Решаем задачи по геометрии: решение четырехугольников. Площадь параллелограмма Площадь параллелограмма равна половине произведения его диагоналей

При решении задач по данной теме кроме основных свойств параллелограмма и соответственных формул можно запомнить и применять следующее:

  1. Биссектриса внутреннего угла параллелограмма отсекает от него равнобедренный треугольник
  2. Биссектрисы внутренних углов прилежащие к одной из сторон параллелограмма взаимно перпендикулярные
  3. Биссектрисы, выходящие из противоположных внутренних углов параллелограмма, параллельные между собой либо лежат на одной прямой
  4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
  5. Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними

Рассмотрим задачи, при решении которых используются данные свойства.

Задача 1.

Биссектриса угла С параллелограмма АВСD пересекает сторону АD в точке М и продолжение стороны АВ за точку А в точке Е. Найдите периметр параллелограмма, если АЕ = 4, DМ = 3.

Решение.

1. Треугольник СМD равнобедренный. (Свойство 1). Следовательно, СD = МD = 3 см.

2. Треугольник ЕАМ равнобедренный.
Следовательно, АЕ = АМ = 4 см.

3. АD = АМ + МD = 7 см.

4. Периметр АВСD = 20 см.

Ответ. 20 см.

Задача 2.

В выпуклом четырёхугольнике АВСD проведены диагонали. Известно, что площади треугольников АВD, АСD, ВСD равны. Докажите, что данный четырёхугольник является параллелограммом.

Решение.

1. Пусть ВЕ – высота треугольника АВD, СF – высота треугольника АCD. Так как по условию задачи площади треугольников равны и у них общее основание АD, то высоты этих треугольников равны. ВЕ = СF.

2. ВЕ, СF перпендикулярны АD. Точки В и С расположены по одну сторону относительно прямой АD. ВЕ = СF. Следовательно, прямая ВС || AD. (*)

3. Пусть АL – высота треугольника АСD, BK – высота треугольника BCD. Так как по условию задачи площади треугольников равны и у них общее основание СD, то высоты этих треугольников равны. АL = BK.

4. АL и BK перпендикулярны СD. Точки В и А расположены по одну сторону относительно прямой СD. АL = BK. Следовательно, прямая АВ || СD (**)

5. Из условий (*), (**) вытекает – АВСD параллелограмм.

Ответ. Доказано. АВСD – параллелограмм.

Задача 3.

На сторонах ВС и СD параллелограмма АВСD отмечены точки М и Н соответственно так, что отрезки ВМ и НD пересекаются в точке О; <ВМD = 95 о,

Решение.

1. В треугольнике DОМ <МОD = 25 о (Он смежный с <ВОD = 155 о); <ОМD = 95 о. Тогда <ОDМ = 60 о.

2. В прямоугольном треугольнике DНС
(

Тогда <НСD = 30 о. СD: НD = 2: 1
(Так как в прямоугольном треугольнике катет, который лежит против угла в 30 о, равен половине гипотенузы).

Но СD = АВ. Тогда АВ: НD = 2: 1.

3. <С = 30 о,

4. <А = <С = 30 о, <В =

Ответ: АВ: НD = 2: 1, <А = <С = 30 о, <В =

Задача 4.

Одна из диагоналей параллелограмма длиною 4√6, составляет с основанием угол 60 о, а вторая диагональ составляет с тем же основанием угол 45 о. Найти вторую диагональ.

Решение.

1. АО = 2√6.

2. К треугольнику АОD применим теорему синусов.

АО/sin D = OD/sin А.

2√6/sin 45 о = OD/sin 60 о.

ОD = (2√6sin 60 о) / sin 45 о = (2√6 · √3/2) / (√2/2) = 2√18/√2 = 6.

Ответ: 12.

Задача 5.

У параллелограмма со сторонами 5√2 и 7√2 меньший угол между диагоналями равен меньшему углу параллелограмма. Найдите сумму длин диагоналей.

Решение.

Пусть d 1 , d 2 – диагонали параллелограмма, а угол между диагоналями и меньший угол параллелограмма равен ф.

1. Посчитаем двумя разными
способами его площадь.

S ABCD = AB · AD · sin A = 5√2 · 7√2 · sin ф,

S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin ф.

Получим равенство 5√2 · 7√2 · sin ф = 1/2d 1 d 2 sin ф или

2 · 5√2 · 7√2 = d 1 d 2 ;

2. Используя соотношение между сторонами и диагоналями параллелограмма запишем равенство

(АВ 2 + АD 2) · 2 = АС 2 + ВD 2 .

((5√2) 2 + (7√2) 2) · 2 = d 1 2 + d 2 2 .

d 1 2 + d 2 2 = 296.

3. Составим систему:

{d 1 2 + d 2 2 = 296,
{d 1 + d 2 = 140.

