при смешивании солей не происходит. Однако вследствие добавления электролита с одноименным ионом в растворе увеличивается концентрация ионов К в первом случае и концентрация ионов СЮ-3 во втором. Из-за этого в обеих колбах выпадет осадок КСЮз, следовательно, осадок выпадает только потому, что ионы К и С1О - 3 в полученном растворе присутствуют в большем количестве, чем в насыщенном.  

Двойные фосфо р-н о-калийные удобрения. Их получают путем смешивания солей калия с фосфоритной мукой, томасшлаком, суперфосфатом, дикаль-цийфосфатом и др., они содержат очень разные количества компонентов. Их применяют в таких же условиях, как и их составные части.  

Разработка технологического процесса для терригенных коллекторов, где содержание карбонатного материала довольно низко и, следовательно, образование геля проблематично. Для таких условий предложено смешивание солей алюминия со щелочными растворами. Образующийся при этом гидрооксид алюминия снижает проницаемость водопроводящих каналов продуктивного пласта.  

Возбуждение может быть также достигнуто катодными лучами, как в телевизионной трубке, или рентгеновскими лучами - как во флоуроскопе. Обычным методом применения радиоактивного возбуждения является смешивание солей радия или тория с пигментами. Эта смесь вводится в связующее. Такие радиоактивные краски имеют свойство сохранять яркость без внешнего источника возбуждения. О применении этих красок будет сказано ниже. Обычно используемые для радиоактивного возбуждения пигмента - сульфиды цинка и некоторые сульфиды цинк-кадмия.  

Все химикаты должны оцениваться на предмет их потенциальной токсичности и физической опасности, заменяться менее опасными, если это возможно. Однако менее ядовитый материал может оказаться, например, более огнеопасным, следует принимать во внимание химическую совместимость материалов (так, случайное смешивание солей нитрата и солей циановой кислоты чревато взрывом), поэтому очень важно правильно расставить приоритеты.  

По различным данным в этих соединениях от 2 до 4 или 6 атомов молибдена (из общего числа 12) восстановлены до пятивалентного состояния. При смешивании солей пяти - и шестивалентного молибдена в слабокислой среде также образуются молибденовые сини различного состава. Эти соединения разлагаются в сильнокислой среде; между тем в присутствии фосфорной или кремневой кислоты они устойчивы.  

Применяется на месторождениях с неоднородными пластами, имеющими высокопроницаемые пропластки, и при прорыве воды по отдельным прослоям и зонам. Сущность данного метода заключается в образовании гидрооксидалюминия при смешивании солей алюминия с щелочными растворами. Работы проводятся с использованием серийно выпускаемого оборудования, применяемого при капитальном и текущем ремонте скважин.  

Подготовленные составляющие тщательно смешиваются. Последовательность введения компонентов зависит от состава флюса. При наличии в составе флюса хлористого лития, отличающегося особо высокой гигроскопичностью, его нужно вводить в смесь после смешивания негнгроскопичных солей.  

Смешивание возможно в различных аппаратах в зависимости от вида смешиваемых компонентов. Для смешивания порошков обычно применяют вибро - или шаровые мельницы, причем в данном случае одновременно со смешиванием происходит измельчение материалов. Для смешивания порошков ферритизированных масс с пластификатором применяют либо лопастные мешалки, либо протирочные машины. Смешивание солей при синтезе по способу термического разложения солей происходит в обычных стальных баках, так как при кипении растворов одновременно происходит их интенсивное перемешивание.  

Для приготовления утяжеленного раствора используют сточную или минерализованную пластовую, воду. Сточная или минерализованная пластовая вода (рис. 10) поступает по коллектору в приемные резервуары, где происходит предварительный отстой ее от механических примесей и остаточной нефти, для сброса которой предусмотрены плавающая труба и насос. Из промежуточной емкости насосом под давлением 1 0 - 1 2 МПа ее подают в гидросмеситель. Одновременно с этим при помощи транспортера в гидросмеситель подают хлористый кальций. Происходит смешивание соли и воды с последующим растворением. Количество подаваемой соли должно соответствовать заданной плотности задавочной жидкости.  

