Фтор какая химическая связь. Типы химической связи

Задание №1

Из предложенного перечня выберите два соединения, в которых присутствует ионная химическая связь.

  • 1. Ca(ClO 2) 2
  • 2. HClO 3
  • 3. NH 4 Cl
  • 4. HClO 4
  • 5. Cl 2 O 7

Ответ: 13

Определить наличие ионного типа связи в соединении в подавляющем большинстве случаев можно по тому, что в состав его структурных единиц одновременно входят атомы типичного металла и атомы неметалла.

По этому признаку мы устанавливаем, что ионная связь имеется в соединении под номером 1 - Ca(ClO 2) 2 , т.к. в его формуле можно увидеть атомы типичного металла кальция и атомы неметаллов - кислорода и хлора.

Однако, больше соединений, содержащих одновременно атомы металла и неметалла, в указанном списке нет.

Среди указанных в задании соединений есть хлорид аммония, в нем ионная связь реализуется между катионом аммония NH 4 + и хлорид-ионом Cl − .

Задание №2

Из предложенного перечня выберите два соединения, в которых тип химической связи такой же, как в молекуле фтора.

1) кислород

2) оксид азота (II)

3) бромоводород

4) иодид натрия

Запишите в поле ответа номера выбранных соединений.

Ответ: 15

Молекула фтора (F 2) состоит из двух атомов одного химического элемента неметалла, поэтому химическая связь в данной молекуле ковалентная неполярная.

Ковалентная неполярная связь может быть реализована только между атомами одного и того же химического элемента неметалла.

Из предложенных вариантов ковалентный неполярный тип связи имеют только кислород и алмаз. Молекула кислорода является двухатомной, состоит из атомов одного химического элемента неметалла. Алмаз имеет атомное строение и в его структуре каждый атом углерода, являющегося неметаллом, связан с 4-мя другими атомами углерода.

Оксид азота (II) - вещество состоящее из молекул, образованных атомами двух разных неметаллов. Поскольку электроотрицательности разных атомов всегда различны, общая электронная пара в молекуле смещена к более электроотрицательному элементу, в данном случае к кислороду. Таким образом, связь в молекуле NO является ковалентной полярной.

Бромоводород также состоит из двухатомных молекул, состоящих из атомов водорода и брома. Общая электронная пара, образующая связь H-Br, смещена к более электроотрицательному атому брома. Химическая связь в молекуле HBr также является ковалентной полярной.

Иодид натрия - вещество ионного строения, образованное катионом металла и иодид-анионом. Связь в молекуле NaI образована за счет перехода электрона с 3s -орбитали атома натрия (атом натрия превращается в катион) на недозаполненную 5p -орбиталь атома иода (атом иода превращается в анион). Такая химическая связь называется ионной.

Задание №3

Из предложенного перечня выберите два вещества, между молекулами которых образуются водородные связи.

  • 1. C 2 H 6
  • 2. C 2 H 5 OH
  • 3. H 2 O
  • 4. CH 3 OCH 3
  • 5. CH 3 COCH 3

Запишите в поле ответа номера выбранных соединений.

Ответ: 23

Пояснение:

Водородные связи имеют место в веществах молекулярного строения, в которых присутствуют ковалетные связи H-O, H-N, H-F. Т.е. ковалентные связи атома водорода с атомами трех химических элементов с наивысшей электроотрицательностью.

Таким образом, очевидно, водородные связи есть между молекулами:

2) спиртов

3) фенолов

4) карбоновых кислот

5) аммиака

6) первичных и вторичных аминов

7) плавиковой кислоты

Задание №4

Из предложенного перечня выберите два соединения с ионной химической связью.

  • 1. PCl 3
  • 2. CO 2
  • 3. NaCl
  • 4. H 2 S
  • 5. MgO

Запишите в поле ответа номера выбранных соединений.

Ответ: 35

Пояснение:

Сделать вывод о наличии ионного типа связи в соединении в подавляющем большинстве случаев можно по тому, что в состав структурных единиц вещества одновременно входят атомы типичного металла и атомы неметалла.

По этому признаку мы устанавливаем, что ионная связь имеется в соединении под номером 3 (NaCl) и 5 (MgO).

Примечание*

Помимо указанного выше признака, о наличии ионной связи в соединении можно говорить, если в составе его структурной единицы содержится катион аммония (NH 4 +) или его органические аналоги - катионы алкиламмония RNH 3 + , диалкиламония R 2 NH 2 + , триалкиламмония R 3 NH + или тетраалкиламмония R 4 N + , где R - некоторый углеводородный радикал. Например, ионный тип связи имеет место в соединении (CH 3) 4 NCl между катионом (CH 3) 4 + и хлорид-ионом Cl − .