Умножим второе уравнение системы на 2 и сложим с первым.

Получим (d 1 + d 2) 2 = 576. Отсюда Id 1 + d 2 I = 24.

Так как d 1 , d 2 – длины диагоналей параллелограмма, то d 1 + d 2 = 24.

Ответ: 24.

Задача 6.

Стороны параллелограмма 4 и 6. Острый угол между диагоналями равен 45 о. Найдите площадь параллелограмма.

Решение.

1. Из треугольника АОВ, используя теорему косинусов, запишем соотношение между стороной параллелограмма и диагоналями.

АВ 2 = АО 2 + ВО 2 2 · АО · ВО · cos АОВ.

4 2 = (d 1 /2) 2 + (d 2 /2) 2 – 2 · (d 1 /2) · (d 2 /2)cos 45 о;

d 1 2 /4 + d 2 2 /4 – 2 · (d 1 /2) · (d 2 /2)√2/2 = 16.

d 1 2 + d 2 2 – d 1 · d 2 √2 = 64.

2. Аналогично запишем соотношение для треугольника АОD.

Учтем, что <АОD = 135 о и cos 135 о = -cos 45 о = -√2/2.

Получим уравнение d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

3. Имеем систему
{d 1 2 + d 2 2 – d 1 · d 2 √2 = 64,
{d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

Вычитая из второго уравнения первое, получим 2d 1 · d 2 √2 = 80 или

d 1 · d 2 = 80/(2√2) = 20√2

4. S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin α = 1/2 · 20√2 · √2/2 = 10.

Примечание: В этой и в предыдущей задаче нет надобности, решать полностью систему, предвидя то, что в данной задаче для вычисления площади нам нужно произведение диагоналей.

Ответ: 10.

Задача 7.

Площадь параллелограмма равна 96, а его стороны равны 8 и 15. Найдите квадрат меньшей диагонали.

Решение.

1. S ABCD = AВ · АD · sin ВAD. Сделаем подстановку в формулу.

Получим 96 = 8 · 15 · sin ВAD. Отсюда sin ВAD = 4 / 5 .

2. Найдём cos ВАD. sin 2 ВAD + cos 2 ВАD = 1.

(4 / 5) 2 + cos 2 ВАD = 1. cos 2 ВАD = 9 / 25 .

По условию задачи мы находим длину меньшей диагонали. Диагональ ВD будет меньшей, если угол ВАD острый. Тогда cos ВАD = 3 / 5.

3. Из треугольника АВD по теореме косинусов найдём квадрат диагонали ВD.

ВD 2 = АВ 2 + АD 2 – 2 · АВ · ВD · cos ВАD.

ВD 2 = 8 2 + 15 2 – 2 · 8 · 15 · 3 / 5 = 145.

Ответ: 145.

Остались вопросы? Не знаете, как решить геометрическую задачу?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Теорема 1. Площадь трапеции равна произведению полусуммы ее оснований на высоту:

Теорема 2. Диагонали трапеции делят ее на четыре треугольника, два из которых подобны, а два другие имеют одинаковую площадь:


Теорема 3. Площадь параллелограмма равна произведению основания на высоту, опущенную на данное основание, или произведению двух сторон на синус угла между ними:

Теорема 4. В параллелограмме сумма квадратов диагоналей равна сумме квадратов его сторон:

Теорема 5. Площадь произвольного выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними:

Теорема 6. Площадь четырехугольника, описанного около окружности, равна произведению полупериметра этого четырехугольника на радиус данной окружности:

Теорема 7. Четырехугольник, вершинами которого являются середины сторон произвольного выпуклого четырехугольника, есть параллелограмм, площадь которого равна половине площади исходного четырехугольника:


Теорема 8. Если у выпуклого четырехугольника диагонали взаимно перпендикулярны, то суммы квадратов противоположных сторон этого четырехугольника равны:

AB2 + CD2 = BC2 + AD2 .

Статья опубликована при поддержке компании "ДКРОСТ". Горки детские , домики, песочницы и многое другое - изготовление и продажа детских площадок оптом и в розницу. Самые низкие цены, скидки, сжатые сроки изготовления, выезд и консультация специалиста, гарантия качества. Узнать подробнее о компании, посмотреть каталог товаров, цены и контакты Вы сможете на сайте, который располагается по адресу: http://dkrost.ru/.

Доказательства некоторых теорем

Доказательство теоремы 2 . Пусть ABCD - данная трапеция, AD и BC - ее основания, O - точка пересечения диагоналей AC и BD этой трапеции. Докажем, что треугольники AOB и COD имеют одинаковую площадь. Для этого опустим из точек B и C на прямую AD перпендикуляры BP и CQ. Тогда площадь треугольника ABD равна

А площадь треугольника ACD равна

Так как BP = CQ, то и S∆ABD = S∆ACD . Но площадь треугольника AOB есть разность площадей тре­угольников ABD и AOD, а площадь треугольника COD - разность площадей треугольников ACD и AOD. Следовательно, площади треугольников AOB и COD равны, что и требовалось доказать.

