Почему человек задыхается под водой. Американцы зашли в тупик

Первый доктор, побывавший на околоземной орбите, советский летчик-космонавт Борис Егоров, как-то заявил: «На глубине свыше 500-700 метров у человека (по крайней мере, в теории) есть возможность стать Ихтиандром, не используя никакую технику! Он будет там плавать, подобно рыбе, и жить максимально долго. Нужно всего лишь...заполнить легкие водой. На глубине 500-700 метров легкие человека, судя по всему, будут усваивать кислород непосредственно из воды».

На первый взгляд эта мысль кажется невероятной. Разве не погибают каждый год тысячи людей, захлебнувшиеся морской водой? Способна ли вода стать заменой обычному кислороду? Перенесемся мысленно в лабораторию голландского физиолога Иоганнеса Килстра, где ученый проводит свои удивительные опыты. Вот один из них.

Ученый заливает водой небольшой прозрачный резервуар и добавляет туда немного соли. Далее он закупоривает емкость и через трубку накачивает в нее кислород под давлением. Сосуд взбалтывают и вскоре через промежуточную (шлюзовую) камеру впускают внутрь белую мышь. Подняться она не может - этому препятствует сетка на поверхности воды. Но... Проходит полчаса, час, два. Мышь, как это ни кажется странным, дышит - да, да, именно дышит водой! Но никакой паники у мыши не наблюдается. Легкие зверька действуют подобно рыбьим жабрам, получая кислород напрямую из воды. Само собой, ни о какой кессонной болезни и речи быть не может - азот в воду не добавляли. Схожие эксперименты делали и ученые в СССР, возглавляемые кандидатом медицинских наук Владленом Козаком.

Итак, первый шаг сделан. И вполне успешно. Однако ученые не торопятся объявить об этом. Вдруг способностью к дыханию жидкостью обладают только мелкие животные? Чтобы рассеять сомнения, метод проверяют на собаках. И что же? В первых же экспериментах собаки дышали солоноватым раствором, насыщенным кислородом, более получаса. Опыты показали, что не только собаки, но и кошки могут долго дышать жидкостью. Иногда они оставались под водой много часов подряд и затем спокойно возвращались к привычному способу дыхания.

А способен ли дышать водой человек? Ободренный успехом опытов на животных, Иоганес Килстра сделал попытку прояснить и этот вопрос. Первым испытуемым стал водолаз с 20-летним опытом Фрэнк Фалежчик. Когда ему залили одно легкое, он чувствовал себя так хорошо, что просил одновременно заполнить и другое. «Пока в этом нет необходимости»,- сказал ученый. Однако через некоторое время Килстра решился на такой эксперимент.

В лаборатории собрались двадцать докторов, чтобы засвидетельствовать удивительный опыт. Подопытным согласился быть все тот же Фрэнк Фалежчик. Ему сделали анестезию горла для подавления глотательного рефлекса и ввели в трахею (дыхательное горло) эластичную трубку. Через нее ученый начал постепенно вливать специальный раствор. Жидкость поступала в оба легких, и все напряженно наблюдали за Фалежчиком, который не обнаруживал никаких признаков паники. Более того, он показал знаками, что готов помогать экспериментаторам, и сам стал записывать свои ощущения. Человек дышал жидкостью не один час! Однако, потребовалось пара дней, чтобы окончательно откачать ее из легких. «Я не ощущал никакого дискомфорта, - сказал после опыта Фрэнк Фалежчик,- и не чувствовал тяжести в груди, как изначально предполагал». Размышляя над результатами этих интереснейших опытов, доктор Килстра высказал убеждение, что человек с залитыми водой легкими может совершенно безболезненно опуститься на полкилометра и через двадцать минут вернуться на поверхность.

Много лет назад Жак-Ив Кусто выдвинул любопытное предположение. «Придет время, - писал он, - и человечество выведет новую расу людей-«Гомо акватикус» («человек подводный»). Они заселят морское дно, построят там города и будут жить как на земле». Кто знает, может быть, пророчество отважного капитана, признанного старейшины подводных пловцов, когда-нибудь и сбудется?

Подпишитесь на нас

МОСКВА, 27 янв — РИА Новости, Ольга Коленцова. Хотя плод девять месяцев живет в воде, а плавание полезно для здоровья, водная среда для человека опасна. Утонуть может любой — ребенок, взрослый, прекрасно подготовленный пловец… А у спасателей не так много времени, чтобы сохранить человеку не только жизнь, но и рассудок.