Задание №5

Из предложенного перечня выберите два вещества с одинаковым типом строения.

4) поваренная соль

Запишите в поле ответа номера выбранных соединений.

Ответ: 23

Задание №8

Из предложенного перечня выберите два вещества немолекулярного строения.

2) кислород

3) белый фосфор

5) кремний

Запишите в поле ответа номера выбранных соединений.

Ответ: 45

Задание №11

Из предложенного перечня выберите два вещества, в молекулах которых присутствует двойная связь между атомами углерода и кислорода.

3) формальдегид

4) уксусная кислота

5) глицерин

Запишите в поле ответа номера выбранных соединений.

Ответ: 34

Задание №14

Из предложенного перечня выберите два вещества с ионной связью.

1) кислород

3) оксид углерода (IV)

4) хлорид натрия

5) оксид кальция

Запишите в поле ответа номера выбранных соединений.

Ответ: 45

Задание №15

Из предложенного перечня выберите два вещества с таким же типом кристаллической решетки, как у алмаза.

1) кремнезем SiO 2

2) оксид натрия Na 2 O

3) угарный газ CO

4) белый фосфор P 4

5) кремний Si

Запишите в поле ответа номера выбранных соединений.

Ответ: 15

Задание №20

Из предложенного перечня выберите два вещества, в молекулах которых есть одна тройная связь.

  • 1. HCOOH
  • 2. HCOH
  • 3. C 2 H 4
  • 4. N 2
  • 5. C 2 H 2

Запишите в поле ответа номера выбранных соединений.

Ответ: 45

Пояснение:

Для того, чтобы найти правильный ответ, нарисуем структурные формулы соединений из представленного списка:

Таким образом, мы видим, что тройная связь имеется в молекулах азота и ацетилена. Т.е. правильные ответы 45

Задание №21

Из предложенного перечня выберите два вещества, в молекулах которых есть ковалентная неполярная связь.

Химия подготовка к ЗНО и ДПА
Комплексное издание

ЧАСТЬ И

ОБЩАЯ ХИМИЯ

ХИМИЯ ЭЛЕМЕНТОВ

ГАЛОГЕНЫ

Простые вещества

Химические свойства Фтора

Фтор - сильнейший окислитель в природе. Непосредственно он не реагирует только с гелием, неоном и аргоном.

Под время реакции с металлами образуются фториды, соединения ионного типа:

Фтор энергично реагирует со многими неметаллами, даже с некоторыми инертными газами:

Химические свойства Хлора. Взаимодействие со сложными веществами

Хлор является более сильным окисником, чем бром или йод, поэтому хлор вытесняет тяжелые галогены из их солей:

Растворяясь в воде, хлор частично реагирует с ней, в результате чего образуются две кислоты: хлоридная и гіпохлоритна. При этом один атом Хлора повышает степень окисления, а другой атом - снижает. Такие реакции называют реакциями диспропорціонування. Реакции диспропорціонування - это реакции самовосстановления-самоокиснення, т.е. реакции, при которых один элемент проявляет свойства и окисника, и восстановителя. При диспропорціонуванні одновременно образуются соединения, в которых элемент находится в более окисленном и восстановленном состоянии по сравнению с первобытным. Степень окисления атома Хлора в молекуле гипохлоритной кислоты равен +1:

Аналогично протекает взаимодействие хлора с растворами щелочей. При этом образуются две соли: хлорид и гипохлорит.

Хлор вступает во взаимодействие с различными оксидами:

Хлор окисляет некоторые соли, в которых металл находится не в максимальной степени окисления:

Молекулярный хлор реагирует со многими органическими соединениями. В присутствии феррум(III) хлорида как катализатора хлор реагирует с бензолом с образованием хлорбензола, а при облучении светом в результате этой же реакции образуется гексахлорциклогексан:

Химические свойства брома и йода

Обе вещества реагируют с водородом, фтором и щелочами:

Йод окисляют различные сильные окислители:

Методы добыча простых веществ

Извлечения фтора

Поскольку фтор является сильнейшим химическим окисником, то выделить его с помощью химических реакций из соединений в свободном виде невозможно, а потому фтор добывают физико-химическим методом - электролизом.

Для извлечения фтора используют расплав калий фторида и никелевые электроды. Никель используют благодаря тому, что поверхность металла пассивируется фтором вследствие образования нерастворимого NiF 2 , следовательно, сами электроды не разрушаются под действием вещества, которое на них выделяется:

Добывания хлора

Хлор в промышленных масштабах добывают электролизом раствора натрий хлорида. В результате этого процесса добывают также натрий гидроксид:

В небольших количествах хлор добывают окисненням раствора хлороводорода различными методами:

Хлор - очень важный продукт химической промышленности.

Его мировое производство составляет миллионы тонн.