Для приготовления утяжеленного раствора используют сточную или минерализованную пластовую воду. Сточная или минерализованная пластовая вода (рис, 10) поступает по коллектору в приемные резервуары, где происходит предварительный отстой ее от механических примесей и остаточной нефти, для сброса которой предусмотрены плавающая труба и насос. Из промежуточной емкости насосом под давлением 1 0 - 1 2 МПа ее подают в гидросмеситель. Одновременно с этим при помощи транспортера в гидросмеситель подают хлористый кальций. Происходит смешивание соли и воды с последующим растворением. Количество подаваемой соли должно соответствовать заданной плотности задавочной жидкости.  

Обычно применяют сернокислые соли, у которых температура удаления кристаллизационной воды 280 - 300 С. Смесь сухих солей, рассчитанную по составу на формулу желаемого феррита, нагревают до 60 - 70 С с добавлением небольшого количества дистиллированной воды. При 60 - 70 С смесь расплавляется, а при 100 - 120 С закипает. Смесь нагревают до температуры, превышающей температуру разложения солей на 10 - 20 С, т.е. до 300 - 320 С. При нагреве происходит молекулярное смешивание солей, и при температуре, соответствующей потере кристаллизационной воды, смесь затвердевает. Обожженная смесь солей прокаливается при температуре 950 - 1100 С до полного удаления кислотного остатка. Прокаливание следует вести при хорошей вентиляций и поглощении отходящих газов. Прокаленный спек измельчают и из порошка прессуют, брикеты, которые обжигают при 900 - 1000 С. Обожженные брикеты вновь дробят, измельчают в шаровой или вибрационной мельнице до необходимой дисперсности; подготовленный порошок поступает на изготовление изделия тем или иным способом непластичной технологии. Обжиг изделий будет рассмотрен далее.  

Как бы то ни было, но, основываясь на многих наблюдениях над действием крепкой соляной кислоты на жидкость, кипящую выше 160, и над легким превращением нитрила в триметилуксусную кислоту под влиянием той же кислоты, я нашел более выгодным для получения триме-тилуксусной кислоты обрабатывать соляной кислотой всю массу цианистого маслообразного продукта, получаемого, как сказано выше, действием при низкой температуре третичного йодистого бутила на двойную соль цианистой ртути с цианистым калием, смешанную с тальком. Продукт смешивается для этого с равным приблизительно объемом дымящейся соляной кислоты, и смесь, помещенная в запаянную трубку, нагревается до 100 в течение нескольких часов, причем не мешает ее взбалтывать время от времени. По окончании реакции трубка содержит массу кристаллов нашатыря с примесью хлористого бутил амина [ с третичным бутилом в составе ]; масса эта пропитана водным раствором тех же солей и маслообразной жидкостью, состоящей главным образом из триметил-уксусной кислоты. При открывании трубки замечается в ней некоторое давление. При прибавлении воды и смешивании соли растворяются, и мас-ловсшшвает. Небольшое количество [ триметилуксусной ] кислоты остается в водном растворе и может быть отделено от него перегонкой и насыщением дестиллята. Все масло обрабатывается едким щелоком8, раствор процеживается и выпаривается досуха; соляная масса вытягивается спиртом, который [ растворяет соль триметилуксусной кислоты и ] оставляет нерастворенным хлористый металл. Спиртовой раствор, выпаренный досуха, дает массу триметилуксусной соли, из крепкого водного раствора которой кислота выделяется серной кислотой, разведенной двумя частями воды. Высушенная сначала безводным сернокислым натром, а потом фосфорным ангидридом, триметилуксусная кислота подвергается нескольким перегонкам и получается таким образом в довольно чистом бесцветном состоянии, тотчас застывает в кристаллическую массу. Достичь большего выхода мне покамест не удалось, но и этот результат несравненно благоприятнее, чем тот, который достигается при употреблении [ только ] чистой цианистой ртути [ без цианистого калия ] и при обработке продукта едким кали.  

