Металлы в периодической системе большей частью находятся. Л.п.иванова, учитель химии новинской средней школы (астраханская обл.)

Положение металлов в периодической системе. Физические свойства

В периодической системе Д. И. Менделеева из 110 элементов 87 являются металлами. Они находятся в I, II, III группах, в побочных подгруппах всех групп. Кроме того, металлами являют­ся наиболее тяжелые элементы IV, V, VI и VII групп. Однако многие металлы обладают амфотерными свойствами и иногда могут вести себя как неметаллы. Особенностью строения атомов металлов является небольшое число электронов во внешнем энер­гетическом уровне, не превышающее трех. Атомы металлов имеют, как правило, большие атомные радиусы. В периодах наи­большие атомные радиусы у щелочных металлов. Они наиболее химически активны, т.е. атомы металлов легко отдают электроны и являются хорошими восстановителями. Лучшие восстановите­ли - металлы I и II групп главных подгрупп. В соединениях металлы всегда проявляют положительную степень окисления, обычно от +1 до +4. В соединениях с неметаллами типичные металлы образуют химическую связь ионного характера. В виде простого вещества атомы металлов связаны между собой так на­зываемой металлической связью.

Металлическая связь - особый вид связи, присущий исклю­чительно металлам. Сущность ее в том, что от атомов металла постоянно отрываются электроны, которые перемещаются по всей массе куска металла.

Атомы металла, лишенные электронов, превращаются в по­ложительные ионы, которые снова притягивают к себе движу­щиеся электроны. Одновременно другие атомы металла отдают электроны. Таким образом, внутри куска металла постоянно цир­кулирует так называемый электронный газ, который прочно свя­зывает между собой все атомы металла. Электроны оказываются как бы обобществленными всеми атомами металла. Такой особый тип химической связи между атомами металлов обуславливает как физические, так и химические свойства металлов.

Металлы обладают рядом сходных физических свойств, отли­чающих их от неметаллов. Чем больше валентных электронов имеет металл, тем прочнее кристаллическая решетка, тем проч­нее и тверже металл, тем выше его температура плавления и кипения и т.д.

Все металлы обладают более или менее ярко выраженным блеском, который принято называть металлическим, и непро­зрачностью, что связано с взаимодействием свободных электро­нов с падающими на металл квантами света. Металлический блеск характерен для куска металла в целом. В порошке металлы темного цвета, за исключением серебристо-белых магния и алю­миния. Алюминиевая пыль используется для изготовления крас­ки «под серебро». Многие металлы обладают жирным или стек­лянным блеском.

Цвет металлов довольно однообразен: он либо серебристо-белый (алюминий, серебро, никель), либо серебристо-серый (же­лезо, свинец). Только золото желтого цвета, а медь - красного. По технической классификации металлы делятся условно на чер­ные и цветные. К черным относятся железо и его сплавы. Все остальные металлы называются цветными.

Все металлы, за исключением ртути, - твердые вещества с кристаллической структурой, поэтому температуры плавления их выше нуля, только температура плавления ртути - З9°C. Наи­более тугоплавким металлом является вольфрам (3380°С). Метал­лы, плавящиеся при температуре выше 1000°С, называют туго­плавкими, ниже - легкоплавкими.

Металлы обладают различной твердостью. Самый твердый металл - хром (режет стекло), а самые мягкие - калий, рубидий, цезий. Они легко режутся ножом.

Металлы более или менее пластичны (обладают ковкостью). Наиболее ковким металлом является золото. Из него можно вы­ковать фольгу толщиной 0,0001 мм - в 500 раз тоньше человечес­кого волоса. Однако не обладают пластичностью Mn и Bi - это хрупкие металлы.

Пластичностью называют способность к сильной деформации без нарушения механической прочности. При воздействии, вызы­вающем смещение частиц тела с ионной или атомной решеткой, происходит разрыв направленных связей, и тело разрушается. У металлов же связи образуются за счет электронного газа. Они не имеют направленности. Поэтому сохраняется целостность куска металла при изменении формы. Пластичность металлов исполь­зуется при их прокате.

По плотности металлы разделяются на тяжелые и легкие. Тяжелыми считаются те, плотность которых больше 5 г/см. Самым тяжелым металлом является осмий (22,61 г/см). Наибо­лее легкие металлы - литий, натрий, калий (плотность меньше единицы). Плотность металла тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Широкое применение в промышленности получили легкие металлы - маг­ний и алюминий.

Металлы характеризуются высокой электро- и теплопровод­ностью. Наиболее электро- и теплопроводно серебро, на втором месте стоит алюминий. Металлы с высокой электропроводностью имеют и высокую теплопроводность. Теплопроводность обуслав­ливается высокой подвижностью свободных электронов и колеба­тельным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе тела. Хорошая электропро­водность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разницы по­тенциалов приобретают направленное движение от отрицатель­ного полюса к положительному.

Металлы проявляют магнитные свойства. Хорошо намагни­чиваются железо, кобальт, никель и их сплавы. Такие металлы и сплавы называются ферромагнитными.

Классификации:

Все неорганические соединения делятся на две большие группы:

    Простые вещества - состоят из атомов одного элемента;

    Сложные вещества - состоят из атомов двух или более элементов.