Извлечения брома и йода

Для промышленного использования бром и йод добывают при окислении бромидов и йодидов, соответственно. Для окисления чаще всего используют молекулярный хлор, концентрированную сульфатную кислоту или манган диоксид:

Применение галогенов

Фтор и некоторые его соединения используют как окислитель ракетного топлива. Большие количества фтора используют для добывания различных хладагентов (фреонов) и некоторых полимеров, которым свойственна химическая и термическая стойкость (тефлон и некоторые другие). Фтор применяют в ядерной технике для разделения изотопов урана.

Большое часть хлора используют для получения соляной кислоты, а также как окислитель для добывания других галогенов. В промышленности его используют для отбеливания тканей и бумаги. В больших количествах, чем фтор, его применяют для производства полимеров (ПВХ и других) и хладагентов. По помощью хлора дезинфицируют питьевую воду. Он также нужен для добывания некоторых растворителей, таких как хлороформ, хлористый метилен, тетрахлорметан. А еще его используют для производства многих веществ, например хлората калия (бертолетовой соли), хлорной извести и многих других соединений, содержащих атомы Хлора.

Бром и йод применяют в промышленности не в таких масштабах, как хлор или фтор, однако с каждым годом использование этих веществ увеличивается. Бром используют в производстве различных медицинских препаратов успокаивающего действия. Йод используют при изготовлении антисептических препаратов. Соединения Брома и Йода широко применяют при количественном анализе веществ. С помощью йода очищают некоторые металлы (этот процесс называют йодным рафинированием), например титан, ванадий и другие.


В работе подобраны задания по химическим связям.

Пугачёва Елена Владимировна

Описание разработки

6. Ковалентная неполярная связь характерна для

1) Сl 2 2) SO3 3) СО 4) SiO 2

1) NH 3 2) Сu 3) H 2 S 4) I 2

3) ионную 4) металлическую

15. Тремя общими электронными парами образована ковалентная связь в молекуле

16. Водородные связи образуются между молекулами

1) HI 2) НСl 3) HF 4) НВг

1) вода и алмаз 2) водород и хлор 3) медь и азот 4) бром и метан

19. Водородная связь не характерна для вещества

1) фтора 2) хлора 3) брома 4) иода

1)СF 4 2)CCl 4 3)CBr 4 4)CI 4

1) 1 2) 2 3) 3 4) 4

1) 1 2) 2 3) 3 4) 4

32. Атомы химических элементов второго периода периодической системы Д.И. Менделеева образуют соединения с ионной химической связью состава 1) LiF 2) CO 2 3) Al 2 O 3 4) BaS

1) ионная 2) металлическая

43. Ионную связь образуют 1) Н и S 2) Р и С1 3) Сs и Вr 4) Si и F

при взаимодействии

1)ионная 2)металлическая

1)ионная 2)металлическая

НАЗВАНИЕ ВЕЩЕСТВА ВИД СВЯЗИ

1)цинк А) ионная

2) азот Б) металлическая

62. Установите соответствие

ВИД СВЯЗИ СОЕДИНЕНИЕ

1) ионная А) Н 2

2) металлическая Б) Ва

3) ковалентная полярная В) НF

66. Наиболее прочная химическая связь имеет место в молекуле 1) F 2 2) Сl 2 3) O 2 4) N 2

67. Прочность связи увеличивается в ряду 1) Cl 2 -O 2 -N 2 2) О 2 - N 2- Сl 2 3) О 2 -Сl 2 -N 2 4) Сl 2 -N 2 -O 2

68. Укажите ряд, характеризующийся увеличением длины химической связи

1)O 2 , N 2 , F 2 , Cl 2 2)N 2 , O 2 , F 2 , Cl 2 3)F 2 , N 2 , O 2 , Cl 2 4)N 2 , O 2 , Cl 2 , F 2

Разберем задания №3 из вариантов ЕГЭ за 2016 год.

Задания с решениями.

Задание №1.

Соединения с ковалентной неполярной связью расположены в ряду:

1. O2, Cl2, H2

2. HCl, N2, F2

3. O3, P4, H2O

4. NH3, S8, NaF

Объяснение: нам нужно найти такой ряд, в котором будут только простые вещества , так как ковалентная неполярная связь образуется только между атомами одного и того же элемента. Правильный ответ - 1.

Задание №2.

Вещества с ковалентной полярной связью указаны в ряду:

1. CaF2, Na2S, N2

2. P4, FeCl2, NH3

3. SiF4, HF, H2S

4. NaCl, Li2O, SO2

Объяснение: здесь нужно найти ряд, в котором только сложные вещества и, к тому же, все неметаллы. Правильный ответ - 3.

Задание №3.