Доказательство теоремы 4 . Пусть ABCD - параллелограмм, AB = CD = a , AD = BC = b,
AC = d1 , BD = d2 , ∠BAD = α, ∠ADC = 180° – α. Применим к треугольнику ABD теорему косинусов:

Применив теперь теорему косинусов к тре­угольнику ACD, получим:

Складывая почленно полученные равенства, получаем, что что и требовалось доказать.


Доказательство теоремы 5. Пусть ABCD - произвольный выпуклый четырехугольник, E - точка пересечения его диагоналей, AE = a , BE = b,
CE = c, DE = d, ∠AEB = ∠CED = ϕ, ∠BEC =
= ∠AED = 180° – ϕ. Имеем:

что и требовалось доказать.

Доказательство теоремы 6 . Пусть ABCD - произвольный четырехугольник, описанный около окружности, O - центр этой окружности, OK, OL, OM и ON - перпендикуляры, опущенные из точки O на прямые AB, BC, CD и AD соответственно. Имеем:

где r - радиус окружности, а p - полупериметр четырехугольника ABCD.

Доказательство теоремы 7 . Пусть ABCD - произвольный выпуклый четырехугольник, K, L, M и N - середины сторон AB, BC, CD и AD соответственно. Так как KL - средняя линия треугольника ABC, то прямая KL параллельна прямой AC и Аналогично, прямая MN параллельна прямой AC и Следовательно, KLMN - параллелограмм. Рассмотрим треугольник KBL. Его площадь равна четверти площади треугольника ABC. Площадь треугольника MDN также равна четверти площади треугольника ACD. Следовательно,

Аналогично,

Это значит, что

откуда вытекает, что

Доказательство теоремы 8 . Пусть ABCD - произвольный выпуклый четырехугольник, у которого диагонали взаимно перпендикулярны, пусть E - точка пересечения его диагоналей,
AE = a , BE = b, CE = c, DE = d. Применим к тре­угольникам ABE и CDE теорему Пифагора:
AB2 = AE2 + BE2 = a 2 + b2 ,
CD2 = CE2 + DE2 = c2 + d2 ,
следовательно,
AB2 + CD2 = a 2 + b2 + c2 + d2 .
Применив теперь теорему Пифагора к треугольникам ADE и BCE, получим:
AD2 = AE2 + DE2 = a 2 + d2 ,
BC2 = BE2 + CE2 = b2 + c2 ,
откуда вытекает, что
AD2 + BC2 = a 2 + b2 + c2 + d2 .
Значит, AB2 + CD2 = AD2 + BC2 , что и требовалось доказать.

Решения задач

Задача 1 . Около круга описана трапеция с углами при основании α и β. Найти отношение площади трапеции к площади круга.


Решение . Пусть ABCD - данная трапеция, AB и CD - ее основания, DK и CM - перпендикуляры, опущенные из точек C и D на прямую AB. Искомое отношение не зависит от радиуса круга. Поэтому будем считать, что радиус равен 1. Тогда площадь круга равна π, найдем площадь трапеции. Так как треугольник ADK прямоугольный, то

Аналогично, из прямоугольного треугольника BCM находим, что Поскольку в данную трапецию можно вписать окружность, то суммы противоположных сторон равны:
AB + CD = AD + BC,
откуда находим

Значит, площадь трапеции есть

и искомое отношение равно
Ответ :

Задача 2 . В выпуклом четырехугольнике ABCD угол A равен 90°, а угол C не превосходит 90°. Из вершин B и D на диагональ AC опущены перпендикуляры BE и DF. Известно, что AE = CF. Доказать, что угол C прямой.

Доказательство . Так как угол A равен 90°,
а угол C не превосходит 90°, то точки E и F лежат на диагонали AC. Без ограничения общности мы можем считать, что AE < AF (в противном случае следует повторить все нижеследующие рассуждения с заменой точек B и D). Пусть ∠ABE = α,
∠EBC = β, ∠FDA = γ, ∠FDC = δ. Нам достаточно доказать, что α + β + γ + δ = π. Так как



откуда получаем, что что и требовалось доказать.

Задача 3 . Периметр равнобочной трапеции, описанной около круга, равен p. Найти радиус этого круга, если известно, что острый угол при основании трапеции равен α.
Решение . Пусть ABCD - данная равнобочная трапеция с основаниями AD и BC, пусть BH - высота этой трапеции, опущенная из вершины B.
Так как в данную трапецию можно вписать окружность, то

Следовательно,


Из прямоугольного треугольника ABH находим,

Ответ :

Задача 4 . Дана трапеция ABCD с основаниями AD и BC. Диагонали AC и BD пересекаются в точке O, а прямые AB и CD - в точке K. Прямая KO пересекает стороны BC и AD в точках M и N соответственно, а угол BAD равен 30°. Известно, что в трапеции ABMN и NMCD можно вписать окружность. Найти отношение площадей треугольника BKC и трапеции ABCD.