Простые вещества

  • неметаллы

    амфотерные простые вещества

    благородные газы

Сложные вещества по химическим свойствам делятся на:

    осно́вные оксиды

    кислотные оксиды

    амфотерные оксиды

    двойные оксиды

    несолеобразующие оксиды

    Гидроксиды;

    основания

  • амфотерные гидроксиды

    средние соли

    кислые соли

    осно́вные соли

    двойные и/или комплексные соли

бинарные соединения:

    бескислородные кислоты

    бескислородные соли

    прочие бинарные соединения

Неорганические вещества, содержащие углерод:

Данные вещества традиционно относятся к области неорганической химии:

    Карбонаты

  • Оксиды углерода

    • Неорганические тиоцианаты (роданиды)

      Селеноцианаты

  • Карбонилы металлов

Металлы - группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами , такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Характерные свойства металлов

    Металлический блеск

    Хорошая электропроводность

    Возможность лёгкой механической

    Высокая плотность

    Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)

    Большая теплопроводность

В реакциях чаще всего являются восстановителями окислительно-восстановительных реакциях в водных растворах.

Неметаллы - химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы.

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов.

Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

Вопрос 25:

Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов - последовательность, в которой металлы расположены в порядке увеличения ихстандартных электрохимических потенциалов, отвечающих полуреакции восстановления катиона металла

Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Zn→Cr→Fe→Cd→Co→Ni→Sn→Pb→H →Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

Ряд напряжений характеризует сравнительную активность металлов в

Соли взаимодействуют с металлами - более активные металлы, расположенные левее в электрохимическом ряду напряжений**, вытесняют из солей менее активные металлы. Например, железо вытесняет медь из раствора хлорида меди (II): Fe + CuCl 2 = FeCl 2 + Cu↓

Вопрос 28: Металлы, их положение в периодической системе химических элементов д.И. Менделеева, строение их атомов, металлические связи. Общие химические свойства металлов.

Положение металлов в периодической системе.

Все химические элементы принято делить на металлы и неметаллы. Большинство элементов (более 85 из 109 известных) - это металлы.

К металлам относятся s–элементы (элементы IA и IIA групп за исключением водорода и гелия); некоторые p–элементы (Al, Sn, Pb и другие); все d–элементы (элементы побочных подгрупп); все f–элементы (лантаноиды и актиноиды).

Так как металлические свойства элементов с увеличением заряда ядра их атомов в периодах ослабевают, а в главных подгруппах усиливаются, то наиболее активные металлы сосредоточены в левом нижнем углу периодической системы элементов.

Строение металлов .

Отличительные особенности в строении атомов металлов - их большие по сравнению с неметаллами размеры (радиус) и небольшое число электронов на внешнем энергетическом уровне (как правило, 1-2 электрона, реже 3 или 4). Этим объясняется слабая связь внешних (валентных) электронов с ядром и способность атомов металлов легко отдавать эти электроны, превращаясь в положительно заряженные ионы.

Этот процесс обратим, катионы металлов могут вновь притягивать к себе электроны (не только «свои», но и «чужие», то есть «потерянные» другими атомами). Иными словами, электроны свободно перемещаются в объеме металла, являются общими, «коллективными», называемыми также «электронным газом». Эти электроны и обеспечивают химическую связь металлов. В отличие от ковалентной связи (чаще всего образуемой парой электронов между двумя соседними атомами), металлическая связь делокализована (многоцентровая).

Металлическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.

Металлическая связь бывает не только в чистых металах но также характерна для смесей разных металов, сплавов в разных агрегатных состояниях. Металлическая связь имеет важное значение и обуславливает основные свойства металлов - электропроводность – беспорядочное движение електронов в объеме металла. Но при небольшой разности потенциалов, чтобы электроны двигались упорядоченно. Металами с лучшей проводимостью являются Ag, Cu, Au, Al. - пластичность Связи между слоями металла не очень значительны, это позволяет перемещать слои под нагрузкой (деформировать металл не ломая его). Наилучше деформирующиеся металы (мягкие)Au, Ag, Cu. - металлический блеск Электронный газ отражает почти все световые лучи. Вот почему чистые металлы так сильно блестят и чаще всего имеют сенрый или белый цвет. Металы являющиеся наилучшими отражателями Ag, Cu, Al, Pd, H

Сильные восстановители: Me 0 – nē ® Me n+


Введение

Металлы – простые вещества, обладающие в обычных условиях характерными свойствами: высокими электропроводностью и теплопроводностью, способностью хорошо отражать свет (что обуславливает их блеск и непрозрачность), возможностью принимать нужную форму под воздействием внешних сил (пластичностью). Существует и другое определение металлов – это химические элементы, характеризующиеся способностью отдавать внешние (валентные) электроны.

Из всех известных химических элементов около 90 являются металлами. Большинство неорганических соединений – это соединения металлов.

Существует несколько типов классификации металлов. Наиболее четкой является классификация металлов в соответствии с их положением в периодической системе химических элементов – химическая классификация.

Если в «длинном» варианте периодической таблицы провести прямую линию через элементы бор и астат, то слева от этой линии расположатся металлы, а справа от нее – неметаллы.

С точки зрения строения атома металлы под-разделяют на непереходные и переходные. Не-переходные металлы располагаются в главных подгруппах периодической системы и характе-ризуются тем, что в их атомах происходит по-следовательное заполнение электронных уров-ней s и р. К непереходным металлам относят 22 элемента главных подгрупп а: Li , Na , K , Rb , Cs ,Fr , Be , Mg , Ca , Sr , Ba , Ra , Al , Ga , In , Tl , Ge , Sn , Pb , Sb , Bi , Po .

