Сформулируйте закон авогадро и следствие из него. Закон Авогадро: описание и биография учёного

Итальянский физик и химик Лоренцо Романо Амедео Карло Авогадро родился в 1776 году в Турине в дворянской семье. Так как в то время принято было передавать профессии по наследству Авогадро в 16 лет окончил Туринский университет, а в 20 получил ученую степень доктора церковного права.

С 25 лет самостоятельно занимается изучением физики и математики. И в 1803 году Амедео представил свою первую научную работу по изучению свойств электричества в Туринскую академию. В 1809 году учёному предложили должность профессора в колледже города Верчелли, а с 1820 года учёный успешно преподаёт в Туринском университете. Преподавательской деятельностью занимался до 1850 года.

Авогадро проводил различные исследования по изучению физических и химических свойств и явлений. Его научные работы посвящены электрохимической теории, электричеству, удельной теплоемкости, номенклатуре химических соединений. Авогадро впервые определил атомные массы углерода, азота, кислорода, хлора и других элементов; установил количественный состав молекул многих веществ, среди которых водород, вода, аммиак, азот и другие. Но химики отвергали теории Авогадро, и работы учёного были непризнанны.

Лишь в 1860 году благодаря усилиям С. Канниццаро многие работы Авогадро были пересмотрены и оправданы. В честь фамилии ученого названо постоянное число молекул в 1 моле идеального газа число Авогадро (физическая постоянная величина, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества = 6,0222310 23 . С этого времени начал широко применятся в химии закон Авогадро.

В 1811 году Авогадро установил закон, который утверждал, что в одинаковых объемах газов содержится равное число молекул при одинаковых температурах и давлении. А в 1814 году появляется статья учёного «Очерк об относительных массах молекул простых тел, или предполагаемых плотностях их газа, и о конституции некоторых из их соединений», в которой четко формулируется закон Авогадро.

Каким образом учёный пришёл к такому заключению?

Авогадро тщательно проанализировал результаты экспериментов Гей-Люссака и других ученых и понял, как устроена молекула газа. Известно, что при протекании химической реакции между газами соотношение объемов этих газов такое же, как и их молекулярное соотношение. Получается, что можно, измеряя плотность разных газов, определять относительные массы молекул, из которых эти газы состоят, и атомов. То есть, если в 1 литре кислорода содержится столько молекул, сколько и в 1 литре водорода, то отношение плотностей этих газов равно отношение масс молекул. Авогадро отметил, что молекулы простых газах могут состоять и из нескольких атомов.

Закон Авогадро широко используется при расчетах по химическим формулам и уравнениям химических реакций, позволяет определять относительные молекулярные массы газов и количество молекул в моле любого вещества.

Если у Вас появились вопросы, Вы хотите более детально остановиться на данном материале или необходима помощь при решении задач, онлайн репетиторы всегда готовы помочь. В любое время и в любом месте ученик может обратиться за помощью к онлайн репетитору и получить консультацию по любому предмету школьной программы. Обучение проходит посредством специально разработанного программного обеспечения. Квалифицированные педагоги оказывают помощь при выполнении домашних заданий, объяснении непонятного материала; помогают подготовиться к ГИА и ЕГЭ. Ученик выбирает сам, проводить занятия с выбранным репетитором на протяжении длительного времени, или использовать помощь педагога только в конкретных ситуациях, когда возникают сложности с определённым заданием.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Закон Авогадро, открытый в 1811 г., сыграл большую роль в развитии хими. Прежде всего он способствовал признанию атомно-молекулярного учения, сформулированного впервые в середине XVIII в. М.В. Ломоносовым. Так, например, пользуясь числом Авогадро:

оказалось возможным вычислять не только абсолютные массы атомов и молекул, но и собственно линейные размеры этих частиц. Согласно закону Авогадро:

«В равных объёмах различных газов при постоянном давлении и температуре содержится одинаковое число молекул, равное »

Из закона Авогадро вытекает ряд важных следствий касающихся молярного объёма и плотности газов. Так, из закона Авогадро непосредственно следует, что одинаковое число молекул различных газов будут занимать одинаковый объём, равный 22,4 литра. Такой объём газов получил название молярного объёма . Верно и обратное – молярный объём различных газов одинаков и равен 22,4 л:

Действительно, поскольку 1 моль любого вещества содержит одинаковое число молекул, равное , то очевидно и их объёмы в газообразном состоянии при одинаковых условиях будут одинаковыми. Таким образом, при нормальных условиях (н.у.), т.е. при давлении и температуре молярный объём различных газов будет составлять . Количество вещества , объём и молярный объём газов могут быть связаны между собой в общем случае соотношением вида:


откуда соответственно:

В общем случае различают нормальные условия (н.у.):

к стандартным условиям относят:

Для того чтобы перевести температуру по шкале Цельсия в температуру по шкале Кельвина, используют следующее соотношение:

Массу собственно газа можно вычислить по значению его плотности , т.е.