Преодолеть натяжение

Когда человек тонет, вода попадает в его легкие. Но почему люди не могут хотя бы недолго прожить, черпая кислород из воды? Чтобы понять это, разберемся, как человек дышит. Легкие похожи на гроздь винограда, где бронхи разветвляются, словно веточки-побеги, на множество воздухоносных путей (бронхиол) и венчаются ягодами — альвеолами. Волокна в них сжимаются и разжимаются, пропуская кислород и другие газы из атмосферы в кровеносные сосуды или выпуская наружу CO 2 .

"Для обновления воздуха необходимо совершить дыхательное движение, в котором участвуют межреберные мышцы, диафрагма и часть мышц шеи. Однако поверхностное натяжение воды намного больше, чем у воздуха. Молекулы внутри вещества притягиваются друг к другу равномерно благодаря тому, что со всех сторон есть соседи. У молекул на поверхности соседей меньше, и они притягиваются друг к другу сильнее. Значит, чтобы крохотные альвеолы смогли втянуть в себя воду, от комплекса мышц требуется неизмеримо большее усилие, чем при вдохе воздуха", — рассказывает доктор медицинских наук Алексей Умрюхин, заведующий кафедрой нормальной физиологии Первого МГМУ имени И. М. Сеченова.

В легких взрослого человека содержится 700-800 миллионов альвеол. Их общая площадь — порядка 90 квадратных метров. Нелегко оторвать друг от друга даже два гладких стекла, если между ними есть слой воды. Представьте, какие усилия при вдохе нужно приложить, чтобы разлепить столь огромную площадь альвеол.

© Иллюстрация РИА Новости. Depositphotos / sciencepics, Алина Полянина

© Иллюстрация РИА Новости. Depositphotos / sciencepics, Алина Полянина

Кстати, именно сила поверхностного натяжения составляет огромную проблему разработки жидкостного дыхания. Можно насытить раствор кислородом и подобрать его параметры так, чтобы связи между молекулами были ослаблены, но в любом случае сила поверхностного натяжения останется значительной. Участвующим в дыхании мышцам все равно потребуется намного больше усилий, чтобы загнать раствор в альвеолы и выгнать его оттуда. На жидкостном дыхании можно продержаться несколько минут или час, но рано или поздно мышцы просто устанут и не смогут справляться с работой.

Переродиться не выйдет

Альвеолы новорожденного заполнены некоторым количеством околоплодной жидкости, то есть находятся в слипшемся состоянии. Ребенок делает первый вдох, и альвеолы открываются — уже на всю жизнь. Если в легкие попадает вода, поверхностное натяжение заставляет альвеолы склеиться, и требуется огромное усилие, чтобы их разлепить. Два, три, четыре вдоха в воде — вот максимум человека. Все это сопровождается судорогами — организм работает на пределе, легкие и мышцы горят, пытаясь выжать из себя все что можно.

В популярном сериале "Игра престолов" есть такой эпизод. Претендента на трон посвящают в короли следующим образом: голову держат под водой, пока он не перестанет барахтаться и подавать признаки жизни. Затем тело вытаскивают на берег и ждут, когда человек сам сделает вдох, откашляется и встанет. После чего претендент признается полноправным правителем. Но создатели сериала приукрасили реальность: после серии вдохов-выдохов в воде организм сдается — и мозг перестает посылать сигналы о том, что надо пробовать дышать.

© Bighead Littlehead (2011 – ...) Кадр из сериала "Игра престолов". Люди ждут, пока будущий король не сделает вдох самостоятельно.


© Bighead Littlehead (2011 – ...)

Разум — слабое звено

Человек может задерживать дыхание на три-пять минут. Затем уровень кислорода в крови снижается, желание сделать вдох становится нестерпимым и совершенно неконтролируемым. Вода попадает в легкие, но в ней недостаточно кислорода, чтобы насытить ткани. От отсутствия кислорода страдает в первую очередь мозг. Другие клетки способны какое-то время продержаться на анаэробном, то есть бескислородном, дыхании, хотя и энергии будут производить в 19 раз меньше, чем в аэробном процессе.

"Структуры мозга расходуют кислород по-разному. Особой "прожорливостью" отличается кора больших полушарий. Именно она контролирует сознательную сферу деятельности, то есть ответственна за творчество, высшие социальные функции, интеллект. Ее нейроны первыми израсходуют запасы кислорода и погибнут", — отмечает эксперт.