Переходные металлы располагаются в побоч-ных подгруппах и характеризуются заполнени-ем d - или f -электронных уровней. К d -элементам относятся 37 металлов побочных подгрупп б: Cu , Ag , Au , Zn , Cd , Hg , Sc , Y , La , Ac , Ti , Zr , Hf , Rf , V , Nb , Ta , Db , Cr , Mo , W , Sg , Mn , Tc , Re , Bh , Fe , Co , Ni , Ru , Rh , Pd , Os , Ir , Pt , Hs , Mt .

К f- элементамотносятся 14 лантаноидов (Се, Рr, Nd, Рm, Sm, Еu, Gd, Тb, D у, Но, Ег, Тm, Уb, Lu) и 14 актиноидов (Тh, Ра, U, Np, Рu, Аm, Сm, Вk, Сf, Еs, Fm, Мd, No, Lr).

Среди переходных металлов выделяют так-же редкоземельные металлы (Sc , Y , La и лан-таноиды), платиновые металлы (Ru , Rh , Pd , Оs , Ir , Рt ), трансурановые металлы (N р и элементы с большей атомной массой).

Помимо химической существует также, хотя и не общепринятая, но издавна сложившаяся техническая классификация металлов. Она не так логична, как химическая, - в основе её лежит то один, то другой практически важный признак металла. Железо и сплавы на его основе относят к чёрным металлам, все прочие метал-лы - к цветным. Различают лёгкие (Li , Ве, Мg , Тi и др.) и тяжёлые металлы (Мn , F е, Со, Ni , Сu , Zn , Сd , Hg , Sn , Рb и др.), а также группы тугоплавких (Тi , Zr , Hf , V , Nb , Та, Сr , Мо, W , R е), драгоценных (Аg , Аu , платиновые металлы) и радиоактивных (U , Тh , N р, Рu и др.) металлов. В геохимии выделяют также рассеянные (Ga , Ge , Hf , Re и др.) и редкие (Zr , Hf , Nb , Ta , Mo , W , Re и др.) металлы. Как видно между группами четких границ не существует.

Историческая справка

Несмотря на то, что жизнь человеческого общества без металлов невозможна, никто точно не знает, когда и как человек начал впервые ими пользоваться. Самые древние дошедшие до нас письмена повествуют о примитивных мастерских, в которых выплав-или металл и изготавливали из него изделия. Значит, человек овладел металлами раньше, чем письменность. Раскапывая древние поселения, археологи находят орудия труда и охоты, которыми пользовался человек в те далёкие времена, - ножи, топоры, наконечники для стрел, иглы, рыболовные крючки и многое другое. Чем древнее поселения, тем грубее и при-митивнее были изделия человеческих рук. Са-мые древние изделия из металлов были найдены при раскопках поселений, существовавших около 8 тысяч лет назад. Это были в основном украшения из золота и серебра и наконечники стрел и копий из меди.

Греческое слово «металлон» первоначально оз-начало копи, рудники, отсюда и произошёл тер-мин «металл». В древности считалось, что су-ществует только 7 металлов: золото, серебро, медь, олово, свинец, железо и ртуть. Это число соотносилось с числом известных тогда планет -Солнцем (золото), Луной (серебро), Венерой (медь), Юпитером (олово), Сатурном (свинец), Марсом (железо), Меркурием (ртуть) (см. ри-сунок). По алхимическим представлениям, ме-таллы зарождались в земных недрах под вли-янием лучей планет и постепенно совершенст-вовались, превращаясь в золото.

Человек сначала овладел самородными метал-лами - золотом, серебром, ртутью. Первым ис-кусственно полученным металлом была медь, затем удалось освоить получение сплава меди соловом - бронзы и только позднее - железа. В 1556 г. в Германии была издана книга не-мецкого металлурга Г. Агриколы «О горном де-ле и металлургии» - первое дошедшее до нас детальное руководство по получению металлов. Правда, в то время свинец, олово и висмут ещё считали разновидностями одного металла. В 1789 г. французский химик А. Лавуазье в сво-ём руководстве по химии дал список простых веществ, в который включил все известные тог-да металлы - сурьму, серебро, висмут, кобальт, олово, железо, марганец, никель, золото, пла-тину, свинец, вольфрам и цинк. По мере раз-вития методов химического исследования число известных металлов стало быстро возрастать. В 18 в. было открыто 14 металлов, в 19 в. - 38, в 20 в. - 25 металлов. В первой половине 19 в. были открыты спутники платины, получены пу-тём электролиза щелочные и щёлочноземельные металлы. В середине века методом спектрального анализа были открыты цезий, рубидий, таллий и индий. Блестяще подтвердилось су-ществование металлов, предсказанных Д. И. Мен-делеевым на основе его периодического закона (это галлий, скандий и германий). Открытие радиоактивности в конце 19 в. повлекло за со-бой поиски радиоактивных металлов. Наконец, методом ядерных превращений в середине 20 в. были получены не существующие в природе ра-диоактивные металлы, в частности трансурано-вые элементы.

Физические и химические свойства металлов.