Решение . Как известно, для произвольной трапеции прямая, соединяющая точку пересечения диагоналей и точку пересечения продолжений боковых сторон, делит каждое из оснований пополам. Итак, BM = MC и AN = ND. Далее, так как в трапеции ABMN и NMCD можно вписать окружность, то
BM + AN = AB + MN,
MC + ND = CD + MN.
Отсюда следует, что AB = CD, то есть трапеция ABCD - равнобокая. Искомое отношение площадей не зависит от масштаба, поэтому мы можем принять, что KN = x, KM = 1. Из прямоугольных треугольников AKN и BKM получаем, что Записывая вновь уже использованное выше соотношение
BM + AN = AB + MN ⇔

Нам требуется вычислить отношение:

Здесь мы использовали тот факт, что площади треугольников AKD и BKC относятся как квадраты сторон KN и KM, то есть как x2.

Ответ:

Задача 5. В выпуклом четырехугольнике ABCD точки E, F, H, G являются серединами сторон AB, BC, CD, DA соответственно и O - точка пересечения отрезков EH и FG. Известно, что EH = a , FG = b, Найти длины диагоналей четырехугольника.

Решение . Известно, что если соединить последовательно середины сторон произвольного четырехугольника, то получится параллелограмм. В нашем случае EFHG - параллелограмм и O - точка пересечения его диагоналей. Тогда

Применим к треугольнику FOH теорему косинусов:

Так как FH - средняя линия треугольника BCD, то

Аналогично, применив теорему косинусов к треугольнику EFO, получим, что

Ответ :

Задача 6. Боковые стороны трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит ее на две части, отношение площадей которых равно Найти основания трапеции.

Решение . Пусть ABCD - данная трапеция, AB = 3 и CD = 5 - ее боковые стороны, точки K и M - середины сторон AB и CD соответственно. Пусть, для определенности, AD > BC, тогда площадь трапеции AKMD будет больше площади трапеции KBCM. Так как KM - средняя линия трапеции ABCD, то трапеции AKMD и KBCM имеют равные высоты. Поскольку площадь трапеции равна произведению полусуммы оснований на высоту, то верно следующее равенство:

Далее, так как в трапецию ABCD можно вписать окружность, то AD + BC = AB + CD = 8. Тогда KM = 4 как средняя линия трапеции ABCD. Пусть BC = x, тогда AD = 8 – x. Имеем:
Значит, BC = 1 и AD = 7.

Ответ: 1 и 7.

Задача 7 . Основание AB трапеции ABCD вдвое длиннее основания CD и вдвое длиннее боковой стороны AD. Длина диагонали AC равна a , а длина боковой стороны BC равна b. Найти площадь трапеции.

Решение . Пусть E - точка пересечения продолжений боковых сторон трапеции и CD = x, тогда AD = x, AB = 2x. Отрезок CD параллелен отрезку AB и вдвое его короче, значит, CD является средней линией треугольника ABE. Следовательно, CE = BC = b и DE = AD = x, откуда AE = 2x. Итак, треугольник ABE равнобедренный (AB = AE) и AC - его медиана. Поэтому AC является и высотой этого треугольника, и значит,


Так как треугольник DEC подобен треугольнику AEB с коэффициентом подобия то

Ответ :

Задача 8 . Диагонали трапеции ABCD пересекаются в точке E. Найти площадь треугольника BCE, если длины оснований трапеции AB = 30, DC = 24, боковой стороны AD = 3 и угол DAB равен 60°.

Решение . Пусть DH - высота трапеции. Из треугольника ADH находим, что

Так как высота треугольника ABC, опущенная из вершины C, равна высоте DH трапеции, имеем:

Ответ :

Задача 9 . В трапеции средняя линия равна 4, а углы при одном из оснований равны 40° и 50°. Найти основания трапеции, если отрезок, соединяющий середины оснований, равен 1.

Решение . Пусть ABCD - данная трапеция, AB и CD - ее основания (AB < CD), M, N - середины AB и CD соответственно. Пусть также ∠ADC = 50°, ∠BCD = 40°. Средняя линия трапеции равна полусумме оснований, поэтому
AB + CD = 8. Продлим боковые стороны DA и CB до пересечения в точке E. Рассмотрим треугольник ABE, в котором ∠EAB = 50°. ∠EBA = 40°,
следовательно, ∠AEB = 90°. Медиана EM этого треугольника, проведенная из вершины прямого угла, равна половине гипотенузы: EM = AM. Пусть EM = x, тогда AM = x, DN = 4 – x. Согласно условию задачи MN = 1, следовательно,
EN = x + 1. Из подобия треугольников AEM и DEN имеем:


Это означает, что AB = 3 и CD = 5.