Водородная связь характерна для

1. Алканов 2. Аренов 3. Спиртов 4. Алкинов

Объяснение: водородная связь образуется между ионом водорода и электроотрицательным ионом. Такой набор, среди перечисленных, есть только у спиртов.

Правильный ответ - 3.

Задание №4.

Химическая связь между молекулами воды

1. Водородная

2. Ионная

3. Ковалентная полярная

4. Ковалентная неполярная

Объяснение: между атомами О и Н в воде образуется ковалентная полярная связь, так как это два неметалла, а вот между молекулами воды связь водородная. Правильный ответ - 1.

Задание №5.

Только ковалентные связи имеет каждое из двух веществ:

1. CaO и C3H6

2. NaNO3 и CO

3. N2 и K2S

4. CH4 и SiO2

Объяснение: соединения должны состоять только из неметаллов, то есть правильный ответ - 4.

Задание №6.

Веществом с ковалентной полярной связью является

1. О3 2. NaBr 3. NH3 4. MgCl2

Объяснение: ковалентная полярная связь образуется между атомами разных неметаллов. Правильный ответ - 3.

Задание №7.

Неполярная ковалентная связь характерна для каждого из двух веществ:

1. Воды и алмаза

2. Водорода и хлора

3. Меди и азота

4. Брома и метана

Объяснение: неполярная ковалентная связь характерна для соединения атомов одного и того же элемента-неметалла. Правильный ответ - 2.

Задание №8.

Какая химическая связь образуется между атомами элементов с порядковыми номерами 9 и 19?

1. Ионная

2. Металлическая

3. Ковалентная полярная

4. Ковалентная неполярная

Объяснение: это элементы - фтор и калий, то есть неметалл и металл соответственно, между такими элементами может образоваться только ионная связь. Правильный ответ - 1.

Задание №9.

Веществу с ионным типом связи отвечает формула

1. NH3 2. HBr 3. CCl4 4. KCl

Объяснение: ионная связь образуется между атомом металла и атомом неметалла, то есть правильный ответ - 4.

Задание №10.

Одинаковый вид химической связи имеют хлороводород и

1. Аммиак

2. Бром

3. Хлорид натрия

4. Оксид магния

Объяснение: хлороводород имеет ковалентную полярную связь, то есть нам нужно найти вещество, состоящее из двух разных неметаллов - это аммиак.

Правильный ответ - 1.

Задания для самостоятельного решения.

1. Водородные связи образуются между молекулами

1. Фтороводородная кислота

2. Хлорметан

3. Диметиловый эфир

4. Этилена

2. Соединению с ковалентной связью соответствует формула

1. Na2O 2. MgCl2 3. CaBr2 4. HF

3. Вещество с ковалентной неполярной связью имеет формулу

1. H2O 2. Br2 3. CH4 4. N2O5

4. Веществом с ионной связью является

1. CaF2 2. Cl2 3. NH3 4. SO2

5. Водородные связи образуются между молекулами

1. Метанола

3. Ацетилена

4. Метилформиата

6. Ковалентная неполярная связь характерна для каждого из двух веществ:

1. Азота и озона

2. Воды и аммиака

3. Меди и азота

4. Брома и метана

7. Ковалентная полярная связь характерна для вещества

1. KI 2. CaO 3. Na2S 4. CH4

8. Ковалентная неполярная связь характерна для

1. I2 2. NO 3. CO 4. SiO2

9. Веществом с ковалентной полярной связью является

1. Cl2 2. NaBr 3. H2S 4. MgCl2

10. Ковалентная неполярная связь характерна для каждого из двух веществ:

1. Водорода и хлора

2. Воды и алмаза

3. Меди и азота

4. Брома и метана

В данной заметке использовались задания из сборника ЕГЭ 2016-го года под редакцией А.А. Кавериной.

А4 Химическая связь.

Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая, водородная. Способы образования ковалентной связи. Характеристики ковалентной связи: длина и энергия связи. Образование ионной связи.

Вариант 1 – 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65

Вариант 2 – 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66

Вариант 3 – 3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67

Вариант 4 – 4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68

1. В аммиаке и хлориде бария химическая связь соответственно

1) ионная и ковалентная полярная

2) ковалентная полярная и ионная

3) ковалентная неполярная и металлическая

4) ковалентная неполярная и ионная

2. Вещества только с ионной связью приведены в ряду:

1) F 2 , ССl­ 4 , КСl 2) NaBr,Na 2 O,KI 3) SO 2 .P 4 .CaF 2 4) H 2 S,Br 2 ,K 2 S

3. Соединение с ионной связью образуется при взаимодействии

1) СН 4 и О 2 2) SO 3 и Н 2 О 3) С 2 Н 6 и HNO 3 4) NH 3 и HCI

4. В каком ряду все вещества имеют ковалентную полярную связь?