Поскольку как было показано выше:

тогда очевидно:

откуда соответственно:


Из приведенных нами выше соотношений вида:

после подстановки в выражение:

также следует, что:

откуда соответственно:

и таким образом имеем:

Поскольку при нормальных условиях 1 моль любого занимает объём равный:

тогда соответственно:


Полученное таким образом соотношение достаточно важно для понимания 2-го следствия из закона Авогадро, которое в свою очередь непосредственно связано с таким понятием как относительная плотность газов . В общем случае, относительная плотность газов – величина, показывающая, во сколько раз один газ тяжелее или легче другого, т.е. во сколько раз плотность одного газа больше или меньше плотности другого, т.е. имеем соотношение вида:

Так, для первого газа имеем:

соответственно для второго газа:

тогда очевидно:

и таким образом:

Другими словами, относительная плотность газа есть отношение молекулярной массы исследуемого газа к молекулярной массе газа, с которым производится сравнение. Относительная плотность газа – безразмерная величина. Таким образом, для того чтобы вычислить относительную плотность одного газа по другому, достаточно знать молекулярные относительные молекулярные массы этих газов. Для того чтобы было понятно, с каким газом проводят сравнение, ставят индекс. Например, обозначает, что сравнение проводят с водороду и тогда говорят о плотности газа по водороду, не употребляя уже слово «относительная», принимая это как бы по умолчанию. Аналогично измерения проводят, беря в качестве газа сравнения – воздух. В этом случае указывают, что сравнение исследуемого газа проводят с воздухом . При этом средняя молекулярная масса воздуха принимается равной 29 , а поскольку относительная молекулярная масса и молярная масса численно совпадают, тогда:

Химическая формула исследуемого газа ставится рядом в скобках, например:

и читается как – плотность хлора по водороду. Зная относительную плотность одного газа по отношению к другому, можно вычислить молекулярную, а также молярную массу газа, даже если формула вещества неизвестна. Все приведенные выше соотношения относятся к так называемым нормальным условиям.

Высчитать объём, молярную массу, количество газообразного вещества и относительную плотность газа помогает закон Авогадро в химии. Гипотеза была сформулирована Амедео Авогадро в 1811 году, а позже была подтверждена экспериментально.

Закон

Первым исследовал реакции газов Жозеф Гей-Люссак в 1808 году. Он сформулировал законы теплового расширения газов и объёмных отношений, получив из хлористого водорода и аммиака (двух газов) кристаллическое вещество - NH 4 Cl (хлорид аммония). Выяснилось, что для его создания необходимо взять одинаковые объёмы газов. При этом если один газ был в избытке, то «лишняя» часть после реакции оставалась неиспользованной.

Чуть позже Авогадро сформулировал вывод о том, что при одинаковых температурах и давлении равные объёмы газов содержат одинаковое количество молекул. При этом газы могут обладать разными химическими и физическими свойствами.

Рис. 1. Амедео Авогадро.

Из закона Авогадро вытекает два следствия:

  • первое - один моль газа при равных условиях занимает одинаковый объём;
  • второе - отношение масс одинаковых объёмов двух газов равно отношению их молярных масс и выражает относительную плотность одного газа по другому (обозначается D).

Нормальными условиями (н.у.) считаются давление Р=101,3 кПа (1 атм) и температура Т=273 К (0°С). При нормальных условиях молярный объём газов (объём вещества к его количеству) составляет 22,4 л/моль, т.е. 1 моль газа (6,02 ∙ 10 23 молекул - постоянное число Авогадро) занимает объём 22,4 л. Молярный объём (V m) - постоянная величина.

Рис. 2. Нормальные условия.

Решение задач

Главное значение закона - возможность проводить химические расчёты. На основе первого следствия закона можно вычислить количество газообразного вещества через объём по формуле:

где V - объём газа, V m - молярный объём, n - количество вещества, измеряемое в молях.

Второй вывод из закона Авогадро касается расчёта относительной плотности газа (ρ). Плотность высчитывается по формуле m/V. Если рассматривать 1 моль газа, то формула плотности будет выглядеть следующим образом:

ρ (газа) = M/V m ,

где M - масса одного моля, т.е. молярная масса.

Для расчёта плотности одного газа по другому газу необходимо знать плотности газов. Общая формула относительной плотности газа выглядит следующим образом:

D (y) x = ρ(x) / ρ(y),

где ρ(x) - плотность одного газа, ρ(y) - второго газа.