Все металлы - твер-дые вещества (кроме ртути, которая при обычных условиях жидкая), они отличаются от неметаллов особым видом связи (металлическая связь). Валентные электроны слабо связаны с конкретным атомом, и внутри каждого металла существует так называемый электронный газ. Большинство металлов имеют кристаллическую структуру, и металл можно представить как «жесткую» кристаллическую решетку из положительных ионов (катионов). Эти электроны могут более или менее передвигаться по металлу. Они компенсируют силы отталкивания между катионами и, тем самым, связывают их в компактное тело.

Все металлы об-ладают высокой электрической проводимостью (т. е. они про-водники в отличие от неметаллов-диэлектриков), особенно медь, серебро, золото, ртуть и алюминий; высока и теплопро-водность металлов. Отличительным свойством многих метал-лов является их пластичность (ковкость), вследствие чего они могут быть прокатаны в тонкие листы (фольгу) и вытянуты в проволоку (олово, алюминий и др.), однако встречаются и до-статочно хрупкие металлы (цинк, сурьма, висмут).

В промышленности часто используют не чистые металлы, а их смеси, называемые сплавами. В сплаве свойства одного компонента обычно удачно дополняют свойства другого. Так, медь обладает невысокой твердостью и малопригодна для из-готовления деталей машин, сплавы же меди с цинком, назы-ваемые латунью, являются уже достаточно твердыми и широ-ко используются в машиностроении. Алюминий обладает хо-рошей пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав аюралюмин (дюраль), содержащий медь, магний и марганец. Дюралюмин, не теряя свойств своего алюминия, приобретает высокую твердость и поэтому используется в авиационной технике. Сплавы железа с углеродом (и добавками других металлов) - это известные чугун и сталь.

Металлы очень сильно различаются по плотности: у лития она почти вдвое меньше, чем у воды (0,53 г/см), а у осмия - более чем в 20 раз выше (22,61 г/см 3). Отличаются металлы и по твёрдости. Самые мягкие - щелочные металлы они легко режутся ножом; самый твердый металл - хром - режет стекло. Велика разница температур плавления металлов: ртуть - жидкость при обычных условиях, цезий и галлий плавятся при температуре человеческого тела, а самый тугоплавкий металл - вольфрам имеет температуру плавления 3380 °С. Металлы, температура плавления которых выше 1000 °С, от-носят к тугоплавким металлам, ниже - к легкоплавким. При высоких температурах металлы способны испускать электроны, что используется в электронике и термоэлектрических генераторах для прямого преобразования тепловой энергии в электрическую. Железо, кобальт, никель и гадолиний после помещения их в магнитное поле способны постоянно сохранять состояние намагниченности.

Металлам присуще некоторые и химические свойства. Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы. Поэтомц металлы являются восстановителями. В этом, собственно, и состоит их главное и наиболее общее химическое свойство.

Очевидно, металлы как восстановители будут вступать в реакции с различными окислителями, среди которых могут быть простые ве-щества, кислоты, соли менее активных металлов и некоторые другие соединения. Соединения металлов с галогенами называются галогенидами, с серой - сульфидами, с азотом - нитридами, с фосфо-ром - фосфидами, с углеродом - карбидами, с кремнием - сили-цидами, с бором - боридами, с водородом - гидридами и т. д. Многие из этих соединений нашли важное применение в новой тех-нике. Например, бориды металлов используются в радиоэлектрони-ке, а также в ядерной технике в качестве материалов для регулиро-вания нейтронного излучения и защиты от него.

Под действием концентрированных кислот-окислителей на некоторых металлах также образуется устойчивая оксид-ная пленка. Это явление называется пассивацией. Так, в кон-центрированной серной кислоте пассивируются (и не реагиру-ют с ней) такие металлы, как Ве, Вi , Со, F е, Mg , и Nb , а в кон-центрированной азотной кислоте - металлы Аl , Ве, Вi , Со, Сг, F е, Nb , Ni , Рb , Тh и U .

Чем левее расположен металл в этом ряду, тем больши-ми восстановительными свойствами он обладает, т. е. легче окисляется и переходит в виде катиона в раствор, но зато труднее восстанавливается из катиона в свободное состояние.

В ряд напряжений помещен один неметалл - водород, по-скольку это позволяет определить, будет ли данный металл реагировать с кислотами - неокислителями в водном растворе (точнее - окисляться катионами водорода Н +). Например, цинк реагирует с хлороводородной кислотой, так как в ряду напряжений он стоит левее (до) водорода. Напротив, серебро не переводится в раствор хлороводородной кислотой, поскольку оно стоит в ряду напряжений правее (после) водорода. Аналогично ведут себя металлы в разбавлен-ной серной кислоте. Металлы, стоящие в ряду напряжений после водорода, называют благородными (Ag , Pt , Au и др.)

Система Д. И. Менделеева подразделяется на... период (исключая первый) начинается щелочным металлом и заканчивается благородным газом. Элементы 2 ...

  • Периодическая система элементов Менделеева

    Реферат >> Химия

    II. Периодический закон и Периодическая система химических элементов Открытие Д.И. Менделеевым Периодического закона Структура Периодической системы а) ... - неметалл, а висмут - металл ). В Периодической системе типичные металлы расположены в IА группе (Li ...

  • Периодический закон Д.И. Менделеева (2)

    Биография >> Биология

    Соединений. Он определил, что металлам соответствуют основные оксиды и основания, ... и гидроксидов у некоторых металлов вносило путаницу. Классификация была... атомов химических элементов в Периодической системе Д.И. Менделеева изменяются монотонно, поэтому...