Если утопленнику удается вернуть жизнь, его сознание может так и не прийти в норму. Конечно, многое зависит от времени нахождения под водой, состояния организма, индивидуальных особенностей. Но врачи считают, что в среднем мозг утонувшего погибает через пять минут.

Часто те, кто тонули, превращаются в инвалидов — лежат в коме или почти полностью парализованы. Хотя формально организм в норме, пострадавший мозг не может управлять им. Так случилось с 17-летним Маликом Ахмадовым, который в 2010 году спас тонувшую девушку ценой своего здоровья. Вот уже семь лет парень проходит реабилитацию курс за курсом, но полностью его мозг не восстановился.

Исключения редки, но случаются. В 1974 году пятилетний мальчик в Норвегии вышел на лед реки, провалился и утонул. Его достали из воды лишь спустя 40 минут. Врачи сделали искусственное дыхание, массаж сердца, и реанимация увенчалась успехом. Два дня ребенок пролежал без сознания, а потом открыл глаза. Врачи обследовали его и с удивлением констатировали, что головной мозг — в абсолютной норме. Возможно, ледяная вода настолько замедлила обмен веществ в организме ребенка, что его мозг словно заморозился и не нуждался в кислороде, как и остальные органы.

Врачи предупреждают: если человек уже ушел под воду, у спасателя есть буквально минута, чтобы его спасти. Чем быстрее пострадавшему удалить воду из легких, вызвав рвотный рефлекс, тем больше шансов на полное восстановление. Важно помнить, что тонущий человек редко выдает себя криком или активными попытками удержаться на воде, у него просто не хватает на это сил. Поэтому, если вы заподозрили неладное, лучше спросить, все ли в порядке, и если ответа нет, предпринять меры к спасению утопающего.

Наверняка, каждый из вас пытался задерживать дыхание. Кто-то продержался несколько секунд, самые же смелые не дышали до появления головокружения. Однако результаты все равно не превышали 1 минуты. Как тогда с виду обычный человек умудрился продержаться под водой без дыхания более 20 минут и попал в Книгу мировых рекордов Гиннеса?

Известно, что обычный человек может задерживать дыхание до 1 минуты. Максимальная задержка дыхания под водой у ловцов жемчуга и спортсменов достигает 6 минут . Далее наступает кислородное голодание мозга, конвульсии и смерть.

35-летний фридайвер из Германии Том Ситас вышел «сухим из воды», задержав дыхание на целых 22 мин 22 сек! Этим самым он побил ранее установленные рекорды иллюзиониста Дэвида Блейна , ныряльщика из Италии Джанлука Генони и свой собственный рекорд в 17 мин 28 сек.

Как же удается задержать дыхание на такое длительное время? Понятно, что максимальная задержка дыхания под водой совершенно невозможна без тренировки предварительной подготовки. Во-первых, согласно правилам установления рекорда, участник перед погружением может дышать 30 мин чистым кислородом. Во-вторых, сам Ситас признался, что за 5 часов до установления рекорда не ел и по специальным методикам замедлял метаболизм в своем организме. В-третьих, участники находятся под водой в спокойном, неподвижном состоянии, что значительно снижает потребность в кислороде. И еще. Все фридайверы владеют методикой полувдохов-полувыдохов. Если бы у рекордсменов был зажим на носу и заткнут рот, вряд ли бы они смогли так долго продержаться без дыхания.

Несмотря на это, рекорд Тома Ситаса сам по себе является подтверждением неограниченных возможностей человеческого организма. К примеру, и способны задерживать дыхание на 20 мин, тюлени и другие ластоногие — до 70 мин, а киты — на 1,5 часа. Так что человек, как существо сухопутное, способный задерживать дыхание, словно житель водной стихии, заслуживает уважения и славы.

Видео

P.S. Обычным, неподготовленным людям не рекомендуется пытаться устанавливать рекорды подобного рода . Такие попытки могут в рекордные сроки отправить вас в мир иной.

Жизнь на нашей планете зародилась, по-видимому, в воде - в среде, где запасы кислорода весьма скудны. При атмосферном давлении содержание кислорода в воздухе на уровне моря составляет 200 миллилитров на литр, а в литре поверхностного слоя воды растворено меньше семи миллилитров кислорода.