1) HCl,NaCl,Cl 2 2) O 2 ,H 2 O,CO 2 3) H 2 O,NH 3 ,CH 4 4) NaBr,HBr,CO

5. В каком ряду записаны формулы веществ только с ковалентной полярной связью?

1) Сl 2 , NO 2 , НСl 2) HBr,NO,Br 2 3) H 2 S,H 2 O,Se 4) HI,H 2 O,PH 3

6. Ковалентная неполярная связь характерна для

1) Сl 2 2) SO3 3) СО 4) SiO 2

7. Веществом с ковалентной полярной связью является

1) С1 2 2) NaBr 3) H 2 S 4) MgCl 2

8. Веществом с ковалентной связью является

1) СаСl 2 2) MgS 3) H 2 S 4) NaBr

9. Вещество с ковалентной неполярной связью имеет формулу

1) NH 3 2) Сu 3) H 2 S 4) I 2

10. Веществами с неполярной ковалентной связью являются

11. Между атомами с одинаковой электроотрицательностью образуется химическая связь

1) ионная 2) ковалентная полярная 3) ковалентная неполярная 4) водородная

12. Ковалентная полярная связь характерна для

1) KCl 2) НВг 3) Р 4 4) СаСl 2

13. Химический элемент, в атоме которого электроны по слоям распределены так: 2, 8, 8, 2 образует с водородом химическую связь

1)ковалентную полярную 2) ковалентную неполярную

3) ионную 4) металлическую

14. В молекуле какого вещества длина связи между атомами углерода наибольшая?

1)ацетилена 2) этана 3) этена 4) бензола

15. Тремя общими электронными парами образована ковалентная связь в молекуле

1) азота 2) сероводорода 3) метана 4) хлора

16. Водородные связи образуются между молекулами

1) диметилового эфира 2) метанола 3) этилена 4) этилацетата

17. Полярность связи наиболее выражена в молекуле

1) HI 2) НСl 3) HF 4) НВг

18. Веществами с неполярной ковалентной связью являются

1) вода и алмаз 2) водород и хлор 3) медь и азот 4) бром и метан

19. Водородная связь не характерна для вещества

1) Н 2 О 2) СН 4 3) NH 3 4) СНзОН

20. Ковалентная полярная связь характерна для каждого из двух веществ, формулы которых

1) KI и Н 2 О 2) СО 2 и К 2 О 3) H 2 S и Na 2 S 4) CS 2 и РС1 5

21. Наименее прочная химическая связь в молекуле

22. В молекуле какого вещества длина химической связи наибольшая?

1) фтора 2) хлора 3) брома 4) иода

23. Ковалентные связи имеет каждое из веществ, указанных в ряду:

1) C 4 H 10 , NO 2 , NaCl 2) СО, CuO, CH 3 Cl 3) BaS,C 6 H 6, H 2 4) C 6 H 5 NO 2 , F 2 , CCl 4

24. Ковалентную связь имеет каждое из веществ, указанных в ряду:

1) СаО,С 3 Н 6 , S 8 2) Fe,NaNO 3 , CO 3) N 2 , CuCO 3 , K 2 S 4) C 6 H 5 N0 2 , SО 2 , CHC1 3

25. Ковалентную связь имеет каждое из веществ, указанных в ряду:

1) С 3 Н 4 , NO, Na 2 O 2) СО, СН 3 С1, PBr 3 3) Р 2 Оз, NaHSO 4 , Сu 4) C 6 H 5 NO 2 , NaF, ССl 4

26. Ковалентные связи имеет каждое из веществ, указанных в ряду:

1) C 3 H a ,NO 2 , NaF 2) КСl , CH 3 Cl, C 6 H 12 0 6 3) P 2 O 5 , NaHSO 4 , Ba 4) C 2 H 5 NH 2 , P 4 , CH 3 OH

27. Полярность связи наиболее выражена в молекулах

1) сероводорода 2) хлора 3) фосфина 4) хлороводорода

28. В молекуле какого вещества химические связи наиболее прочные?