Если подставить в формулу подсчёт плотности, то получится:

D (y) x = M(х) / V m / M(y) / V m .

Молярный объём сокращается и остаётся

D (y) x = M(х) / M(y).

Рассмотрим практическое применение закона на примере двух задач:

  • Сколько литров СО 2 получится из 6 моль MgCO 3 при реакции разложения MgCO 3 на оксид магния и углекислый газ (н.у.)?
  • Чему равна относительная плотность CO 2 по водороду и по воздуху?

Сначала решим первую задачу.

n(MgCO 3) = 6 моль

MgCO 3 = MgO+CO 2

Количество карбоната магния и углекислого газа одинаково (по одной молекуле), поэтому n(CO 2) = n(MgCO 3) = 6 моль. Из формулы n = V/V m можно вычислить объём:

V = nV m , т.е. V(CO 2) = n(CO 2) ∙ V m = 6 моль ∙ 22,4 л/моль = 134,4 л

Ответ: V(СО 2) = 134,4 л

Решение второй задачи:

  • D (H2) CO 2 = M(CO 2) / M(H 2) = 44 г/моль / 2 г/моль = 22;
  • D (возд) CO 2 = M(CO 2) / M (возд) = 44 г/моль / 29 г/моль = 1,52.

Рис. 3. Формулы количества вещества по объёму и относительной плотности.

Формулы закона Авогадро работают только для газообразных веществ. Они не применимы к жидкостям и твёрдым веществам.

Что мы узнали?

Согласно формулировке закона равные объёмы газов при одинаковых условиях содержат одинаковое количество молекул. При нормальных условиях (н.у.) величина молярного объёма постоянна, т.е. V m для газов всегда равняется 22,4 л/моль. Из закона следует, что одинаковое количество молекул разных газов при нормальных условиях занимают одинаковый объём, а также относительная плотность одного газа по другому - отношение молярной массы одного газа к молярной массе второго газа.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 230.

  • 5. Понятие волновой функции. Квантовые числа, их сущность. Понятие энергетического уровня, подуровня, орбитали. Электронное облако и его форма.
  • 13. Законы термохимии. Тепловой эффект химических реакций. Закон Гесса и его следствия. Энтальпия образования вещества. Термохимические расчеты.
  • 18. Способы выражения состава растворов.
  • 12. Внутренняя энергия, энтальпия, энтропия. Свободная энергия Гиббса (изобарно-изотермический потенциал). Критерий направленности химических реакций.
  • 15. Обратимые химические реакции. Химическое равновесие. Константа химического равновесия. Смещение равновесия. Принцип Ле-Шателье.
  • 17. Вода. Физические и химические свойства. Уникальные свойства воды. Строение молекулы воды. Водородная связь. Диаграмма строения воды.
  • 32.Электрохимическая коррозия и способы защиты от нее.
  • 33.Гальвонические элементы. Элемент Даниоля-Якоби. Эдс гальвонического элемента.
  • 34.Аккумуляторы. Свинцовый (кислотный) аккумулятор. Процессы на электродах при работе свинцового аккумулятора.
  • 35.Электролиз расплавов и растворов. Законы электролиза.
  • 19. Общие свойства растворов. Закон Рауля и его следствия. Осмотическое давление, закон Вант-Гоффа. Определение молекулярных масс растворенных веществ.
  • 21. Ионное произведение воды. Водородный показатель. Индикаторы.
  • 1.Химия – часть естествознания. Химические процессы. Типы химических соединений. Химическая номенклатура. Номенклатура средних, кислых, основных солей.

    Химия – часть естествознания.

    Химия-наука о веществах. Она изучает вещества и их превращения, сопровождающиеся изменением внутреннего строения вещества и электронной структуры взаимодействующих атомов, но не затрагивающие состав и структуру ядер.

    Известно около 7000000 химических соединений и из них 400000 неорганических.

    Химия – одна из фундаментальных дисциплин. Она является частью естествознания, наук о природе. Она связана с множеством других наук, таких как физика, медицина, биология, экология и т.д.

    Химические процессы.

    Типы химических соединений.

    Химическая номенклатура.

    В настоящее время для названия химических элементов используют тривиальную и рациональную номенклатуру, причем последняя делится на русскую, полусистематическую (международную) и систематическую.

    В тривиальной номенклатуре используют исторически сложившиеся собственные имена химических веществ. Они не отражают состав химических соединений. Использование таких названий чаще всего дань традиции. Пример: СаО – негашеная известь, N2О – веселящий газ.

