Матричный синтез биология. Матричный синтез как специфическое свойство живого

Это одна из интересных проблем молекулярной биологии, где много еще таких механизмов нерасшифрованно. В живом организме постоянно происходит наряду с распадом синтез белка. Метод линейных атомов позволил установить, что в состав клеток входит большое количество разнообразных белков и скорость синтеза их различны. Белки эритроцитов обмениваются в течении 2-3 месяцев, в тоже время белки уже обмениваются очень быстро, установлено, что основные белки нервной ткани обмениваются в течение 21 дня.

Белки в клетках органов и тканей вступает во взаимодействие с различными компонентами и поэтому в клетках должен существовать механизм, который бы обеспечивал безошибочный синтез белковых веществ. Это имеет значение для метаболических процессов.

Среди заболеваний связанных с нарушениями синтеза белка можно называть «альбинизм». Что происходит:

1) Нарушение процесса образования пигмента меланина, он вырабатывается в специальных клетках меланоцитах, которые находятся в коже, в волосных луковицах, сетчатке глаза. Прекращается выработка пигмента вследствие нарушения процесса превращения фенилаланина в тирозин. При альбинизме не вырабатывается фермент – тирозиназа. Он способствует образованию в дальнейшем пигмента меланина.

Признаки: молочно белый цвет кожи, светлые волосы, светлая радужной оболочки, депигментизация сетчатки, снижение остроты зрения (люди страдают, но живут)

2) Серповидноклеточная анемия происходит вследствие замены одной аминокислоты глу на вал и гемоглобин принимает форму серпа и не может выполнять свою функцию основную – транспорт О 2

Для того чтобы процесс биосинтеза белка проходил нормально необходимо:

1) Поток материи (аминокислоты из которых будут строится белки), обязательное присутствие незаменимых аминокислот. Поток должен быть как количественным так и качественным. Если с пищей наступает недостаточное количество незаменимых аминокислот, то наблюдается белковое голодание. Это приводит к нарушению азотистого равновесия (он становится отрицательный). Это важно учитывать при составлении рационов питания;

2) Поток энергии. Установлено, что синтез сложных веществ в организме протекают с потреблением источников энергии – энергии АТФ, ГТФ и и.д.;

3) Необходима информация о том, какой белок должен синтезироваться;

4) Необходимы непосредственные участники синтеза белка – различные типы РНК, позволяющие клетке синтезировать заданный белок. РНК – переносчик потока информации от ДНК к месту синтеза белка.

Начнем с общих механизмов синтеза ДНК

1) Корнберг в 1953 году предложил энзиматическим путем в безклеточной среде с участием ДНК - полимеразы


Открытие в 1960 одновременно в 2х лабораториях США фермента РНК полимеразы, катализирующего синтез РНК из свободных нуклеотилов. Способствовало расшифрованию механизма синтеза РНК.

Наиболее изучена РНК – полимераза прокариот Е.coli с АС 487000 состоит из 5 субъединиц.

РНК – полимеразы (называются ДНК – зависимой полимеразой) было установлено, что молекуле ДНК необходимы не только для реакции полимеризации, но что она определяет последовательность рибонуклеотидов во вновь синтезируемой молекуле РНК с заменой тимизинового нуклеотида ДНК на уридиловой в РНК. В общем еще синтез РНК можно представить так:

У Е. coli предполагают, имеется единственная ДНК зависимая РНК – полимераза, которая синтезирует все типы клеточных РНК. Менее изучены РНК – полимеразы эукариотов. Из клеток животных выделены 3группы РНК – полимераз А, В, С, которые принимают участие в синтезе соответственно рРНК, мРНК и тРНК.

Матричный биосинтез состоит из 3х этапов:

1. Биосинтез ДНК – репликация (механизм удвоения ДНК), репарация (ферментативные механизмы, обнаруживают и исправляют повреждения ДНК)

2. Транскрипция – биосинтез ДНК (тРНК, рРНК, мРНК)

3. Этап биосинтеза белка – трансляция

Биохимический смысл процессов репликации заключается в том, что они протекают в несколько этапов. (рис.1)

На первом этапе - инициации - происходит образование с участием ферментов (ДНК -хеликаз, ДНК - гираз) репликационных вилок, т.е. если мы имеем 2-х цепочную ДНК, то на определенном этапе одна из цепочек откручивается и ушедшая часть достраивается в виде антипараллельной цепи (рис. 1).