1)СF 4 2)CCl 4 3)CBr 4 4)CI 4

29. Среди веществ NH 4 Cl, CsCl, NaNO 3, PH 3 , HNO 3 - число соединений с ионной связью равно

1) 1 2) 2 3) 3 4) 4

30. Среди веществ (NH 4) 2 SO 4 , Na 2 SO 4 , CaI 2 , I 2 , CO 2 - число соединений с ковалентной связью равно

1) 1 2) 2 3) 3 4) 4

31.В веществах, образованных путем соединения одинаковых атомов, химическая связь

1)ионная 2) ковалентная полярная 3) водородная 4) ковалентная неполярная

32. Атомы химических элементов второго периода периодической системы Д.И. Менделеева образуют соединения с ионной химической связью состава 1) LiF 2) CO 2 3) Al 2 O 3 4) BaS

33. Соединениями с ковалентной полярной и ковалентной неполярной связью являются соответственно 1) вода и сероводород 2) бромид калия и азот 3) аммиак и водород 4) кислород и метан

34. Ковалентная неполярная связь характерна для 1)воды 2) аммиака 3) азота 4) метана

35. Химическая связь в молекуле фтороводорода

1) ковалентная полярная 3) ионная

2) ковалентная неполярная 4) водородная

36.Выберите пару веществ, все связи в которых - ковалентные:

1) NаСl, НСl 2) СО 2 , ВаО 3) СН 3 Сl, СН 3 Nа 4) SO 2 , NO 2

37. В иодиде калия химическая связь

1) ковалентная неполярная 3) металлическая

2) ковалентная полярная 4) ионная

38. В сероуглероде СS 2 химическая связь

1) ионная 2) металлическая

3) ковалентная полярная 4) ковалентная неполярная

39. Ковалентная неполярная связь реализуется в соединении

1) СrО 3 2)Р 2 О 5 3) SO 2 4) F 2

40.Вещество с ковалентной полярной связью имеет формулу 1)KCl 2)HBr 3)Р 4 4)CaCl 2

41. Соединение с ионным характером химической связи

1)хлорид фосфора 2)бромид калия 3)оксид азота (II) 4)барий

42. В аммиаке и хлориде бария химическая связь соответственно

1) ионная и ковалентная полярная 2) ковалентная полярная и ионная

3) ковалентная неполярная и металлическая 4) ковалентная неполярная и ионная

43. Ионную связь образуют 1) Н и S 2) Р и С1 3) Сs и Вr 4) Si и F

44. Какой тип связи в молекуле Н 2 ?

1) Ионная 2) Водородная 3) Ковалентная неполярная 4) Донорно-акцепторная

45. Веществом с ковалентной полярной связью являются

1)оксид серы (IV) 2)кислород 3)гидрид кальция 4)алмаз

46. В молекуле фтора химическая связь

1) ковалентная полярная 2) ионная 3) ковалентная неполярная 4) водородная

47. В каком ряду перечислены вещества только с ковалентной полярной связью:

1) СН 4 Н 2 Сl 2 2)NH 3 HBr CO 2 3) PCl 3 KCl CCl 4 4) H 2 S SO 2 LiF

48. В каком ряду все вещества имеют ковалентную поляр­ную связь?

1) НСl, NаСl, Сl 2 2) О 2 Н 2 О, СО 2 3) Н 2 O, NH 3 , СН 4 4) КВr, НВr, СО

49. В каком ряду перечислены вещества только с ионным типом связи:

1) F 2 O LiF SF 4 2) PCl 3 NaCl CO 2 3) KF Li 2 O BaCl 2 4) СаF 2 CH 4 CCl 4

50. Соединение с ионной связью образуется при взаимодействии

1) CH 4 и O 2 2)NH 3 и HCl 3) C 2 H 6 и HNO 3 4) SO 3 и H 2 O

51. Водородная связь образуется между молекулами 1) этана 2) бензола 3) водорода 4) этанола

52. В каком веществе есть водородные связи? 1) Сероводород 2)Лед 3) Бромоводород 4) Бензол

53. Связь, образующаяся между элементами с порядковыми номерами 15 и 53

1)ионная 2)металлическая

3)ковалентная неполярная 4)ковалентная полярная

54. Связь, образующаяся между элементами с порядковыми номерами 16 и 20

1)ионная 2)металлическая

3)ковалентная полярная 4)водородная

55. Между атомами элементов с порядковыми номерами 11 и 17 возникает связь

1) металлическая 2) ионная 3)ковалентная 4) донорно-акцепторная

56. Водородные связи образуются между молекулами

1) водорода 2) формальдегида 3) уксусной кислоты 4) сероводорода

57. В каком ряду записаны формулы веществ только с ковалентной полярной связью?

1) Сl 2 , NH 3 , НСl 2) НВr, NO, Вr 2 3) Н 2 S, Н 2 O, S 8 4) НI, Н 2 О, РН 3

58.В каком веществе есть одновременно ионные и ковалентные химические связи?

1) Хлорид натрия 2) Хлороводород 3) Сульфат натрия 4) Фосфорная кислота

59. Более выраженный ионный характер имеет химическая связь в молекуле

1)бромида лития 2)хлорида меди 3)карбида кальция 4)фторида калия

60. В каком веществе все химические связи - ковалентные неполярные?

1) Алмаз 2) Оксид углерода (IV) 3) Золото 4) Метан

61. Установите соответствие между веществом и видом связи атомов в этом веществе.