    В рамках русской номенклатуры используют для названия химических соединений корни русских названий, а в полусистематической – латинских. Чтение формул химических соединений начинается справа налево. И русская и полусистематическая номенклатуры в полной мере отражаю состав химических соединений. Пример: СаО – окись кальция (оксид кальция), N2O – полуокись азота (оксид азота I).

    В целях унификации и упрощения формирования названий международный союз теоретической и прикладной химии предложил иную систему формирования химических соединений. Согласно этим правилам называть эти вещества следует слева направо. Пример: СаО – кальций оксид, N2O – диазот оксид.

    В настоящее время самые распространенные в использовании русская и полусистематическая номенклатура.

    Номенклатура средних, кислых, основных солей.

    По химическому составу различают средние, кислые, основные соли. Существуют еще двойные, смешенные и комплексные соли. Большинство солей независимо от их растворимости в воде являются сильными электролитами.

    Нормальные соли.

    2. Закон Авогадро и его следствия.

    Закон Авогадро.

    Амадео Авогадро в 1811 году выдвинул гипотезу, которая в дальнейшем была подтверждена опытными данными и потому стала называться законом Авогадро:

    Одинаковые объемы различных газов при одинаковых условиях (температуре и давлении) содержат одинаковое число молекул.

    Авогадро предположил, что молекулы простых газов состоят из двух одинаковых атомов. Таким образом, при соединении водорода с хлором их молекулы распадаются на атомы, которые образуют молекулы хлористого водорода. Из одной молекулы хлора и одной молекулы водорода образуется две молекулы хлористого водорода.

    Следствия закона Авогадро.

    Равные количества газообразных веществ, находящихся при одинаковых условиях (давлении и температуре), занимают равные объемы. В частности: при нормальных условиях 1 моль любого газа занимает объем, равный 22.4 литра. Этот объем называют молярным объемом газа. Нормальные условия: 273К, 760мм рт. ст. или 1,01*10^5Па.

    Плотности любых газообразных веществ, находящихся при одинаковых условиях (Т, Р), относятся как их мольные (молярные) массы.

    Отношение плотностей – относительная плотность одного газа по другому (D отн. ), тогда отношение молярных масс – тоже равно D отн.

    Если относительная плотность газа определена по водороду или по воздуху, то значение μ=2Dн и μ=29Dвозд. Где 29 – мольная масса воздуха.

    Если газ находится в реальных условиях, то его объем вычисляется по формуле Менделеева-Клапейрона:

    P*V=(m/μ)*R*T, где R=8,31 Дж/моль*К

    Газовые смеси.

    Если в газовой смеси нет взаимодействия, то каждый газ смеси обладает своими индивидуальными свойствами и подчиняется рассмотренным ранее законам.

    Состав газовых смесей может выражаться: массовыми, объемными, мольными долями.

    Массовая доля газа – отношение массы газа к массе всей газовой смеси.

    Объемная доля газа – отношение объема газа к объему всей смеси.

    Мольная доля газа – отношение числа молей газа к числу молей смеси.

    Одним из следствий закона Авогадро: объемная доля = мольной доле.

    Основные характеристики газовой смеси суммируются из характеристик ее компонентов. Так общее давление газовой смеси равно сумме парциальных давлений газа.

    3. Закон эквивалентов. Эквивалент. Эквивалентная масса и эквивалентный объем. Эквивалентные массы сложных соединений.

    Эквивалент.

    Эквивалентом вещества (элемента) Э называется такое его количество, которое взаимодействует с одним молем атомов водорода или вообще с одним эквивалентом любого другого вещества (элемента). Например, найдем эквивалент некоторых веществ: HCl – 1 моль, H2O. С одним молем водорода соединяется 1 моль хлора и ½ атомов кислорода, и следовательно эквиваленты равна соответственно 1 и ½.

    Эквивалентная масса и эквивалентный объем.

    Эквивалентная масса (Эм) называется масса одного эквивалента вещества (элемента).

    Эквивалентные массы ранее рассмотренных элементов равны Эм(Cl)=35.3 г/моль, Эм(O)=8 г/моль.

    Эквивалентную массу любого элемента можно определить по формуле: Эм=μ/СО, где СО- абсолютная величина степени окисления в соединениях. Поскольку большинство элементов имеют переменную степень окисления, то значения их эквивалентов в различных соединениях различно. Например найдем

    Если в задаче указаны объемы газов, то удобнее пользоваться понятием эквивалентный объем, вычисляемый с помощью закона Авогадро. Эквивалентным объемом называется объем занимаемый при н.у. одним эквивалентом вещества. Так 1 моль водорода, т.е. 2г. Занимает объем 22.4л., следовательно 1г. (т.е. одна эквивалентная масса), будет занимать 11,2л. Аналогично можно найти эквивалентный объем кислорода который равен 5.6л.