Ответ : 3 и 5.

Задача 10 . Выпуклый четырехугольник ABCD описан около окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2. Найти периметр четырехугольника ABCD.

Решение . Пусть K, L, M, N - точки касания окружности со сторонами AB, BC, CD, DA соответственно, r - радиус окружности. Так как касательная к окружности перпендикулярна радиусу, проведенному в точку касания, то тре­угольники AKO, BKO, BLO, CLO, CMO, DMO, DNO, ANO - прямоугольные. Применив к этим треугольникам теорему Пифагора, получим, что

Следовательно, AB = BC = CD = DA, то есть ABCD - ромб. Диагонали ромба перпендикулярны друг другу, и точка их пересечения является центром вписанной окружности. Отсюда легко находим, что сторона ромба равна и значит, периметр ромба равен

Ответ :

Задачи для самостоятельного решения

С-1. Около окружности радиуса r описана равнобочная трапеция ABCD. Пусть E и K - точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK параллелен AB, и найдите площадь трапеции ABEK.
С-2. В трапеции диагонали равны 3 и 5, а отрезок, соединяющий середины оснований, равен 2. Найдите площадь трапеции.
С-3 . Можно ли вокруг четырехугольника ABCD описать окружность, если ∠ADC = 30°, AB = 3, BC = 4, AC = 6?
С-4. В трапеции ABCD (AB - основание) величины углов DAB, BCD, ADC, ABD и ADB образуют арифметическую прогрессию (в том порядке, в котором они написаны). Найдите расстояние от вершины C до диагонали BD, если высота трапеции равна h.
С-5. Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение высоты трапеции к радиусу описанной окружности равно Найдите углы трапеции.
С-6. Площадь прямоугольника ABCD равна 48, а длина диагонали равна 10. На плоскости, в которой расположен прямоугольник, выбрана точка O так, что OB = OD = 13. Найдите расстояние от точки O до наиболее удаленной от нее вершины прямоугольника.
С-7. Периметр параллелограмма ABCD равен 26. Величина угла ABC равна 120°. Радиус окружности, вписанной в треугольник BCD, равен Найдите длины сторон параллелограмма, если известно, что AD > AB.
С-8. Четырехугольник ABCD вписан в окружность с центром в точке O. Радиус OA перпендикулярен радиусу OB, а радиус OC перпендикулярен радиусу OD. Длина перпендикуляра, опущенного из точки C на прямую AD, равна 9. Длина отрезка BC в два раза меньше длины отрезка AD. Найдите площадь треугольника AOB.
С-9. В выпуклом четырехугольнике ABCD вершины A и C противоположны, а длина стороны AB равна 3. Угол ABC равен угол BCD равен Найдите длину стороны AD, если известно, что площадь четырехугольника равна

С-10. В выпуклом четырехугольнике ABCD проведены диагонали AC и BD. Известно, что
AD = 2, ∠ABD = ∠ACD = 90°, и расстояние между точкой пересечения биссектрис треугольника ABD и точкой пересечения биссектрис треугольника ACD равно Найдите длину стороны BC.
С-11. Пусть M - точка пересечения диагоналей выпуклого четырехугольника ABCD, в котором стороны AB, AD и BC равны между собой. Найдите угол CMD, если известно, что DM = MC,
а ∠CAB ≠ ∠DBA.
С-12. В четырехугольнике ABCD известно, что ∠A = 74°, ∠D = 120°. Найдите угол между биссектрисами углов B и C.
С-13. В четырехугольник ABCD можно вписать окружность. Пусть K - точка пересечения его диагоналей. Известно, что AB > BC > KC, а периметр и площадь треугольника BKC равны соответственно 14 и 7. Найдите DC.
С-14. В трапеции, описанной около окружности, известно, что BC AD, AB = CD, ∠BAD =
= 45°. Найдите AB, если площадь трапеции ABCD равна 10.
С-15. В трапеции ABCD с основаниями AB и CD известно, что ∠CAB = 2∠DBA. Найдите площадь трапеции.
С-16. В параллелограмме ABCD известно, что AC = a , ∠CAB = 60°. Найдите площадь параллелограмма.
С-17 . В четырехугольнике ABCD диагонали AC и BD пересекаются в точке K. Точки L и M являются соответственно серединами сторон BC и AD. Отрезок LM содержит точку K. Четырехугольник ABCD таков, что в него можно вписать окружность. Найдите радиус этой окружности, если AB = 3, и LK: KM = 1: 3.
С-18. В выпуклом четырехугольнике ABCD проведены диагонали AC и BD. При этом ∠BAC =
= ∠BDC, а площадь круга, описанного около треугольника BDC, равна
а) Найдите радиус окружности, описанной около треугольника ABC.
б) Зная, что BC = 3, AC = 4, ∠BAD = 90°, найдите площадь четырехугольника ABCD.