НАЗВАНИЕ ВЕЩЕСТВА ВИД СВЯЗИ

1)цинк А) ионная

2) азот Б) металлическая

3) аммиак В) ковалентная полярная

4) хлорид кальция Г) ковалентная неполярная

62. Установите соответствие

ВИД СВЯЗИ СОЕДИНЕНИЕ

1) ионная А) Н 2

2) металлическая Б) Ва

3) ковалентная полярная В) НF

4) ковалентная неполярная Г) ВаF 2

63. В каком соединении ковалентная связь между атомами образуется по донорно-акцепторному механизму? 1)КСl 2)ССl 4 3) NН 4 Сl 4)СаСl 2

64. Укажите молекулу, в которой энергия связи - наиболь­шая:1) N≡N 2) Н-Н 3) О=О 4) Н-F

65. Укажите молекулу, в которой химическая связь - самая прочная:1) НF 2) НСl 3) НВr 4) HI

Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Внутримолекулярные химические связи

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными .

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов , в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ . Именно она определяет тип химической связи между атомами и свойства этой связи.

– это способность атома притягивать (удерживать) внешние (валентные) электроны . Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4 .

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В) , то общая электронная пара не смещается ни к одному из атомов: А: В . Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4<ΔЭО<2 ), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная .

Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2 ), то один из электронов практически полностью переходит к другому атому, с образованием ионов . Такая связь называется ионная .

Основные типы химических связей — ковалентная , ионная и металлическая связи. Рассмотрим их подробнее.

Ковалентная химическая связь

Ковалентная связь этохимическая связь, образованная за счет образования общей электронной пары А:В . При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами ) или атомов одного элемента.

Основные свойства ковалентных связей

  • направленность ,
  • насыщаемость ,
  • полярность ,
  • поляризуемость .

Эти свойства связи влияют на химические и физические свойства веществ.

Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45 о, поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 108 о 28′.

Насыщаемость — это спосбность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется .

Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.

Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.

Ковалентная неполярная химическая связь

Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ .

Пример . Рассмотрим строение молекулы водорода H 2 . Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Люьиса неплохо помогают при работе с элементами второго периода.

H . + . H = H:H

Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной .

Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

Дипольный момент неполярных связей равен 0.

Примеры : H 2 (H-H), O 2 (O=O), S 8 .

Ковалентная полярная химическая связь

Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами ) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).

Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).

Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент . Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.

Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.

Примеры: HCl, CO 2 , NH 3 .

Механизмы образования ковалентной связи

Ковалентная химическая связь может возникать по 2 механизмам:

1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

А . + . В= А:В

2. образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

А: + B= А:В

При этом один из атомов предоставляет неподеленную электронную пару (донор ), а другой атом предоставляет вакантную орбиталь для этой пары (акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.

Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей .

Ковалентная связь по донорно-акцепторному механизму образуется:

– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;

– в ионе аммония NH 4 + , в ионах органических аминов , например, в ионе метиламмония CH 3 -NH 2 + ;

– в комплексных соединениях , химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na связь между алюминием и гидроксид-ионами;

– в азотной кислоте и ее солях — нитратах: HNO 3 , NaNO 3 , в некоторых других соединениях азота;

– в молекуле озона O 3 .

Основные характеристики ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.

Кратность химической связи

Кратность химической связи — это число общих электронных пар между двумя атомами в соединении . Кратность связи достаточно легко можно определить из значения атомов, образующих молекулу.

Например , в молекуле водорода H 2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.

В молекуле кислорода O 2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

В молекуле азота N 2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.

Длина ковалентной связи

Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

Длину химической связи можно примерно оценить по радиусам атомов , образующих связь, или по кратности связи , если радиусы атомов не сильно отличаются.

При увеличении радиусов атомов, образующих связь, длина связи увеличится.

Например

При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.

Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.

Энергия связи

Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.

Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.

Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.

Например , в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается , т.к. увеличивается длина связи.

Ионная химическая связь

Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов .

Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

Пример . Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na + , с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

+11Na ) 2 ) 8 ) 1 — 1e = +11Na +) 2 ) 8

Пример . Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

+17Cl ) 2 ) 8 ) 7 + 1e = +17Cl ) 2 ) 8 ) 8

Обратите внимание:

  • Свойства ионов отличаются от свойств атомов!
  • Устойчивые ионы могут образовывать не только атомы , но и группы атомов . Например: ион аммония NH 4 + , сульфат-ион SO 4 2- и др. Химические связи, образованные такими ионами, также считаются ионными;
  • Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);

Образовавшиеся ионы притягиваются за счет электрического притяжения: Na + Cl — , Na 2 + SO 4 2- .

Наглядно обобщим различие между ковалентными и ионным типами связи :

Металлическая химическая связь

Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов , образующих кристаллическую решетку.