    Закон эквивалентов.

    Массы реагирующих веществ, а также продуктов реакции пропорциональны изх эквивалентным массам. m1/m2=Эм1/Эм2

    Для химической реакции:

    νаА+νвВ=νсС+νдД справедливо nЭм(А)=nЭм(В)=nЭм(С)=nЭм(Д)

    Где nЭм – число эквивалентных масс. Поэтому если известно число эквивалентных масс одного из веществ, то отпадает необходимость в подсчете числа Эм оставшихся веществ. Очевидно, что число эквивалентных масс равно отношению массы вещества к эквивалентной массе.

    Закон эквивалентов для эквивалентных объемов записывается в следующем виде:

    Эквивалентные массы сложных соединений.

    На основе закона эквивалентных масс справедливы следующие формулы для расчета Эм:

    Эм(оксида)=μ(оксида)/∑СОэл-та,где ∑СОэл-та – суммарная степень окисления одного из элементов (она равна произведению степери окисления элемента на число атомов этого элемента)

    Эм(соли)=μ(соли)/∑z , где ∑z – суммарный заряд иона (катиона или аниона).

    Эм(кислоты)=μ(кислоты)/nh(основность-число Н)

    Эм(основания)=μ(основания)/nон(кислотность основания – число ОН)

    H3PO4+2KOH=K2HPO4+2H2O

    3Ca(OH)2+H3PO4=(CaOH)3PO4+3H2O

    Al2(SO4)3+6KOH=2Al(OH)3+3K2SO4

    4. Два принципа квантовой механики: корпускулярно-волновой дуализм и принцип неопределенности.

    Электрон является объектом микромира и в своем поведении он подчиняется особым законам, не похожим на законы макромира. Движение объектов микромира описывается не законами механики Ньютона, а законами квантовой механики. Квантовая механики основывается на двух основных принципах.

    Принцип корпускулярно-волнового дуализма.

    Согласно этому принципу поведение объектов микромира может быть описано как движение частицы (корпускулы) и как волновой процесс. Физически это представить невозможно. Математически это описывается уравнением Де Бройля:

    ק=(h*ν)/m*υ, где ν – длина волны, соответствующая электрону массой m и движущегося со скоростью υ.

    Принцип неопределенности Гейзенберга.

    Для электрона не возможно с какой либо точностью определить координату х и импульс (px=m*Vx, где Vx – скорость электрона в направлении координаты х)

    Неопределенности (погрешности) нашего знания о величинах х и рх. Мы можем говорить лишь о вероятностном расположении электрона в этом месте. Чем точнее мы определяем х, тем неопределеннее для нас становится величина рх.

    Из этих двух принципов складывается ветоятностно-статистический характер квантовой механики.

    6. Последовательность заполнения электронами состояний в атомах различных элементов (энергетические состояния электронов в многоэлектронных атомах). Электронные формулы многоэлектронных атомов на примере элементов 2 и 3 периодов. Принцип Паули. Правило Хунда. Электронные формулы элементов в основном и возбужденных состояниях на примере атомов азота, углерода, серы.

    Последовательность заполнения электронами состояний в атомах различных элементов (энергетические состояния электронов в многоэлектронных атомах).

    Согласно принципу минимума энергии, наиболее точным состоянием атома будет то, при котором электроны размещаются на орбиталях с наименьшей энергией. Состояние атома, которое характеризуется минимальным значением энергии электрона называется основным (невозбужденным).

    Порядок заполнения орбиталей энергетически определяется:

    1).принцип минимума энергии

    2).принцип Паули

    3).правило Хунда

    Принцип наименьшей энергии

    Так появление второго электрона у атома гелия приводит к тому, что на эффект взаимодействия электрона с положительным ядром, влияет еще и сила отталкивания электронов между собой. При дальнейшем росте электронов, внутренние или основные электроны препятствуют взаимодействию внешних с ядром. То есть внутренние электроны экранируют внешние, В связи с этими причинами в многоэлектронных атомах различаются подуровни с соответственно различным значением энергии. Порядок чередования подуровней определяется двумя правилами Клечковского:

    1).Меньшая энергия отвечает подуровню с меньшим значением суммы n+l

    2).При одинаковых значениях суммы меньшая энергия отвечает подуровню с меньшим значением m

    Таблица. 4s подуровень по энергии ниже, чем 3d подуровень, т.к. s электроны меньше экранируются, чем d электроны, т.к. могут ближе проникнуть к ядру.