При инициации к цепям ДНК последовательно присоединяются ДНК - связывающие и ДНК - раскручивающие белки, а затем комплексы ДНК - полимераз и ДНК-зависимая РНК – полимераза (праймаза).

Второй этап. Процесс репликации ДНК подвергаются од­новременно обе цепи. Рост дочерних цепей осуществляется в направлении

5’ _____3’. Первая стадия осуществляется при помощи ДНК - полимеразы 111

далее принимает участие ДНК - полимераза 11 .Синтез на одной цепи идет не прерывно, а на другой фрагментарно (фрагменты Оказаки). Вторая стадия завершается отделением праймеров, объединением отдельных фрагментов ДНК при помощи ДНК - лигаз и формированием дочерней цепи ДНК.

Третий этап - терминация синтеза ДНК, наступает в результате обрыва цепи за счет исчерпывания ДНК матрицы. Точность репликации велика. Если будет ошибка, то она может быть исправлена в ходе репарационных процессов.

Рис.1 Схема основных этапов репликации ДНК (по Т.Т.Березову и Б.Ф.Коровкину)

Репарация ДНК и РНК.

Ряд экзогенных и эндогенных факторов приводят к различным повреж –дениям ДНК в клетке. В клетке существуют системы репарации ДНК. Это фер­ментативные механизмы, которые обнаруживают и исправляют повреждения.

Какие необходимы для этого условия?

1.Необходимо узнавание места повреждения ДНК (с помощью эндонуклеаз);

2.Удаление поврежденного участка (с помощью ДНК –гликозидаз);

3.Синтез нового фрагмента (ДНК – полимеразе репарирующая);

4.Соединение образования новых участков со старой цепью (фермент ДК -лигаза).

Транскрипция РНК.

Транскрипция отличается от репликации. При репликации реплицируется полностью одна из цепей ДНК, а при транскрипции транскрибируется
отдельные гены. Поэтому каждый ген ДНК несет свою информацию.

Процесс образования мРНК на ДНК - затравке возможен только на функционирующей ДК. Процесс транскрипции - многоступенчатый. До открытия феномена сплайсинга (созревание, сращивание) мРНК было известно, что многие мРНК эукариот синтезируются в еще гигантских высокомолекулярных предшественников (пре - мРНК), которые уже в ядре подвергаются посттранскрипционному процеосингу . Оказалось, что ген у эукариотов имеет сложное мозаичное строение. Он включает в себя участки, несущие информацию, это кодирующие - экзоны и участки не несущие информации, т.е. ничего не кодирующие - интроны . Отсюда и возникло понятие об экзонинтронной структуре (рис. 2).

Фермент ДНК - зависимая РНК - полимераза катализирует транскрипцию как экзонов так и интронов с образованием гетерогенной ядерной РНК (гя РНК) называемой также первичным транскриптом. Интроны вместе с экзонами транскрибируются; однако еще в ядре интроны вырезаются малыми ядерными РНК (мя РНК), что приводит к образованию функционирующей мРНК. Ферментативный процесс удаления интронов из РНК - транскрипта и объединение (соединение), соответствующих экзонов получил название - сплайсинга .

Последовательность нуклеотидов в молекуле мРНК начинается с пар ГУ (5"- конец) и заканчивается парой АГ (3" - конец). Эти последователь­ности служат сайтами (местами) узнавания для ферментов сплайсинга.

Кэпирование (КЭП) сводится к присоединению 7 метилгуанозина с помощью трифосфатной связи к 5" концу мРНК, считают, что "НЭП" участвует в узнавании подходящего сайта на молекуле мРНК и, возможно, защищает саму молекулу от ферментативного распада.

Полиаденилирование заключается в последовательном ферментативном присоединении от 100 до 200 остатков АМФ к 3" концу мРНК. Функция этого процесса окончательно изучена, но считают, что этот процесс защищает мРНК от гидролиза клеточными РНКазами.