У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов . Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями

Межмолекулярные взаимо-действия

Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия . Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляеются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами . Силы Ван-дер-Ваальса делятся на ориентационные , индукционные и дисперсионные . Энергия межмолекулярных взаимодейстий намного меньше энергии химической связи.

Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.

Особый вид межмолекулярного взаимодействия — водородные связи. — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N . Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения .

Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь . Она характерна прежде всего для соединений фтора с водородом , а также кислорода с водородом , в меньшей степени азота с водородом .

Водородные связи возникают между следующими веществами:

фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H 2 O (пар, лед, жидкая вода):

раствор аммиака и органических аминов — между молекулами аммиака и воды;

органические соединения, в которых связи O-H или N-H : спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.

Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение тепературы кипения.

Например , как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H 2 O-H 2 S-H 2 Se-H 2 Te мы не наблюдаем линейное изменение температур кипения.

А именно, у воды температура кипения аномально высокая — не меньше -61 о С, как показывает нам прямая линия, а намного больше, +100 о С. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20 о С) вода является жидкостью по фазовому состоянию.

71 пм Энергия ионизации
(первый электрон) 1680,0 (17,41) кДж /моль (эВ) Электронная конфигурация 2s 2 2p 5 Химические свойства Ковалентный радиус 72 пм Радиус иона (-1e)133 пм Электроотрицательность
(по Полингу) 3,98 Электродный потенциал 0 Степени окисления −1 Термодинамические свойства простого вещества Плотность (при −189 °C)1,108 /см ³ Молярная теплоёмкость 31,34 Дж /( ·моль) Теплопроводность 0,028 Вт /( ·) Температура плавления 53,53 Теплота плавления (F-F) 0,51 кДж /моль Температура кипения 85,01 Теплота испарения 6,54 (F-F) кДж /моль Молярный объём 17,1 см ³/моль Кристаллическая решётка простого вещества Структура решётки моноклинная Параметры решётки 5,50 b=3,28 c=7,28 β=90.0 Отношение c/a — Температура Дебая n/a
F 9
18,9984
2s 2 2p 5
Фтор

Химические свойства

Самый активный неметалл, бурно взаимодействует почти со всеми веществами (редкие исключения — фторопласты), и с большинством из них — с горением и взрывом. Контакт фтора с водородом приводит к воспламенению и взрыву даже при очень низких температурах (до −252°C). В атмосфере фтора горят даже вода и платина :урана для ядерной промышленности.
трёхфтористого хлора ClF 3 — фторирующий агент и мощный окислитель ракетного топлива
шестифтористой серы SF 6 — газообразный изолятор в электротехнической промышленности
фторидов металлов (например, W и V), которые обладают некоторыми полезными свойствами
фреонов — хороших хладагентов
тефлонов — химически инертных полимеров
гексафтороалюмината натрия — для последующего получения алюминия электролизом
различных соединений фтора

Ракетная техника

Соединения фтора широко применяются в ракетной технике как окислитель ракетного топлива.

Применение в медицине

Соединения фтора широко применяются в медицине как кровезаменители.

Биологическая и физиологическая роль

Фтор является жизненно необходимым для организма элементом. В организме человека фтор, в основном, содержится в эмали зубов в составе фторапатита — Ca 5 F(PO 4) 3 . При недостаточном (менее 0,5 мг/литр питьевой воды) или избыточном (более 1 мг/литр) потреблении фтора организмом могут развиваться заболевания зубов: кариеса и флюорозу (крапчатости эмали) и остеосаркомы, соответственно.

Для профилактики кариеса рекомендуется использовать зубные пасты с добавками фтора или употреблять фторированную воду (до концентрации 1 мг/л), или применять местные аппликации 1-2 % раствором фторида натрия или фторида олова. Такие действия могут сократить вероятность появления кариеса на 30-50 %.

Предельно допустимая концентрация связанного фторав воздухе промышленных помещениях равен 0,0005 мг/литр.

Дополнительная информация

Фтор, Fluorum, F(9)
Фтор (Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (СаР,) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни — флюссе (Fliisse от лат. fluere — течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня — плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).

По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название «Шведская кислота».

Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 r. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч.- разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое — флюорин (Fluorine) по аналогии с тогдашним названием хлора — хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.

Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористо- водородной кислоты при 55°С (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор — один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский,1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.

Последние материалы раздела:

Презентация на тему
Презентация на тему "квадратный корень из произведения" Разложение на простые множители

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без...

Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г
Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г

история создания песни "Марш Буденного", презентация,фонограмма и текст песни. Скачать:Предварительный просмотр:Конкурс «Военная песня» «Марш...

Бактерии- древние организмы
Бактерии- древние организмы

Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...