    Принцип Паули

    В атоме не может быть двух электронов с одинаковым наборов квантовых чисел. Таким образом, на одной орбитали может находится не более двух электронов, причем с разными спинами вращения.

    Правило Хунда

    Подуровень заполняется таким образом, чтобы их суммарный спин был максимальным. То есть в пределах подуровня сначала заполняется максимальное число квантовых ячеек.

    7. Характер изменения химических свойств элементов по мере увеличения их порядкового номера. S -, p -, d -, f - элементы. Связь между электронной конфигурацией атомов элементов и их положением в периодической системе.

    Характер изменения химических свойств элементов по мере увеличения их порядкового номера.

    При увеличении порядкового номера в периодах слева направо нарастают неметаллические (кислые) свойства. В группах нарастают металлические (основные свойства). Это приводит к тому, что вблизи диагонали проведенной из левого верхнего угла в правый нижний элементы образующие соединения амфотерного характера.

    Кроме того, периодическое изменение свойств элементов с увеличением порядкового номера объясняется периодическим изменением строения атомов, а именно числом электронов на их внешних энергетических уровнях.

    S -, p -, d -, f - элементы. Связь между электронной конфигурацией атомов элементов и их положением в периодической системе.

    Начало каждого периода соответствует началу застройки нового энергетического уровня. Номер периода определяет номер внешнего уровня. Он является застраивающимся у элементов главных подгрупп. Т.е. s и p элементов. У d элементов идет заполнение первого с наружи уровня. У f- второго снаружи. Т.е. внешний и застраивающийся уровень не всегда совпадают. Т.к у d элементов заполняется первый снаружи уровень, а химические свойства в первую очередь определяются структурой внешнего энергетического уровня, то химические свойства этих элементов похожи между собой (например, все они металлы). У них отсутствует резкое изменение свойств при переходе от элемента к элементу. Как, например, у s и p элементов. Еще более похожи свойства f элементов (лантаноиды и актиноиды), поскольку у них заполняются еще более глубокие подуровни.

    10.Ковалентность в методе валентных связей. Валентные возможности атомов элементов второго периода в основном и возбужденном состояниях. Сравнить валентные возможности (ковалентность) S и О, F и Cl

    Ковалентность в методе валентных связей.

    Каждый атом предоставляет один из пары электронов. Общее число электронных пар, которое он образует с атомами других элементов, называется ковалентностью.

    Валентные возможности атомов элементов второго периода в основном и возбужденном состояниях.

    Сравнить валентные возможности (ковалентность) S и О, F и Cl в рамках метода валентных связей.

    Изучение свойств газов позволило итальянскому физику А. Авогадро в 1811г. высказать гипотезу, которая впоследствии была подтверждена опытными данными, и стала называться законом Авогадро: в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул.

    Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0С (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02 10 23 молекул газа (число Авогадро).

    Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:

    где m 1 и m 2 – массы,

    М 1 и М 2 – молекулярные массы первого и второго газов.

    Поскольку масса вещества определяется по формуле

    где ρ – плотность г аза,

    V – объем газа,

    то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.

    .

    Из этого уравнения можно определить молярную массу газа:

    .

    2.4 Закон объемных отношений

    Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку, автору известного закона о тепловом расширении газов. Измеряя объемы газов, вступивших в реакцию и образующихся в результате реакций, Гей-Люссак пришел к обобщению, известному под названием закона простых объемных отношений: объемы вступающих в реакцию газов относятся друг к другу и объемам образующихся газообразных продуктов реакции как небольшие целые числа, равные их стехиометрическим коэффициентам .

    Например, 2H 2 + O 2 = 2H 2 O при взаимодействии двух объемов водорода и одного объема кислорода образуются два объема водяного пара. Закон справедлив в том случае, когда измерения объемов проведены при одном и том же давлении и одной и той же температуре.

    2.5 Закон эквивалентов

    Введение в химию понятий «эквивалент» и «молярная масса эквивалентов» позволило сформулировать закон, называемый законом эквивалентов: массы (объемы) реагирующих друг с другом веществ пропорциональны молярным массам (объемам) их эквивалентов .

    Следует остановиться на понятии объема моля эквивалентов газа. Как следует из закона Авогадро, моль любого газа при нормальных условиях занимает объем, равный 22,4 л. Соответственно, для вычисления объема моля эквивалентов газа необходимо знать число моль эквивалентов в одном моле. Так как один моль водорода содержит 2 моля эквивалентов водорода, то 1 моль эквивалентов водорода занимает при нормальных условиях объем:

    3 Решение типовых задач

    3.1 Моль. Молярная масса. Молярный объем

    Задача 1. Сколько молей сульфида железа (II) содержится в 8,8 г FeS?