Первые обитатели нашей планеты, приспособившись к водной среде, дышали жабрами, назначение которых — экстрагировать максимальное количество кислорода из воды.

В ходе эволюции животные освоили богатую кислородом атмосферу суши и начали дышать легкими. Функции дыхательных органов остались прежними.

Как в легких, так и в жабрах кислород через тонкие мембраны проникает из окружающей среды в кровеносные сосуды, а углекислый газ выбрасывается из крови в окружающую среду. Итак, и в жабрах и в легких протекают одни и те же процессы. Отсюда возникает вопрос: смогло бы животное с легкими дышать в водной среде, если бы в ней содержалось достаточное количество кислорода?

Ответ на этот вопрос заслуживает внимания по нескольким причинам. Во-первых, мы смогли бы узнать, почему дыхательные органы сухопутных животных так отличаются по строению от соответствующих органов водных животных.

Кроме того, ответ на этот вопрос имеет и чисто практический интерес. Если бы специально подготовленный человек смог дышать в водной среде, то это облегчило бы и освоение глубин океана и путешествия к далеким планетам. Все это и послужило основанием к постановке ряда экспериментов по изучению возможности дыхания сухопутных млекопитающих водой.

Проблемы при дыхании водой

Эксперименты проводились в лабораториях Нидерландов и США. Дыхание водой связано с двумя основными проблемами. Об одной уже говорилось: при обычном атмосферном давлении в воде растворено слишком мало кислорода.

Вторая проблема заключается в том, что вода и кровь — жидкости с очень различными физиологическими свойствами. При «вдохе» вода может повредить ткани легких и вызвать фатальные изменения объема и состава находящихся в организме жидкостей.

Предположим, мы приготовили специальный изотонический раствор, где состав солей такой же, как и в плазме крови. Под большим давлением раствор насыщают кислородом (его концентрация примерно такая же, как в воздухе). Сможет ли животное дышать таким раствором?

Первые подобные эксперименты были проведены в Лейденском университете. Через шлюз, подобный спасательному шлюпу подводной лодки, мышей вводили в камеру, заполненную специально подготовленным раствором, и который под давлением был введен кислород. Через прозрачные стенки камеры можно было наблюдать за поведением мышей.

В первые несколько мгновений животные пытались выбраться на поверхность, но им мешала проволочная сетка. После первых волнений мыши успокаивались и, казалось, не очень страдали в подобной ситуации. Они совершали медленные, ритмичные дыхательные движения, по-видимому, вдыхая и выдыхая жидкость. Некоторые из них прожили в таких условиях в течение многих часов.

Главная трудность дыхания водой

После ряда опытов стало ясно, что решающим фактором, определяющим продолжительность жизни мышей, является не недостаток кислорода (который мог быть введен в раствор в любом нужном количестве простым повышением его парциального давления), а трудность выделения из организма углекислого газа в необходимой степени.

Мышь, прожившая самое длительное время - 18 часов,- находилась в растворе, в который было добавлено небольшое количество органического буфера, трис(оксиметил)аминометана. Последний сводит к минимуму неблагоприятный эффект накопления углекислого газа в организме животных. Снижение температуры раствора до 20 С (примерно половина нормальной температуры тела мыши) также способствовало продлению жизни.

В данном случае это обусловливалось общим замедлением процессов обмена веществ.

Обычно в литре выдыхаемого животным воздуха содержится 50 миллилитров углекислого газа. При прочих равных условиях (температура, парциальное давление углекислого газа) в одном литре солевого раствора, идентичного по своему солевому составу крови, растворяется только 30 миллилитров этого газа.

Значит, чтобы выделить необходимое количество углекислого газа, животное должно вдыхать воды вдвое больше, чем воздуха. (А ведь для прокачивания жидкости через бронхиальные сосуды требуется в 36 раз больше энергии, так как вязкость воды в 36 раз превышает вязкость воздуха.)

Отсюда очевидно, что даже при отсутствии турбулентного движения жидкости в легких для дыхания водой необходимо в 60 раз больше энергии, чем для дыхания воздухом.

Поэтому нет ничего удивительного в том, что подопытные животные постепенно ослабевали, а потом - вследствие истощения и накопления в организме углекислого газа — дыхание прекращалось.

Результаты эксперимента

На основании проведенных опытов нельзя было судить о том, какое количество кислорода поступает в легкие, насколько насыщена им артериальная кровь и какова степень накопления в крови животных углекислого газа. Постепенно мы подошли к серии более совершенных экспериментов.