Соли - химические соединения, которые обладают сложным строением, а в воде распадаются (диссоциируют) на металл и остаток кислоты. Металл при этом является катионом, а кислотный остаток - анионом. Соли могут быть образованы в результате взаимодействия основ (щелочей) и кислот, во время реакции выделяется вода. Соли бывают чисто неорганическими веществами, но также могут образовываться и с органическими остатками.

Как получить соли разными способами

Соли можно получить не только путем взаимодействия кислоты и щелочи, существует множество других способов образования данных веществ в химической промышленности или лаборатории. Приведем такие примеры.

Взаимодействие простых веществ:

  • 2К + S - K 2 S
  • Na + Cl - NaCl

Этим способом соли можно получить только в лаборатории при определенных условиях (высокие температуры или давление).

Нейтрализация, в которой участвуют щелочи и кислоты:

  • H 2 SO 4 + 2NaOH - Na 2 SO 4 + 2H 2 O,

где H 2 SO 4 - серная кислота, NaОH - гидроксид натрия, Na 2 SO 4 - сернокислая соль натрия;

  • NaOH + HCl - NaCl + H 2 O,

где HCl - соляная кислота, NaCl - хлорид натрия (поваренная соль).

Реакция между двумя оксидами (необходимо взять щелочной и кислотный оксид, чтобы получить соль):

  • K 2 O + SO 3 - K 2 SO 4 (сернокислый калий);
  • СаО + Mn 2 O 7 - Ca(MnO 4) 2 (перманганат кальция).

Взаимодействие солей и кислот. В этом случае происходит взаимообмен ионами, в результате образуется новая соль:

  • ВаСІ + Н 2 SO 4 - BaSO 4 &darr- + 2HCl,

где BaSO 4 - сульфат бария, нерастворимое соединение (соль);

  • 2 NaCl + Н 2 SO 4 (конц.) - Na 2 SO 4 + 2HCl,

где Na 2 SO 4 - сернокислый натрий (соль);

  • СаСО 3 + 2HCl - CaCl 2 + CO 2 ^ + H 2 O,

где CaCl 2 - хлорид кальция.

В ходе реакции образуется углекислота Н 2 СО 3 , которая является нестойким соединением и мгновенно распадается на воду и углекислый газ.

Соль также получают в результате взаимодействия соли и основания. Вот примеры формул:

  • CuCl 2 + 2NaOH - 2NaCl + Cu(OH) 2 &darr-,

где CuCl 2 - хлорид меди, Cu(OH) 2 - гидроокись меди, которая выпадает в осадок;

  • КНSO 4 + KOH - K 2 SO 4 + H 2 O,

где КНSO 4 - гидросульфат калия, KOH - гидроксид калия, K 2 SO 4 - сульфат калия (соль).

В реакцию с щелочами вступают водорастворимые соли. Это следует учитывать при произведении реакций по образованию новых солей.

Обменные реакции при взаимодействии двух солей:

  • CuSO 4 + ВаCl 2 - CuCl 2 + ВаSO 4 &darr-,

где CuSO 4 - сульфат меди (ІІ), ВаCl 2 - хлорид бария, CuCl 2 - хлорид купрума, ВаSO 4 - сульфат бария (соль, которая является нерастворимой и выпадает в осадок);

  • AgNO 3 + КСІ - AgCl&darr- + KNO 3 ,

где AgNO 3 - нитрат серебра, КСІ - хлорид калия, AgCl - серебра хлорид (выпадает в осадок), KNO 3 - нитрат калия.