  • Периодическая система и её значение в развитии химии Д.И. Менделеева

    Реферат >> Химия

    Периодов относятся к s-элементам (щелочные и щёлочноземельные металлы ), составляющим Ia- и IIa-подгруппы (выделены... научная основа преподавания химии. Вывод Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно...

  • Главная > Документ

    Металлы в периодической системе. Строение атомов-металлов. Общая характеристика металлов.

    Положение металлов в периодической системе Если в таблице Д. И. Менделеева провести диагональ от бора к астату, то в главных подгруппах под диагональю окажутся атомы-металлы, а в побочных подгруппах все элементы ― металлы. Элементы, расположенные вблизи диагонали, обладают двойственными свойствами: в некоторых своих соединениях ведут себя как металлы; в некоторых ― как неметаллы.Строение атомов металлов В периодах и главных подгруппах действуют закономерности в изменении металлических свойств.Атомы многих металлов имеют 1, 2 или 3 валентных электрона, например:

    Na (+ 11): 1S 2 2S 2 2p 6 3S 1

    Са (+ 20): 1S 2 2S 2 2p 6 3S 2 3p 6 3d 0 4S 2

    Щелочные металлы (1 группа, главная подгруппа): ...nS 1 .Щелочно-земельные (2 группа, главная подгруппа): ...nS 2 .Свойства атомов–металлов находятся в периодической зависимости от их местоположения в таблице Д. И. Менделеева. В ГЛАВНОЙ ПОДГРУППЕ :

      не изменяется .

      Радиус атома увеличивается

      Электроотрицательность уменьшается .

      Восстановительные свойства усиливаются .

      Металлические свойства усиливаются .

    В ПЕРИОДЕ:
      Заряды ядер атомов увеличиваются .

      Радиусы атомов уменьшаются .

      Число электронов на внешнем слое увеличивается .

      Электроотрицательность увеличивается .

      Восстановительные свойства уменьшаются .

      Металлические свойства ослабевают .

    Строение кристаллов металлов Большинство твердых веществ существует в кристаллической форме: их частицы расположены в строгом порядке, образуя регулярную пространственную структуру ― кристаллическую решетку.Кристалл ― твердое тело, частицы которого (атомы, молекулы, ионы) расположены в определенном, периодически повторяющемся порядке (в узлах). При мысленном соединении узлов линиями образуется пространственный каркас ― кристаллическая решетка.Кристаллические структуры металлов в виде шаровых упаковок

    а ― медь; б ― магний; в ― α-модификация железа

    Атомы металлов стремятся отдать свои внешние электроны. В куске металла, слитке или металлическом изделии атомы металла отдают внешние электроны и посылают их в этот кусок, слиток или изделие, превращаясь при этом в ионы. «Оторвавшиеся» электроны перемещаются от одного иона к другому, временно снова соединяются с ними в атомы, снова отрываются, и этот процесс происходит непрерывно. Металлы имеют кристаллическую решетку, в узлах которой находятся атомы или ионы (+); между ними находятся свободные электроны (электронный газ). Схему связи в металле можно отобразить так:

    М 0 ↔ nē + М n+ ,

    атом ― ион

    где n ― число внешних электронов, участвующих в связи (у Na ― 1 ē , у Са ― 2 ē , у Al ― 3 ē ).Наблюдается этот тип связи в металлах ― простых веществах-металлах и в сплавах.Металлическая связь ― это связь между положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов.Металлическая связь имеет некоторое сходство с ковалентной, но и некоторое отличие, поскольку металлическая связь основана на обобществлении электронов (сходство), в обобществлении этих электронов принимают участие все атомы (отличие). Именно поэтому кристаллы с металлический связью пластичны, электропроводны и имеют металлический блеск. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью, пары металлов состоят из отдельных молекул (одноатомных и двухатомных).Общая характеристика металлов

    Способность атомов отдавать электроны (окисляться)

    ← Возрастает

    Взаимодействие с кислородом воздуха

    Быстро окисляются при обычной температуре

    Медленно окисляются при обычной температуре или при нагревании

    Не окисляются

    Взаимодействие с водой

    При обычной температуре выделяется Н 2 и образуется гидроксид

    При нагревании выделяется Н 2

    Н 2 из воды не вытесняют

    Взаимодействие с кислотами

    Вытесняют Н 2 из разбавленных кислот

    Не вытесняют Н 2 из разбавленных кислот

    Реагируют с конц. и разб. HNO 3 и с конц. H 2 SO 4 при нагревании

    С кислотами не реагируют

    Нахождение в природе

    Только в соединениях

    В соединениях и в свободном виде

    Главным образом в свободном виде

    Способы получения

    Электролиз расплавов

    Восстановлением углем, оксидом углерода(2), алюмотермия, или электролиз водных растворов солей

    Способность ионов присоединять электроны (восстанавливаться)

    Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au

    Возрастает →

    Электрохимический ряд напряжений металлов. Физические и химические свойства металлов