Процессинг, сплайсинг, кэпирование, полиаденилирование - процессы обеспечивающие синтез молекулы РНК, состоящие лишь из экзонов.

Все типы РНК (рРНК, тРНК, мРНК) синтезируются сходным образом.

Поэтому для любой молекулы РНК, имеющейся в организме можно найти участок ДНК, которому она комплементарна. Но все же в синтезе различных видов имеются некоторые особенности.

мРНК - синтезируется гораздо большего размера, чем требуется для синтеза белка. Так белок иммуноглобулин включает тяжелую цепь, кодируется 1800851 нуклеотидными остатками, из них непосредственно структуру белка кодирует 1300 нуклеотидных остатка.

тРНК - синтезируется также как и мРНК, но при этом синтез идет из большего предшественника. Этот процесс подвергается сплайсингу при учас­тии ферментов цитоплазмы.

рРНК - бывает нескольких типов. У прокариотов синтез рРНК трех ти­пов 235, 16S , 5S . Они образуются из длинного предшественника пре - рРНК. Из них идет образование одной из субъединиц рибосомы.

Таким образом транскрипция - многоступенчатый процесс, в результате которого синтезируются все виды РНК.

Биосинтез белка (трансляция).

Генетический текст при трансляции переводится в линейную последовательность аминокислот полипептидной цепи белка.

Процесс трансляции можно разделить на два этапа, которые имеют разную локализацию в клетке: рекогниция (узнавание аминокислот) и собственно биосинтез белка. Рекогниция протекает в цитоплазме, а биосинтез белка протекает в рибосомах.

Рекогниция,или узнавание аминокислот. Сущность узнавания аминокислот состоит в том, чтобы соединить аминокислоту со своей тРНК. Структура тРНК обладает качествами потенциального "переводчика", так как в одной молекуле совмещены способности ""читать"" нуклеотидный текст (антикодон тРНК специфически спаривается с кодоном мРНК и нести (на акцепторном конце) свою аминокислоту. Специальные ферменты обеспечивают узнавание тРНК своей аминокислоты. Эти ферменты получили название аминоацил - тРНК - синтетаз (АРСазы). Аминокислоты при этом должны быть активированы, активация осуществляется также при помощи АРСаз. Этот процесс протекает в 2 стадии:

Рибосомы, не участвующие в синтезе белка легко диссоциируют на субъединицы. В клетке рибосомы или находятся в свободном состоянии или связаны с мембранами эндоплазматической сети. Свободное перемещение рибосом в различные участки клетки или соединение их в разных местах с мембранами эндоплазматического ретикулума, очевидно, дает возможность соби­рать белки в клетке там, где это нужно.

Биосинтез белков отличается от других типов матричных биосинтезов-репликации и транскрипции - двумя особенностями:

1) Нет соответствия между числом знаков (мономеров) в матрице и продуктов реакции в мРНК 4 разных нуклеотида, в белке 20 разных аминокислот;

2) Структура рибонуклеотидов (мономеров матрицы) и аминокислот (мономеров продукта) такова, что между мРНК (матрицей) и полипептидной цепью белка (продуктом) нет комплементарности.

Синтез белка или трансляцию делят на 3 фазы: инициацию (начало), элонгацию (удлинение полипептидной цепи), терминация (окончание).

В настоящее время установлено, что для начала синтеза белка существует специальный инициирующий комплекс (формил мет тРНК и мРНК связанные с несколькими молекулами белка ГТФ). Происходит взаимодействие между кодонами мРНК и антикодонами формил мет РНК. (рис.3)

Вначале инициирующая формил мет РНК связывается с большой субъединицей рибосомы в участке П (пептидильный центр). Следующая аминокислота в виде алат РНК связывается в участке А (аминоацильный центр). Рибосомы за счет взаимодействия антикодона ала тРНК и кодона мРНК. В результате «NH 2 » этой аминокислоты оказывается вблизи от «СООН» группы первой аминокислоты с помощью пептидотрансферазы образуется пептидная связь в участке А. Образовавшийся дипептид переносится транслоказой из участка А в участок П, вытесняя оттуда тРНК, которая вновь может вступать во взаимодействия с другой аминокислотой, необходимо участие ГТФ. Под действием пептидтрансферазы пептидная цепь с учатска П переносится на участок А. Рибосома сдвигается и против А участка становится новый кодон мРНК. На этом один рибосомальный цикл завершается. Процесс синтеза белка продолжается до тех пор, пока к А участку не подойдет бессмысленный кодон (УАГ, УАА, УГА). На этом синтез белка заканчивается и синтезируемый пептид с участка П отделяется от поверхности рибосомы.