Они проводились на собаках в большой камере, снабженной дополнительным оборудованием. Камера наполнялась воздухом под давлением в 5 атмосфер. Здесь же находилась ванна с солевым раствором, насыщенным кислородом. В нее погружали подопытное животное. Перед экспериментом, чтобы снизить общую потребность организма в кислороде, собак анестезировали и охлаждали до 32°С.

Во время погружения собака совершала бурные дыхательные движения. Струйки воды, поднимающиеся с поверхности, ясно показывали, что она прокачивала раствор через легкие. По окончании эксперимента собаку вытаскивали из ванны, удаляли из легких воду и вновь наполняли их воздухом. Из шести животных, подвергшихся испытанию, одно выжило. Собака дышала в воде 24 минуты.

Результаты эксперимента можно сформулировать следующим образом: в определенных условиях животные, которые дышат воздухом, в течение ограниченного промежутка времени могут дышать водой. Главный недостаток водного дыхания - накопление углекислого газа в организме.

Во время опыта давление крови выжившей собаки было несколько меньше нормального, но оставалось постоянным; пульс и дыхание были медленными, но равномерными, артериальная кровь насыщена кислородом. Содержание углекислого газа в крови постепенно увеличивалось.

Это означало, что бурная дыхательная деятельность собаки была недостаточной для удаления необходимых количеств углекислого газа из организма.

Новая серия опытов дыхания водой

В Нью-Йоркском государственном университете я продолжил работу совместно с Германом Рааном, Эдвардом X. Ланфиром и Чарльзом В. Паганелли. В новой серии опытов были применены приборы, позволившие получить конкретные данные по газообмену, происходящему в легких собаки при дыхании жидкостью. Как и прежде, животные дышали солевым раствором, насыщенным кислородом под давлением в 5 атмосфер.

Газовый состав вдыхаемой и выдыхаемой жидкости определяли на входе и выходе раствора из легких собак. Насыщенная кислородом жидкость попадала в организм находящейся под наркозом собаки через резиновую трубку, вставленную в трахею. Поток регулировался клапанным насосом.

При каждом вдохе раствор под действием силы тяжести стекал в легкие, а при выдохе жидкость по такому же принципу поступала в специальный приемник. Количество кислорода, поглощенного в легких, и количество выделенного углекислого газа определяли как разность соответствующих величин в равных объемах вдыхаемой и выдыхаемой жидкости.

Животных не охлаждали. Оказалось, что в этих условиях собака экстрагирует примерно такое же количество кислорода из воды, как обычно из воздуха. Как и следовало ожидать, животные не выдыхали достаточного количества углекислого газа, поэтому содержание его в крови постепенно увеличивалось.

По окончании эксперимента, продолжительность которого доходила до сорока пяти минут, воду из легких собаки удаляли через специальное отверстие в трахее. Легкие продували несколькими порциями воздуха. Дополнительных процедур по «оживлению» не проводили. Шесть из шестнадцати собак перенесли эксперимент без видимых последствий.

Взаимодействие трех элементов

Дыхание и рыб и млекопитающих основано на сложном взаимодействии трех элементов:

1) потребности организма в газообмене,

2) физических свойств окружающей среды и

3) строения органов дыхания.

Чтобы подняться выше чисто интуитивной оценки значения строения органов в процессе приспособления, необходимо точно понимать все эти взаимодействия. Следует, очевидно, поставить такие вопросы. Как молекула кислорода попадает из окружающей среды в кровь? Каков ее точный путь? Ответить на эти вопросы куда более сложно, чем можно предположить.

При расширении грудной клетки в легкие животного попадает воздух (или вода). Что же происходит с жидкостью, попавшей в пограничные воздушные мешочки легких? Рассмотрим это явление на простом примере.

Если в частично заполненный водой шприц медленно вводить через иглу небольшое количество чернил, то они сначала образуют тоненькую струйку в центре сосуда. После прекращения «вдоха» чернила постепенно распространяются по всему объему воды.

Если же чернила вводить быстро, так, чтобы поток был турбулентным, смешивание произойдет, конечно, гораздо быстрее. На основании полученных данных, а также учитывая размер бронхиальных трубок, можно заключить, что вдыхаемый поток воздуха или воды входит в воздушные мешочки медленно, без турбулентности.