Примечание . Это часть урока с задачами по геометрии (раздел параллелограмм). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ или sqrt(), при чем в скобках указано подкоренное выражение.

Теоретический материал

Пояснения к формулам нахождения площади параллелограмма:

  1. Площадь параллелограмма равна произведению длины одной из его сторон на высоту, опущенную на эту сторону
  2. Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними
  3. Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними

Задачи на нахождение площади параллелограмма

Задача .
В параллелограмме меньшая высота и меньшая сторона равны 9 см и корню из 82 соответственно.Большая диагональ 15 см.Найти площадь параллелограмма.

Решение .
Обозначим меньшую высоту параллелограмма ABCD, опущенную из точки B на большее основание AD как BK.
Найдем значение катета прямоугольного треугольника ABK, образованного меньшей высотой, меньшей стороной и частью большего основания. По теореме Пифагора:

AB 2 = BK 2 + AK 2
82 = 9 2 + AK 2
AK 2 = 82 - 81
AK = 1

Продлим верхнее основание параллелограмма BC и опустим на него высоту AN из его нижнего основания. AN = BK как стороны прямоугольника ANBK. У получившегося прямоугольного треугольника ANC найдем катет NC.
AN 2 + NC 2 = AC 2
9 2 + NC 2 = 15 2
NC 2 = 225 - 81
NC 2 = √144
NC = 12

Теперь найдем большее основание BC параллелограмма ABCD.
BC = NC - NB
Учтем, что NB = AK как стороны прямоугольника, тогда
BC = 12 - 1 = 11

Площадь параллелограмма равна произведению основания на высоту к этому основанию.
S = ah
S = BC * BK
S = 11 * 9 = 99

Ответ : 99 см 2 .

Задача

В параллелограмме АВСД на диагональ АС опущен перпендикуляр ВО. Найдите площадь параллелограмма, если АО=8, ОС=6 и ВО=4.

Решение .
Опустим на диагональ АС дополнительно еще один перпендикуляр DK.
Соответственно, треугольники AOB иDKC, COB и AKD попарно равны. Одна из сторон является противолежащей стороной параллелограмма, один из углов - прямой, так как является перпендикуляром к диагонали, а один из оставшихся углов является внутренним накрест лежащим для параллельных сторон параллелограмма и секущей диагонали.

Таким образом, площадь параллелограмма равна площади указанных треугольников. То есть
Sпаралл = 2S AOB +2S BOC

Площадь прямоугольного треугольника равна половине произведения катетов. Откуда
S = 2 (1/2 8 * 4) + 2 (1/2 6 * 4) = 56 см 2
Ответ : 56 см 2 .

Формула для площади параллелограмма

Площадь параллелограмма равна произведению его стороны на высоту, опущенную на эту сторону.

Доказательство

Если параллелограмм - прямоугольник, то равенство выполнено по теореме о площади прямоугольника. Далее считаем, что углы параллелограмма не прямые.

Пусть в параллелограмме $ABCD$ угол $\angle BAD$ острый и $AD > AB$. Иначе переименуем вершины. Тогда высота $BH$ из вершины $B$ на прямую $AD$ падает на сторону $AD$, так как катет $AH$ короче гипотенузы $AB$, а $AB < AD$. Основание $K$ высоты $CK$ из точки $C$ на прямую $AB$ лежит на продолжении отрезка $AD$ за точку $D$, так как угол $\angle BAD$ острый, а значит $\angle CDA$ тупой. Вследствие параллельности прямых $BA$ и $CD$ $\angle BAH = \angle CDK$. В параллелограмме противоположные стороны равны, следовательно, по стороне и двум углам, треугольники $\triangle ABH = \triangle DCK$ равны.

Сравним площадь параллелограмма $ABCD$ и площадь прямоугольника $HBCK$. Площадь параллелограмма больше на площадь $\triangle ABH$, но меньше на на площадь $\triangle DCK$. Так как эти треугольники равны, то и их площади равны. Значит, площадь параллелограмма равна площади прямоугольника со сторонами длиной в сторону и высоту параллелограмма.

Формула для площади параллелограмма через стороны и синус

Площадь параллелограмма равна произведению соседних сторон на синус угла между ними.

Доказательство

Высота параллелограмма $ABCD$, опущенная на сторону $AB$ равна произведению отрезка $BC$ на синус угла $\angle ABC$. Осталось применить предыдущее утверждение.

Формула для площади параллелограмма через диагонали

Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними.