    Общие физические свойства металлов Общие физические свойства металлов определяются металлической связью и металлической кристаллической решеткой. Ковкость, пластичность Механическое воздействие на кристалл металла вызывает смещение слоев атомов. Так как электроны в металле перемещаются по всему кристаллу, то разрыва связей не происходит. Пластичность уменьшается в ряду Au, Ag, Cu, Sn, Pb, Zn, Fe . Золото, например, можно прокатывать в листы толщиной не более 0,001 мм, которые используют для позолоты различных предметов. Алюминиевая фольга появилась сравнительно недавно и раньше чай, шоколад поковали в фольгу из олова, которая так и называлась ― станиоль. Однако не обладают пластичностью Mn и Bi: это хрупкие металлы. Металлический блеск Металлический блеск, который в порошке теряют все металлы, кроме Al и Mg . Самые блестящие металлы ― это Hg (из нее изготовляли в средние века знаменитые «венецианские зеркала»), Ag (из него теперь с помощью реакции «серебряного зеркала» изготовляют современные зеркала). По цвету (условно) различают металлы черные и цветные. Среди последних выделим драгоценные ― Au, Ag, Pt. Золото ― металл ювелиров. Именно на его основе изготовляли замечательные пасхальные яйца Фаберже. Звон Металлы звенят, и это свойство используется для изготовления колокольчиков (вспомните Царь-колокол в Московском Кремле). Самые звонкие металлы ― это Au, Ag, Cи. Медь звенит густым, гудящим звоном ― малиновым звоном. Это образное выражение не в честь ягоды-малины, а в честь голландского города Малина, где выплавлялись первые церковные колокола. В России потом русские мастера стали лить колокола даже лучшего качества, а жители городов и поселков жертвовали золотые и серебряные украшения, чтобы отливаемый для храмов колокол звучал лучше. В некоторых русских ломбардах определяли подлинность принимаемых на комиссию золотых колец по звону золотого обручального кольца, подвешенного на женском волосе (слышен очень долгий и чистый высокий звук). При нормальных условиях все металлы, кроме ртути Hg, ― твердые вещества. Самый твердый из металлов ― хром Cr: он царапает стекло. Самые мягкие ― щелочные металлы, они режутся ножом. Щелочные металлы хранят с большими предосторожностями ― Na ― в керосине, а Li ― в вазелине из-за своей легкости, керосин ― в стеклянной баночке, баночка ― в асбестовой крошке, асбест ― в жестяной баночке. Электропроводность Хорошая электрическая проводимость металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов приобретают направленное движение от отрицательного полюса к положительному. С повышением температуры усиливаются колебания атомов (ионов), что затрудняет направленное движение электронов и тем самым приводит к уменьшению электрической проводимости. При низких же температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость резко возрастает. Вблизи абсолютного нуля металлы проявляют сверхпроводимость. Наибольшей электрической проводимостью обладают Ag, Cu, Au, Al, Fe; худшие проводники ― Hg, Pb, W. Теплопроводность При обычных условиях теплопроводность металлов изменяется в основном в такой же последовательности, как их электрическая проводимость. Теплопроводность обусловливается высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе металла. Наибольшая теплопроводность ― у серебра и меди, наименьшая ― у висмута и ртути. Плотность Плотность металлов различна. Она тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Самый легкий из металлов ― литий (плотность 0,53 г/см 3), самый тяжелый ― осмий (плотность 22,6 г/см 3). Металлы с плотностью меньше 5 г/см 3 называются легкими, остальные ― тяжелыми. Разнообразны температуры плавления и кипения металлов. Самый легкоплавкий металл ― ртуть (t кип = -38,9°С), цезий и галлий ― плавятся соответственно при 29 и 29,8°С. Вольфрам ― самый тугоплавкий металл (t кип = 3390°С). Понятие аллотропии металлов на примере олова Некоторые металлы имеют аллотропные модификации. Например, олово различают на:
      α-олово, или серое олово («оловянная чума» ― превращение обычного β-олова в α-олово при низких температурах стало причиной гибели экспедиции Р. Скотта к Южному полюсу, который потерял все горючее, так как оно хранилось в баках, запаянных оловом), устойчиво при t <14°С, серый порошок. β-олово, или белое олово (t = 14 ― 161°С) очень мягкий металл, но тверже свинца, поддается литью и пайке. Используется в сплавах, например, для изготовления белой жести (луженого железа).
    Электрохимический ряд напряжений металлов и два его правила Расположение атомов в ряд по их реакционной способности может быть представлен следующим образом: Li,K,Ca,Na,Mg,Al, Mn,Zn,Fe,Ni,Sn,Pb, Н 2 , Сu,Hg,Ag,Pt,Au . Положение элемента в электрохимическом ряду показывает, насколько легко он образует ионы в водном растворе, т. е. его реакционную способность. Реакционная способность элементов зависит от способности принимать или отдавать электроны, участвующие в образовании связи. 1-е правило ряда напряжений Если металл стоит в этом ряду до водорода, он способен вытеснять его из растворов кислот, если после водорода, то нет. Например, Zn, Mg, Al давали реакцию замещения с кислотами (они находятся в ряду напряжений до H ), а Cu нет (она после H ). 2-е правило ряда напряжений Если металл стоит в ряду напряжений до металла соли, то он способен вытеснить этот металл из раствора его соли. Например, CuSO 4 + Fe = FeSO 4 + Cu. В таких случаях положение металла до или после водорода может не иметь значения, важно, чтобы вступающий в реакцию металл предшествовал металлу, образующему соль: Cu + 2AgNO 3 = 2Ag + Cu(NO 3) 2 . Общие химические свойства металлов В химических реакциях металлы являются восстановителями (отдают электроны). Взаимодействие с простыми веществами .
      С галогенами металлы образуют соли ― галогениды:
    Mg + Cl 2 = MgCl 2 ; Zn + Br 2 = ZnBr 2 .
      С кислородом металлы образуют оксиды:
    4Na + O 2 = 2 Na 2 O; 2Cu + O 2 = 2CuO.
      С серой металлы образуют соли ― сульфиды:
    Fe + S = FeS.
      С водородом самые активные металлы образуют гидриды, например:
    Са + Н 2 = СаН 2 .
      с углеродом многие металлы образуют карбиды:
    Са + 2С = СаС 2 . Взаимодействие со сложными веществами
      Металлы, находящиеся в начале ряда напряжений (от лития до натрия), при обычных условиях вытесняют водород из воды и образуют щелочи, например:
    2Na + 2H 2 O = 2NaOH + H 2 .
      Металлы, расположенные в ряду напряжений до водорода, взаимодействуют с разбавленными кислотами (НCl, Н 2 SO 4 и др.), в результате чего образуются соли и выделяется водород, например:
    2Al + 6НCl = 2AlCl 3 + 3H 2 .
      Металлы взаимодействуют с растворами солей менее активных металлов, в результате чего образуется соль более активного металла, а мене активный металл выделяется в свободном виде, например:
    CuSO 4 + Fe = FeSO 4 + Cu.