Следовательно, можно предположить, что при вдохе свежего воздуха (или воды) молекулы кислорода сначала сосредоточатся в центре воздушных мешочков (альвеол). Теперь им предстоит преодолеть посредством диффузии значительные расстояния, прежде чем они достигнут стенок, через которые попадут в кровь.

Эти расстояния во много раз больше толщины мембран, отделяющих в легких воздух от крови. Если вдыхаемой средой является воздух, это не имеет большого значения: кислород распределяется равномерно по всей альвеоле за миллионные доли секунды.

Скорость распространения газов в воде в 6 тысяч раз меньше, чем в воздухе. Поэтому при дыхании водой возникает разность парциальных давлений кислорода в центральной и периферийной областях. Вследствие малой скорости диффузии газов давление кислорода в центре альвеолы с каждым циклом дыхания становится выше,чем у стенок. Концентрация же углекислого газа, уходящего из крови, больше у стенок альвеолы, чем в центре.

Газообмен в легких

Такие теоретические предпосылки возникли на основании изучения газового состава выдыхаемой жидкости во время экспериментов на собаках. Воду, вытекающую из легких собаки, собирали в длинную трубку.

При этом оказалось, что в первой порции воды, поступившей, по-видимому, из центральной части альвеол, кислорода больше, чем в последней, поступившей от стенок. При дыхании собак в воздушной среде ощутимой разницы в составах первой и последней порций выдыхаемого воздуха не наблюдалось.

Интересно отметить, что газообмен, происходящий в легких собаки при дыхании водой, очень напоминает процесс, протекающий в простой капле воды, когда на ее поверхности осуществляется обмен: кислород - углекислый газ. На основании такой аналогии была построена математическая модель легких, а в качестве функциональной единицы выбрана сфера с диаметром примерно в один миллиметр.

Расчет показал, что легкие составляют около полумиллиона таких сферических газообменных ячеек, передача газа в которых осуществляется только при помощи диффузии. Вычисленное количество и размер этих ячеек близко совпадают с количеством и размером определенных структур легких, называемых «первичными дольками» (лобулями).

По-видимому, эти дольки и являются главными функциональными единицами легких. Аналогично — с привлечением анатомических данных — можно построить математическую модель жабр рыб, первичные газообменные единицы которых будут иметь соответственно другую форму.

Построение математических моделей позволило провести четкую грань между органами дыхания млекопитающих и рыб. Оказывается, главное заключается в геометрической структуре дыхательных ячеек. Это становится особенно очевидным при исследовании зависимости, связывающей потребность рыбы в газообмене, а свойства окружающей среды с формой органов дыхания рыб.

В уравнение, выражающее данную зависимость, входят такие величины, как доступность кислорода, то есть его концентрация, скорость диффузии и растворимость в окружающей животное среде.

Объем вдыхаемого воздуха или воды, число и размер газообменных ячеек, количество кислорода, поглощаемого ими, и, наконец, давление кислорода в артериальной крови. Предположим, что рыбы имеют в качестве органов дыхания не жабры, а легкие.

Подставив в уравнение реальные данные газообмена, протекающего при дыхании рыбы, мы обнаружим, что рыба с легкими не сможет жить в воде, так как расчет показывает полное отсутствие кислорода в артериальной крови вашей модели рыбы.

Значит, в предположении была ошибка, а именно: выбранная форма газообменной ячейки оказалась неверной. Рыбы живут в воде благодаря жабрам, состоящим из плоских, тонких, плотно упакованных пластинок. В такой структуре - в отличие от сферических ячеек легких - не возникает проблемы диффузии газов.

Животное с органами дыхания, подобными легким, может выжить в воде только в том случае, если потребность его организма в кислороде крайне мала. В качестве примера назовем голотурию (морской огурец).

Жабры дают рыбам возможность жить в воде, и эти же жабры не позволяют им существовать вне воды. На воздухе они разрушаются под действием силы тяжести. Поверхностное натяжение на границе воздух - вода вызывает слипание плотно упакованных жаберных пластинок.

Общая площадь жабр, доступная для газообмена, уменьшается настолько, что рыба не может дышать, несмотря на обилие кислорода в воздухе. Альвеолы легких предохраняются от разрушения, во-первых, грудной клеткой, во-вторых, выделяющимся в легких смачивающим агентом, который значительно уменьшает поверхностное натяжение.