Доказательство

Пусть диагонали параллелограмма $ABCD$ пересекаются в точке $O$ под углом $\alpha$. Тогда $AO=OC$ и $BO=OD$ по свойству параллелограмма. Синусы углов, в сумме дающих $180^\circ$ равны, $\angle AOB = \angle COD = 180^\circ - \angle BOC = 180^\circ - \angle AOD$. Значит, синусы углов при пересечении диагоналей равны $\sin \alpha$.

$S_{ABCD}=S_{\triangle AOB} + S_{\triangle BOC} + S_{\triangle COD} + S_{\triangle AOD}$

по аксиоме измерения площади. Применяем формулу площади треугольника $S_{ABC} = \dfrac{1}{2} \cdot AB \cdot BC \sin \angle ABC$ для этих треугольников и углов при пересечении диагоналей. Стороны каждого равны половинам диагоналей, синусы также равны. Следовательно, площади всех четырёх треугольников равны $S = \dfrac{1}{2} \cdot \dfrac{AC}{2} \cdot \dfrac{BD}{2} \cdot \sin \alpha = \dfrac{AC \cdot BD}{8} \sin \alpha$. Суммируя всё вышесказанное, получаем

$S_{ABCD} = 4S = 4 \cdot \dfrac{AC \cdot BD}{8} \sin \alpha = \dfrac{AC \cdot BD \cdot \sin \alpha}{2}$

При решении задач по данной теме кроме основных свойств параллелограмма и соответственных формул можно запомнить и применять следующее:

  1. Биссектриса внутреннего угла параллелограмма отсекает от него равнобедренный треугольник
  2. Биссектрисы внутренних углов прилежащие к одной из сторон параллелограмма взаимно перпендикулярные
  3. Биссектрисы, выходящие из противоположных внутренних углов параллелограмма, параллельные между собой либо лежат на одной прямой
  4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
  5. Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними

Рассмотрим задачи, при решении которых используются данные свойства.

Задача 1.

Биссектриса угла С параллелограмма АВСD пересекает сторону АD в точке М и продолжение стороны АВ за точку А в точке Е. Найдите периметр параллелограмма, если АЕ = 4, DМ = 3.

Решение.

1. Треугольник СМD равнобедренный. (Свойство 1). Следовательно, СD = МD = 3 см.

2. Треугольник ЕАМ равнобедренный.
Следовательно, АЕ = АМ = 4 см.

3. АD = АМ + МD = 7 см.

4. Периметр АВСD = 20 см.

Ответ. 20 см.

Задача 2.

В выпуклом четырёхугольнике АВСD проведены диагонали. Известно, что площади треугольников АВD, АСD, ВСD равны. Докажите, что данный четырёхугольник является параллелограммом.

Решение.

1. Пусть ВЕ – высота треугольника АВD, СF – высота треугольника АCD. Так как по условию задачи площади треугольников равны и у них общее основание АD, то высоты этих треугольников равны. ВЕ = СF.

2. ВЕ, СF перпендикулярны АD. Точки В и С расположены по одну сторону относительно прямой АD. ВЕ = СF. Следовательно, прямая ВС || AD. (*)

3. Пусть АL – высота треугольника АСD, BK – высота треугольника BCD. Так как по условию задачи площади треугольников равны и у них общее основание СD, то высоты этих треугольников равны. АL = BK.

4. АL и BK перпендикулярны СD. Точки В и А расположены по одну сторону относительно прямой СD. АL = BK. Следовательно, прямая АВ || СD (**)

5. Из условий (*), (**) вытекает – АВСD параллелограмм.

Ответ. Доказано. АВСD – параллелограмм.

Задача 3.

На сторонах ВС и СD параллелограмма АВСD отмечены точки М и Н соответственно так, что отрезки ВМ и НD пересекаются в точке О; <ВМD = 95 о,

Решение.

1. В треугольнике DОМ <МОD = 25 о (Он смежный с <ВОD = 155 о); <ОМD = 95 о. Тогда <ОDМ = 60 о.

2. В прямоугольном треугольнике DНС
(

Тогда <НСD = 30 о. СD: НD = 2: 1
(Так как в прямоугольном треугольнике катет, который лежит против угла в 30 о, равен половине гипотенузы).

Но СD = АВ. Тогда АВ: НD = 2: 1.

3. <С = 30 о,

4. <А = <С = 30 о, <В =

Ответ: АВ: НD = 2: 1, <А = <С = 30 о, <В =

Задача 4.

Одна из диагоналей параллелограмма длиною 4√6, составляет с основанием угол 60 о, а вторая диагональ составляет с тем же основанием угол 45 о. Найти вторую диагональ.

Решение.

1. АО = 2√6.

2. К треугольнику АОD применим теорему синусов.

АО/sin D = OD/sin А.

2√6/sin 45 о = OD/sin 60 о.

ОD = (2√6sin 60 о) / sin 45 о = (2√6 · √3/2) / (√2/2) = 2√18/√2 = 6.