    Металлы в природе.

    Нахождение металлов в природе. Большинство металлов встречается в природе в виде различных соединений: активные металлы находятся только в виде соединений; малоактивные металлы ― в виде соединений и в свободном виде; благородные металлы (Аg, Рt, Аu...) в свободном виде.Самородные металлы обычно содержатся в небольших количествах в виде зерен или вкраплений в горных породах. Изредка встречаются и довольно крупные куски металлов ― самородки. Многие металлы в природе существуют в связанном состоянии в виде химических природных соединений ― минералов . Очень часто это оксиды, например минералы железа: красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ∙ 3Н 2 О, магнитный железняк Fe 3 O 4 .Минералы входят в состав горных пород и руд. Рудами называют содержащие минералы природные образования, в которых металлы находятся в количествах, пригодных в технологическом и экономическом отношении для получения металлов в промышленности.По химическому составу минерала, входящего в руду, различают оксидные, сульфидные и другие руды.Обычно перед получением металлов из руды ее предварительно обогащают ― отделяют пустую горную породу, примеси, в результате образуется концентрат, служащий сырьем для металлургического производства.Способы получения металлов. Получение металлов из их соединений ― это задача металлургии. Любой металлургический процесс является процессом восстановления ионов металла с помощью различных восстановителей, в результате чего получаются металлы в свободном виде. В зависимости от способа проведения металлургического процесса различают пирометаллургию, гидрометаллургию и электрометаллургию.Пирометаллургия ― это получение металлов из их соединений при высоких температурах с помощью различных восстановителей: углерода, оксида углерода (II), водорода, металлов (алюминия, магния) и др.Примеры восстановления металлов
      углем:
    ZnO + C → Zn + CO 2 ;
      оксидом углерода:
    Fe 2 O 3 + 3CO → 2Fe + 3CO 2 ;
      водородом:
    WO 3 + 3H 2 → W + 3Н 2 О; CoO + H 2 → Co + Н 2 О;
      алюминием (алюмотермия):
    4Al + 3MnO 2 → 2Al 2 O 3 + 3Mn; Cr 2 O 3 + 2Al = 2Al 2 O 3 + 2Cr;
      магнием:
    TiCl 4 + 2Mg = Ti + 2MgCl 2 .Гидрометаллургия ― это получение металлов, которое состоит из двух процессов: 1) природное соединение металла растворяется в кислоте, в результате чего получается раствор соли металла; 2) из полученного раствора данный металл вытесняется более активным металлом. Например:
      2CuS + 3О 2 = 2CuO + 2SО 2 .
    CuO + H 2 SO 4 = CuSO 4 + H 2 O.
      CuSO 4 + Fe = FeSO 4 + Cu.
    Электрометаллургия ― это получение металлов при электролизе растворов или расплавов их соединений. Роль восстановителя в процессе электролиза играет электрический ток.

    Общая характеристика металлов IА-группы.

    К металлам главной подгруппы первой группы (IА-группы) относятся литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr). Эти металлы называются щелочными, так как они и их оксиды при взаимодействии с водой образуют щелочи.Щелочные металлы относятся к s-элементам. На внешнем электронном слое у атомов металлов один s-электрон (ns 1).Калий, натрий ― простые вещества

    Щелочные металлы в ампулах:
    а - цезий; б - рубидий; в - калий; г – натрийОсновные сведения об элементах IА группы

    Элемент Li литий Na натрий K калий Rb рубидий Cs цезий Fr франций
    Атомный номер 3 11 19 37 55 87
    Строение внешних электрон-ных оболочек атомов ns 1 np 0 ,где n = 2, 3, 4, 5, 6, 7, n ― номер периода
    Степень окисления +1 +1 +1 +1 +1 +1
    Основные природные соединения

    Li 2 O·Al 2 O 3 · 4SiO 2 (сподумен); LiAl(PO 4)F, LiAl(PO 4)OH (амблигонит)