Дыхание млекопитающих в воде

Изучение процессов дыхания млекопитающих в воде дало, таким образом, новые сведения об основных принципах дыхания вообще. С другой стороны, возникло реальное предположение, что человек сможет без вредных последствий ограниченное время дышать жидкостью. Это позволит водолазам спускаться на значительно большие глубины океана, чем сейчас.

Главная опасность глубоководного погружения связана с давлением воды на грудную клетку и легкие. В результате в легких повышается давление газов, и часть газов попадает в кровь, что приводит к серьезным последствиям. При высоких давлениях большинство газов токсично для организма.

Так, азот, попадающий в кровь водолаза, вызывает интоксикацию уже на глубине 30 метров и практически выводит его из строя на глубине 90 метров благодаря возникающему азотному наркозу. (Эта проблема может быть решена использованием редких газов, таких, как гелий, которые не токсичны даже при очень высоких концентрациях.)

Кроме того, если водолаз возвращается слишком быстро с глубины на поверхность, газы, растворенные в крови и тканях, выделяются в виде пузырьков, вызывая кессонную болезнь.

Этой опасности можно избежать, если водолаз будет дышать не воздухом, а жидкостью, обогащенной кислородом. Жидкость в легких выдержит значительные внешние давления, а объем ее при этом практически не изменится. В таких условиях водолаз, опускаясь на глубину в несколько сот метров, сможет быстро, без всяких последствий вернуться на поверхность.

В доказательство того, что кессонная болезнь не возникает при дыхании водой, в моей лаборатории были проведены следующие опыты. В экспериментах с мышью, которая дышала жидкостью, давление в 30 атмосфер в течение трех секунд доводили до одной атмосферы. Признаков заболевания не наблюдалось. Такая степень изменения давления эквивалентна эффекту подъема с глубины 910 метров со скоростью 1 100 километров в час.

Человек может дышать водой

Дыхание жидкостью может пригодиться человеку во время будущих путешествий в космос. При возвращении с далеких планет, например, с Юпитера, возникнет потребность в огромных ускорениях, позволяющих выйти из зоны притяжения планеты. Эти ускорения значительно больше того, что может вынести организм человека, особенно легко уязвимые легкие.

Но те же нагрузки станут вполне допустимыми, если легкие будут заполнены жидкостью, а тело космонавта погружено в жидкость с плотностью, равной плотности крови, подобно тому, как плод погружен в амниотическую жидкость материнской утробы.

Итальянские физиологи Рудольф Маргариа, Т. Гволтеротти и Д. Спинелли в 1958 году ставили такой опыт. Стальной цилиндр, в котором находились беременные крысы, бросали с разных высот на свинцовую опору. Целью эксперимента было проверить, выживет ли плод в условиях резкого торможения и толчка при приземлении. Скорость торможения вычисляли по глубине вдавливания цилиндра в свинцовую основу.

Сами животные в ходе опыта немедленно погибали. Вскрытия показывали значительное повреждение легких. Однако освобожденные хирургическим путем эмбрионы были живыми и развивались нормально. Плод, защищенный утробной жидкостью, способен перенести отрицательные ускорения до 10 тысяч g.

После экспериментов, показавших, что сухопутные животные могут дышать жидкостью, резонно предположить такую возможность и для человека. В настоящее время мы располагаем некоторыми прямыми доказательствами в пользу этого предположения. Так, например, нами используется сейчас новый метод лечения некоторых заболеваний легких.

Метод состоит в промывании одного легкого солевым раствором, удаляющим патологические выделения из альвеол и бронхов. Второе легкое дышит при этом газообразным кислородом.

Успешное осуществление этой операции вдохновило нас поставить эксперимент, на который добровольно вызвался мужественный водолаз — глубинник Фрэнсис Д. Фалейчик.

Под наркозом в его трахею был введен двойной катетер, каждая трубка которого доходила до легких. При нормальной температуре тела воздух в одном легком заменили 0,9-процентным раствором поваренной соли. «Дыхательный цикл» заключался в ведении солевого раствора в легкое и последующем удалении его.

Цикл был повторен семь раз, причем для каждого «вдоха» брали 500 миллилитров раствора. Фалейчик, находившийся в течение всей процедуры в полном сознании, рассказал, что он не заметил значительной разницы между легким, дышащим воздухом, и легким, дышащим водой. Он не испытывал также неприятных ощущений при входе и выходе потока жидкости из легкого.