Реакция кислоты с оксидами (также фактически является реакцией нейтрализации):

  • СuO + 2HCl - CuCl2 + H2O,

где СuO - оксид меди,

  • H 2 SO 4 + CuO - CuSO 4 + H 2 O

Взаимодействие металла с кислотой (реакция замещения водорода в кислоте). В такие реакции способны вступать металлы, которые в ряду напряжений (активности металлов) находятся левее гидрогена. Они вытесняют собой водород и соединяются с кислотными остатками, образовывая при этом новые соединения - соли:

  • Zn + H 2 SO 4 - ZnSO 4 + H 2 ^,

где ZnSO 4 - сульфат цинка (соль). В процессе реакции водород выделяется в виде газа;

  • Fe + H 2 SO 4(разб.) - FeSO 4 + H 2- ^,

где FeSO 4 - сульфат железа (ІІ).

Реакция замещения металла в соли, когда самый активный металл вытесняет более пассивный из соли, образовывая новое вещество (сила воздействия металла тем выше, чем левее он находится в ряду активности металлов):

  • Zn + H 2 SO 4 - ZnSO 4 + H 2 ^

Существует еще множество более сложных методов получения солей при условии наличия оборудованной химической лаборатории.


Внимание, только СЕГОДНЯ!

ДРУГОЕ

В результате химических реакций происходит образование новых веществ - соединений. Такие соединения группируются и…

Натрий представляет собой щелочной металл. Его химическая активность самая высокая среди всех остальных металлов…

Различают дихлорид железа (соль соляной кислоты и 2-х валентного железа) и трихлорид железа (соль соляной кислоты и 3-х…

Гидролиз – это процесс разложения различных веществ водой. Слово гидролиз в переводе с греческого, означает вода и…

Кальций представляет собой типичный щелочноземельный металл, обладающий выраженными металлическими свойствами. Именно…

Из школьной программы химии каждому из нас доподлинно известно, что оксиды – это достаточно сложные химические…

Как получить ацетиленАцетилен - газ, относящийся к классу алкинов. Его химическая формула - С2Н2, между атомами…

Под металлами подразумевают группу элементов, которая представлена в виде наиболее простых веществ. Они обладают…

Давайте рассмотрим неорганические кислоты, которые имеют большую значимость в химической промышленности и химии. Все…

В одном из разделов химии изучается такое явление, как гидролиз. Что такое гидролиз? Это такая химическая реакция, при…

Не стоит недооценивать роль кислот в нашей жизни, ведь многие из них просто незаменимы в повседневной жизни. Для начала…

Термин гидролиз произошел от древнегреческого языка. Гидролиз это определенный вид химических реакций сольвиоза. При…

Реакции между разного рода химическими веществами и элементами являются одним из главных предметов изучения в химии.…

Первый ответ, который приходит в голову на вопрос «что такое соль» - это «содержимое солонки».…

Соли образуются в результате целого ряда химических превращений. Выбор способа получения каждой конкретной соли зависит от целого ряда факторов, в частности от доступности исходных веществ, а в промышленности определяется в первую очередь экономической целесообразностью.

Разберём некоторые общие подходы к выбору способов получения средних солей.

1. Соли образуются при взаимодействии металлов с неметаллами.

Например , при взаимодействии железа с хлором образуется хлорид железа(\(III\)):
2 Fe + 3 Cl 2 ⟶ t ° 2 Fe Cl 3 .

При нагревании смеси железа с серой образуется сульфид железа(\(II\)):
Fe + S ⟶ t ° FeS .

2. Соли образуются при взаимодействии металлов с кислотами.

Например , при взаимодействии железа с соляной кислотой образуется хлорид железа(\(II\)):
Fe + 2HCl → Fe Cl 2 + H 2 .

При взаимодействии магния с серной кислотой образуется сульфат магния:
Mg + H 2 SO 4 → M gSO 4 + H 2 .

3. Соли можно получить, используя реакции замещения, протекающие при взаимодействии металлов с другими солями.

Например , сульфат железа(\(II\)) образуется при взаимодействии железа с сульфатом меди(\(II\)):
Fe + Cu SO 4 → Fe SO 4 + Cu ↓ .