    Решение Определяем молярную массу (М) сульфида железа (II).

    M(FeS)= 56 +32 = 8 8 г/моль

    Рассчитаем, сколько молей содержится в 8,8 г FeS:

    n = 8.8 ∕ 88 = 0.1 моль.

    Задача 2. Сколько молекул содержится в 54 г воды? Чему равна масса одной молекулы воды?

    Решение Определяем молярную массу воды.

    М(Н 2 О) = 18 г/моль.

    Следовательно, в 54 г воды содержится 54/18 = 3 моль Н 2 О. Один моль любого вещества содержит 6,02  10 23 молекул. Тогда в 3 молях (54г Н 2 О) содержится 6,02  10 23  3 = 18,06  10 23 молекул.

    Определим массу одной молекулы воды:

    m H2O = 18 ∕ (6,02 · 10 23) = 2,99 ·10 23 г.

    Задача 3. Сколько молей и молекул содержится в 1 м 3 любого газа при нормальных условиях?

    Решение 1 моль любого газа при нормальных условиях занимает объем 22,4 л. Следовательно, в 1 м 3 (1000 л) будет содержаться 44,6 молей газа:

    n = 1000/ 22.4 = 44,6 моль.

    1 моль любого газа содержит 6,02  10 23 молекул. Из этого следует, что в 1 м 3 любого газа при нормальных условиях содержится

    6,02  10 23  44,6 = 2,68  10 25 молекул.

    Задача 4. Выразите в молях:

    а) 6,02  10 22 молекул С 2 Н 2 ;

    б) 1,80  10 24 атомов азота;

    в) 3,01  10 23 молекул NH 3 .

    Какова молярная масса указанных веществ?

    Решение Моль – это количество вещества, в котором содержится число частиц любого определенного вида, равное постоянной Авогадро. Отсюда

    а)n С2Н2 = 6,02 · 10 22 /6,02 · 10 23 = 0,1 моль;

    б) n N =1,8 · 10 24 / 6,02 · 10 23 = 3 моля;

    в) n NH3 =3,01 ·10 23 / 6,02 · 10 23 = 0,5 моль.

    Молярная масса вещества в граммах численно равна его относительной молекулярной (атомной) массе.

    Следовательно, молярные массы данных веществ равны:

    а) М(С 2 Н 2) = 26 г/моль;

    б) М(N) = 14 г/моль;

    в) М(NH 3) = 17 г/моль.

    Задача 5. Определите молярную массу газа, если при нормальных условиях 0,824 г его занимают объем 0,260 л.

    Решение При нормальных условиях 1 моль любого газа занимает объем 22,4 л. Вычислив массу 22,4 л данного газа, мы узнаем его молярную массу.

    0,824 г газа занимают объем 0,260 л

    Х г газа занимают объем 22,4 л

    Х = 22,4 · 0,824 ∕ 0,260 = 71 г.

    Следовательно, молярная масса газа равна 71 г/моль.

    3.2 Эквивалент. Фактор эквивалентности. Молярная масса эквивалентов

    Задача 1. Вычислите эквивалент, фактор эквивалентности и молярную массу эквивалентов Н 3 РО 4 при реакциях обмена, в результате которых образуются кислые и нормальные соли.

    Решение Запишем уравнения реакций взаимодействия фосфорной кислоты со щелочью:

    Н 3 РО 4 + NaOH = NaH 2 PO 4 + H 2 O; (1)

    Н 3 РО 4 + 2NaOH = Na 2 HPO 4 + 2H 2 O; (2)

    Н 3 РО 4 + 3NaOH = Na 3 PO 4 + 3H 2 O. (3)

    Так как фосфорная кислота – трехосновная кислота, она образует две кислые соли (NaH 2 PO 4 – дигидрофосфат натрия и Na 2 HPO 4 – гидрофосфат натрия) и одну среднюю соль (Na 3 PO 4 – фосфат натрия).

    В реакции (1) фосфорная кислота обменивает на металл один атом водорода, т.е. ведет себя как одноосновная кислота, поэтому f э (Н 3 РО 4) в реакции (1) равен 1; Э(Н 3 РО 4) = Н 3 РО 4 ; М э (Н 3 РО 4) = 1· М(Н 3 РО 4) = 98 г/моль.

    В реакции (2) фосфорная кислота обменивает на металл два атома водорода, т.е. ведет себя как двухосновная кислота, поэтому f э (Н 3 РО 4) в реакции (2) равен 1/2; Э(Н 3 РО 4) = 1/2Н 3 РО 4 ; М э (Н 3 РО 4) = 1/2 · М (Н 3 РО 4) = 49 г/моль.