    NaCl (поварен-ная соль); Na 2 SO 4 · 10H 2 O (глауберо-ва соль, мираби-лит); КCl·NaCl (сильви-нит)

    КCl (сильвин), КCl·NaCl (сильвинит); K (калиевый полевой шпат, ортоглаз); KCl·MgCl 2 ·6H 2 O (карналлит) ― содержится в растениях

    В качестве изоаморф-ной примеси в минералах калия ― сильвини-те и кар-наллите

    4Cs 2 O·4Al 2 O 3 ·18 SiO 2 · 2H 2 O (полу-цит); спутник минера-лов калия

    Продукт α-распада актиния
    Физические свойства Калий и натрий ― мягкие серебристые металлы (режутся ножом); ρ(К) = 860 кг/м 3 , Т пл (К) = 63,7°С, ρ(Na) = 970 кг/м 3 , Т пл (Na) = 97,8°С. Обладают высокой тепло- и электропроводностью, окрашивают пламя в характерные цвета: К ― в бледно-фиолетовый цвет, Na ― в желтый цвет.

    Бо льшая часть известных химических элементов образует простые вещества металлы.

    К металлам относятся все элементы побочных (Б) подгрупп, а также элементы главных подгрупп, расположенные ниже диагонали «бериллий - астат» (Рис. 1). Кроме того, химические элементы металлы образуют группы лантаноидов и актиноидов.

    Рис. 1. Расположение металлов среди элементов подгрупп А (выделены синим)

    По сравнению с атомами неметаллов, атомы металлов имеют бо льшие размеры и меньшее число внешних электронов, обычно оно равно 1-2. Следовательно, внешние электроны атомов металлов слабо связаны с ядром, металлы их легко отдают, проявляя в химических реакциях восстановительные свойства.

    Рассмотрим закономерности изменения некоторых свойств металлов в группах и периодах.

    В периодах с увеличением заряда ядра радиус атомов уменьшается. Ядра атомов все сильнее притягивают внешние электроны, поэтому возрастает электроотрицательность атомов, металлические свойства уменьшаются. Рис. 2.

    Рис. 2. Изменение металлических свойств в периодах

    В главных подгруппах сверху вниз в атомах металлов возрастает число электронных слоев, следовательно, увеличивается радиус атомов. Тогда внешние электроны будут слабее притягиваться к ядру, поэтому наблюдается уменьшение электроотрицательности атомов и увеличение металлических свойств. Рис. 3.

    Рис. 3. Изменение металлических свойств в подгруппах

    Перечисленные закономерности характерны и для элементов побочных подгрупп, за редким исключением.

    Атомы элементов металлов склонны к отдаче электронов. В химических реакциях металлы проявляют себя только как восстановители, они отдают электроны и повышают свою степень окисления.

    Принимать электроны от атомов металлов могут атомы, составляющие простые вещества неметаллы, а также атомы, входящие в состав сложных веществ, которые способны понизить свою степень окисления. Например:

    2Na 0 + S 0 = Na +1 2 S -2

    Zn 0 + 2H +1 Cl = Zn +2 Cl 2 + H 0 2

    Не все металлы обладают одинаковой химической активностью. Некоторые металлы при обычных условиях практически не вступают в химические реакции, их называют благородными металлами. К благородным металлам относятся: золото, серебро, платина, осмий, иридий, палладий, рутений, родий.

    Благородные металлы очень мало распространены в природе и встречаются почти всегда в самородном состоянии (Рис. 4). Несмотря на высокую устойчивость к коррозии-окислению, эти металлы все же образуют оксиды и другие химические соединения, например, всем известны соли хлориды и нитраты серебра.

    Рис. 4. Самородок золота

    Подведение итога урока

    На этом уроке вы рассмотрели положение химических элементов металлов в Периодической системе, а также особенности строения атомов этих элементов, определяющие свойства простых и сложных веществ. Вы узнали, почему химических элементов металлов значительно больше, чем неметаллов.

    Список литературы

    1. Оржековский П.А. Химия: 9-й класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§28)
    2. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§34)
    3. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с. 86-87)
    4. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.
    1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().
    2. Электронная версия журнала «Химия и жизнь» ().

    Домашнее задание

    1. с. 195-196 №№ 7, А1-А4 из учебника П.А. Оржековского «Химия: 9-й класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013.
    2. Какими свойствами (окислительными или восстановительными) может обладать ион Fe 3+ ? Ответ проиллюстрируйте уравнениями реакций.
    3. Сравните радиус атомов, электроотрицательность и восстановительные свойства натрия и магния.

    Последние материалы раздела:

    Кислород – характеристика элемента, распространённость в природе, физические и химические свойства, получение
    Кислород – характеристика элемента, распространённость в природе, физические и химические свойства, получение

    Первые исследователи кислорода заметили, что в его атмосфере легче дышится. Они предсказывали широкое применение этого живительного газа в медицине...

    Московский государственный университет технологий и управления имени К
    Московский государственный университет технологий и управления имени К

    language mgutm.ru/entrant_2012 mail_outline [email protected] schedule Режим работы:Пн., Вт., Ср., Чт., Пт. c 09:00 до 18:00 Последние отзывы...

    Презентация на тему
    Презентация на тему "квадратный корень из произведения" Разложение на простые множители

    Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без...