Ответ: 12.

Задача 5.

У параллелограмма со сторонами 5√2 и 7√2 меньший угол между диагоналями равен меньшему углу параллелограмма. Найдите сумму длин диагоналей.

Решение.

Пусть d 1 , d 2 – диагонали параллелограмма, а угол между диагоналями и меньший угол параллелограмма равен ф.

1. Посчитаем двумя разными
способами его площадь.

S ABCD = AB · AD · sin A = 5√2 · 7√2 · sin ф,

S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin ф.

Получим равенство 5√2 · 7√2 · sin ф = 1/2d 1 d 2 sin ф или

2 · 5√2 · 7√2 = d 1 d 2 ;

2. Используя соотношение между сторонами и диагоналями параллелограмма запишем равенство

(АВ 2 + АD 2) · 2 = АС 2 + ВD 2 .

((5√2) 2 + (7√2) 2) · 2 = d 1 2 + d 2 2 .

d 1 2 + d 2 2 = 296.

3. Составим систему:

{d 1 2 + d 2 2 = 296,
{d 1 + d 2 = 140.

Умножим второе уравнение системы на 2 и сложим с первым.

Получим (d 1 + d 2) 2 = 576. Отсюда Id 1 + d 2 I = 24.

Так как d 1 , d 2 – длины диагоналей параллелограмма, то d 1 + d 2 = 24.

Ответ: 24.

Задача 6.

Стороны параллелограмма 4 и 6. Острый угол между диагоналями равен 45 о. Найдите площадь параллелограмма.

Решение.

1. Из треугольника АОВ, используя теорему косинусов, запишем соотношение между стороной параллелограмма и диагоналями.

АВ 2 = АО 2 + ВО 2 2 · АО · ВО · cos АОВ.

4 2 = (d 1 /2) 2 + (d 2 /2) 2 – 2 · (d 1 /2) · (d 2 /2)cos 45 о;

d 1 2 /4 + d 2 2 /4 – 2 · (d 1 /2) · (d 2 /2)√2/2 = 16.

d 1 2 + d 2 2 – d 1 · d 2 √2 = 64.

2. Аналогично запишем соотношение для треугольника АОD.

Учтем, что <АОD = 135 о и cos 135 о = -cos 45 о = -√2/2.

Получим уравнение d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

3. Имеем систему
{d 1 2 + d 2 2 – d 1 · d 2 √2 = 64,
{d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

Вычитая из второго уравнения первое, получим 2d 1 · d 2 √2 = 80 или

d 1 · d 2 = 80/(2√2) = 20√2

4. S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin α = 1/2 · 20√2 · √2/2 = 10.

Примечание: В этой и в предыдущей задаче нет надобности, решать полностью систему, предвидя то, что в данной задаче для вычисления площади нам нужно произведение диагоналей.

Ответ: 10.

Задача 7.

Площадь параллелограмма равна 96, а его стороны равны 8 и 15. Найдите квадрат меньшей диагонали.

Решение.

1. S ABCD = AВ · АD · sin ВAD. Сделаем подстановку в формулу.

Получим 96 = 8 · 15 · sin ВAD. Отсюда sin ВAD = 4 / 5 .

2. Найдём cos ВАD. sin 2 ВAD + cos 2 ВАD = 1.

(4 / 5) 2 + cos 2 ВАD = 1. cos 2 ВАD = 9 / 25 .

По условию задачи мы находим длину меньшей диагонали. Диагональ ВD будет меньшей, если угол ВАD острый. Тогда cos ВАD = 3 / 5.

3. Из треугольника АВD по теореме косинусов найдём квадрат диагонали ВD.

ВD 2 = АВ 2 + АD 2 – 2 · АВ · ВD · cos ВАD.

ВD 2 = 8 2 + 15 2 – 2 · 8 · 15 · 3 / 5 = 145.

Ответ: 145.

Остались вопросы? Не знаете, как решить геометрическую задачу?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Последние материалы раздела:

Элективные питательные среды
Элективные питательные среды

Питательные среды в микробиологии - это субстраты, на которых выращивают микроорганизмы и тканевые культуры. Они применяются для диагностических...

Соперничество европейских держав за колонии, окончательный раздел мира к рубежу XIX - XX вв
Соперничество европейских держав за колонии, окончательный раздел мира к рубежу XIX - XX вв

Мировая история содержит в себе огромное количество событий, имен, дат, которые помещаются в несколько десятков или даже сотен различных учебников....

Необходимо заметить, что за годы дворцовых переворотов произошло ослабление России практически по всем направлениям
Необходимо заметить, что за годы дворцовых переворотов произошло ослабление России практически по всем направлениям

Последний дворцовый переворот в истории России Васина Анна Юрьевна Урок «Последний дворцовый переворот в истории России» ПЛАН-КОНСПЕКТ УРОКА Тема...