Нитрат магния образуется при взаимодействии магния с нитратом серебра:
Mg + 2 Ag NO 3 → M g NO 3 2 + 2 Ag ↓ .

4. Соли образуются при взаимодействии основных, кислотных или амфотерных оксидов с оксидами, принадлежащими к другой группе оксидов.

Например , при взаимодействии основного оксида кальция с кислотным оксидом углерода(\(IV\)) образуется карбонат кальция:
CaO + CO 2 → Ca CO 3 .

При нагревании смеси основного оксида магния с амфотерным оксидом алюминия образуется алюминат магния:
MgO + Al 2 O 3 ⟶ t ° Mg AlO 2 2 .

5. Соли образуются при взаимодействии основных и амфотерных оксидов с кислотами.

Например , сульфат меди(\(II\)) можно получить, используя оксид меди(\(II\)) и серную кислоту:
CuO + H 2 SO 4 → Cu SO 4 + H 2 O .

Хлорид цинка можно получить, используя оксид цинка и соляную кислоту:
ZnO + 2 HCl → Zn Cl 2 + H 2 O .

6. Соли образуются при взаимодействии кислотных и амфотерных оксидов с основаниями.

Например , при пропускании углекислого газа через известковую воду (водный раствор гидроксида кальция) выпадает осадок карбоната кальция:
Ca OH 2 + CO 2 → Ca CO 3 ↓ + H 2 O .

При взаимодействии оксида серы(\(IV\)) с гидроксидом натрия образуется сульфит натрия:
2 NaOH + SO 2 → Na 2 SO 3 + H 2 O .

7. Соли образуются при взаимодействии кислот с основаниями или с амфотерными гидроксидами.

Например , сульфат меди(\(II\)) можно получить, используя гидроксид меди(\(II\)) и серную кислоту:
Cu OH 2 + H 2 SO 4 → Cu SO 4 + 2 H 2 O .

Нитрат алюминия образуется в результате взаимодействия гидроксида алюминия с азотной кислотой:
Al OH 3 + 3 H NO 3 → Al NO 3 3 + 3 H 2 O .

8. Соли можно получить, используя химическую реакцию обмена, протекающую между кислотой и другой солью.

Например , при взаимодействии сульфида железа(\(II\)) с серной кислотой образуется сульфат железа(\(II\)):
FeS + H 2 SO 4 → Fe SO 4 + H 2 S .

Хлорид кальция образуется при взаимодействии соляной кислоты (водного раствора хлороводорода) с карбонатом кальция:
CaCO 3 + 2 HCl → CaCl 2 + H 2 O + CO 2 .

9. Соли образуются при взаимодействии щелочей с растворимыми в воде солями.

Например , нитрат натрия образуется в результате химической реакции, протекающей между гидроксидом натрия и нитратом меди(\(II\)):
2 NaOH + Cu NO 3 2 → 2 Na NO 3 + Cu OH 2 ↓ .

Сульфат калия образуется в реакции обмена, протекающей между гидроксидом калия и сульфатом железа(\(III\)):
2 KOH + Fe SO 4 → K 2 SO 4 + Fe OH 2 ↓ .

10. Соли образуются в реакциях обмена, протекающих между другими солями.

Например , чтобы получить бромид серебра, можно в качестве исходных веществ использовать нитрат серебра и бромид калия:
Ag NO 3 + KBr → AgBr ↓ + KNO 3 .

Сульфат бария образуется в реакции обмена, протекающей между сульфатом натрия и хлоридом бария:
Na 2 SO 4 + Ba Cl 2 → Ba SO 4 ↓ + 2 NaCl .

11. Соли можно получить, разлагая некоторые другие соли.

Например , хлорид калия образуется при термическом разложении хлората калия (бертолетовой соли):
2 KCl O 3 ⟶ катализатор t ° 2 KCl + 3 O 2 .

Осадок карбоната кальция образуется при разложении гидрокарбоната кальция:
Ca HCO 3 2 ⇄ t ° CaCO 3 ↓ + H 2 O + CO 2 .

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...