    В реакции (3) фосфорная кислота ведет себя как трехосновная кислота, поэтому f э (Н 3 РО 4) в данной реакции равен 1/3; Э(Н 3 РО 4) = 1/3Н 3 РО 4 ; М э (Н 3 РО 4) = 1/3 · М (Н 3 РО 4) = 32,67 г/моль.

    Задача 2 . Избытком гидроксида калия подействовали на растворы: а) дигидрофосфата калия; б) нитрата дигидроксовисмута (III). Напишите уравнения реакций этих веществ с КОН и определите их эквиваленты, факторы эквивалентности и молярные массы эквивалентов.

    Решение Запишем уравнения происходящих реакций:

    КН 2 РО 4 + 2КОН = К 3 РО 4 + 2 Н 2 О;

    Bi(OH) 2 NO 3 + KOH = Bi(OH) 3 + KNO 3 .

    Для определения эквивалента, фактора эквивалентности и молярной массы эквивалента можно использовать различные подходы.

    Первыйоснован на том, что вещества вступают в реакцию в эквивалентных количествах.

    Дигидрофосфат калия взаимодействует с двумя эквивалентами гидроксида калия, т. к. Э(КОН) = КОН. C одним эквивалентом КОН взаимодействует 1/2 KH 2 PO 4 , следовательно, Э(КН 2 PO 4) = 1/2KH 2 PO 4 ; f э (KH 2 PO 4) = 1/2; Мэ (KH 2 PO 4) = 1/2 ·М(KH 2 PO 4) = 68 г/моль.

    Нитрат дигидроксовисмута (III) взаимодействует с одним эквивалентом гидроксида калия, следовательно, Э(Bi(OH) 2 NO 3) = Bi(OH) 2 NO 3 ; f э (Bi(OH) 2 NO 3) = 1; М э (Bi(OH) 2 NO 3) = 1 · М(Bi(OH) 2 NO 3) = 305 г/моль.

    Второй подход основан на том, что фактор эквивалентности сложного вещества равен единице, деленной на число эквивалентности, т.е. число образовавшихся либо перестроившихся связей.

    Дигидрофосфат калия при взаимодействии с КОН обменивает на металл два атома водорода, следовательно, f э (КН 2 РО 4)= 1/2; Э(КН 2 РО 4) = 1/2 КН 2 РО 4 ; М э (1/2 КН 2 РО 4) = 1/2 · М (КН 2 РО 4) = 68 г/моль.

    Нитрат дигидроксовисмута (III) при реакции с гидроксидом калия обменивает одну группу NO 3 – , следовательно, (Bi(OH) 2 NO 3) = 1; Э(Bi(OH) 2 NO 3) = Bi(OH) 2 NO 3 ; М э (Bi(OH) 2 NO 3) = 1 · М э (Bi(OH) 2 NO 3) = 305 г/моль.

    Задача 3. При окислении 16,74 г двухвалентного металла образовалось 21,54 г оксида. Вычислите молярные массы эквивалентов металла и его оксида. Чему равны молярная и атомная масса металла?

    Р ешение Согласно закону сохранения массы веществ, масса оксида металла, образовавшегося при окислении металла кислородом, равна сумме масс металла и кислорода.

    Следовательно, масса кислорода, необходимого для образования 21,5 г оксида при окислении 16,74 г металла, составит:

    21,54 – 16,74 = 4,8 г.

    Согласно закону эквивалентов

    m Me ∕ M э (Me) = mO 2 ∕ M э (O 2); 16,74 ∕ M э (Me) = 4,8 ∕ 8.

    Следовательно, М э(Ме) = (16,74 · 8) ∕ 4,8 = 28 г/моль.

    Молярная масса эквивалента оксида может быть рассчитана как сумма молярных масс эквивалентов металла и кислорода:

    Мэ(МеО) = M э (Me) + M э (O 2) = 28 + 8 + 36 г/моль.

    Молярная масса двухвалентного металла равна:

    М (Ме) = Мэ (Ме) ∕ fэ(Ме) = 28 ∕ 1 ∕ 2 = 56 г/моль.

    Атомная масса металла (A r (Me)), выраженная в а.е.м., численно равна молярной массе A r (Me) = 56 а.е.м.

    Последние материалы раздела:

    Ол взмш при мгу: отделение математики Заочные математические школы для школьников
    Ол взмш при мгу: отделение математики Заочные математические школы для школьников

    Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

    Интересные факты о физике
    Интересные факты о физике

    Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

    Дмитрий конюхов путешественник биография
    Дмитрий конюхов путешественник биография

    Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...