Конечно, этот опыт еще очень далек от попытки осуществить процесс дыхания обоими легкими в воде, но он показал, что заполнение легких человека солевым раствором, если процедура выполнена правильно, не вызывает серьезных разрушений тканей и не производит неприятных ощущений.

Самая трудная проблема дыхания водой

Вероятно, самая трудная проблема, которую предстоит разрешить, связана с выделением из легких углекислого газа при дыхании водой. Как мы уже говорили, вязкость воды примерно в 36-40 раз больше вязкости воздуха. Это значит, что легкие будут прокачивать воду, по крайней мере, в сорок раз медленнее, чем воздух.

Другими словами, здоровый молодой водолаз, способный вдыхать 200 литров воздуха в минуту, сможет вдохнуть в минуту всего 5 литров воды. Вполне очевидно, что при таком дыхании углекислый газ не будет выделяться в достаточном количестве, даже если человек целиком погружен в воду.

Можно ли разрешить эту проблему использованием среды, в которой углекислый газ растворяется лучше, чем в воде? В некоторых сжиженных синтетических фтороуглеродах углекислого газа растворяется, например, в три раза больше, чем в воде, а кислорода - в тридцать раз. Леланд С. Кларк и Франк Голлан показали, что мышь может жить в содержащем кислород жидком фтористом углероде при атмосферном давлении.

Во фтористом углероде не только содержится больше кислорода, чем в воде, но в этой среде в четыре раза выше и скорость диффузии газа. Однако и здесь по-прежнему остается камнем преткновения малая пропускная способность жидкости через легкие: фтороуглероды обладают еще большей вязкостью, чем солевой раствор.

Перевод с английского Н. Познанской.

08.06.2018 - админ

Первый раз люди узнали о человеке, который мог дышать под водой, из романа «Человек амфибия», написанного советским писателем-фантастом Александром Беляевым. А по уверению доктора Бориса Егорова, первого ученого, побывавшего в космосе, люди реально могут погрузиться на большую глубину и дышать кислородом, получаемым прямо из воды. Для этого необходимо, чтобы в его легкие была закачена специальная жидкость.

В настоящее время успешные опыты проводятся с животными голландским ученым физиологом Иоганнесом Килстром. Опыты проводят на мышах, и они подтвердили слова врача-космонавта. В легкие мыши закачивается специальная слегка подсоленная жидкость, в которой содержится много кислорода. Затем мышка помещается в емкость с водой, из которой она не может выбраться. Животное начинает плавать, как рыба в воде, и не видно, чтобы оно паниковало.

Ученый, кандидат медицинских наук Владлен Козак проводил подобные эксперименты еще в Советском союзе. После проведения опытов с мышкой Иоганнес Килстр поставил подобный эксперимент с собакой, и довольно успешно. Затем опыты проводились на кошках и многих других животных, которые дышали под водой легкими, в которые предварительно закачивалась специальная жидкость. Животные добровольно плавали подобно рыбам, по нескольку часов, после чего спокойно начинали снова дышать воздухом.

Когда встал вопрос о проведении эксперимента на человеке, вызвался первый доброволец, дайвер, имеющий двадцатилетний стаж подводного плавания, Фрэнк Фалежчик. Чтобы избежать неприятных и опасных неожиданностей, ученые решили вначале заполнить жидкостью только одно легкое добровольца. Дайвер убеждал о своем прекрасном самочувствии, поэтому исследователи решились на проведение полноценного эксперимента, который прошел блестяще.

Ученые и доктора в количестве двадцати человек наблюдали за этим чудом. А испытуемый не беспокоился, а, чтобы помочь исследователям, решил записывать все, что ощущает. В течении нескольких часов мужчина пробыл под водой, плавая, как рыба, и дыша кислородом, получаемым из воды через легкие.

Иоганнес Килстр доказал, что, если человеку заполнить легкие специальной жидкостью, он дышит под водой, опускаясь на большую глубину (не менее 500 метров).

Нашим пользователям, наверное, интересно знать, существует ли что-то такое в нашей стране? В Севастополе функционирует лаборатория, в которой изучается и применяется жидкостное дыхание.

Многие, наверное, слушали о великом французском покорителе океанов и морей Жаке-Ив Кусто. Им был изобретен легкий акваланг. Исследователь писал о том, что настанет время, когда появится новая человеческая раса, которая будет жить под водой, будет строить под водой города, и появится . Отважный капитан, кажется, был прав.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...