Большинство синтезируемых белков остается в клетке, а часть уходит путем экзоцитоза. Для этого требуется энергия АТФ, поэтому при дефиците АТФ белки задерживаются в клетке. Особенно активно белки выделяются железистыми клетками и клетками печени. Что происходит дальше с синтезируемым белком?

После отделения от рибосомы она тут же гидролизуется цитоплазматическими рибонуклеазами. Уже в ходе трансляции белок начинает укладываться в трехмерную структуру, которую он окончательно принимаем после отделения синтезированного белка от рибосомы. В результате трансляции не всегда образуется функционально активный белок. Во многих слу­чаях необходимы дополнительные посттрансляцивнные изменения. Например, инсулин, образуется из предшественников (проинсулина) в результате отщепления части пептидной цепи под действием специфических протеаз. Сходным образом, т.е. путем частичного протеолиза, активируются многие проферменты.

Присоединение простетической группы с образованием сложных белков и объединение протомеров олигомерных белков также относятся к посттрансляционньм изменениям. В некоторых белках после завершения синтеза пептидной цепи происходит модификация аминокислотных остатков, например превращение пролина и лизина в гидроксилизин и гидроксипролин в коллаге­нах, метелирование аргинина и лизина в гистонах, иодирование тирозина в трио глобулине. Некоторые белки подвергаются гликозилированию, присоеди -няя олигосахаридные остатки (образование гликопротеинов). Одной из пост­синтетических модификаций является фосфорилирование некоторых остатков тирозина в молекуле белка и в настоящее время рассматривается как один из специфических этапов формирования онкобелков при малигнизации нормальных клеток. Хотя биосинтез белка, представляющий сложный многоступенчатый процесс, однако структурно - функциональные взаимоотношения различных его этапов еще недостаточно изучены.

Рис.3 Схема элонгации полипептидной цепи

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 10 27 лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды - и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства .

На Земле живет около 7 млрд людей. Если не считать 25-30 млн пар однояйцовых близнецов, то генетически все люди разные : каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах -наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках - следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает , что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип .

Кодирование наследственной информации происходит с помощью генетического кода , который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20 , а возможностей для комбинаций четырех нуклеотидов в группы по три – 64 четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот

поэтому одна аминокислота может кодироваться несколькими триплетами .

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК , т.к. она снимает информацию с ДНК (процесс транскрипции ) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции ).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код - единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода :

1. Генетический код триплетен. Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов - 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти : каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен , т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов ).

6. Генетический код универсален , т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

Реакции матричного синтеза .

В живых системах встречается реакции, неизвестные в неживой природе - реакцииматричного синтеза .

Термином "матрица " в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки - на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы , из которых синтезируется полимер, - нуклеотиды или аминокислоты - в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь , и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций - специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого - его способности к воспроизведению себе подобного .

К реакциям матричного синтеза относят:

1. репликацию ДНК - процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться - процесс устранения ошибок называется репарацией . Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию - синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4 . синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

нетранскрибируемая цепь ДНК

А Т Г

Г Г Ц

Т А Т

транскрибируемая цепь ДНК

Т А Ц

Ц Ц Г

А Т А

транскрипция ДНК

кодоны мРНК

А У Г

Г Г Ц

У А У

трансляция мРНК

антикодоны тРНК

У А Ц

Ц Ц Г

А У А

аминокислоты белка

метионин

глицин

тирозин

Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки , составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться . Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК . Каждой аминокислоте соответствует строго специфическая т-РНК , которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК . Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок .

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет ), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном ) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка - рибосомам. Лишь после этого наступает следующий этап - трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом,

местом синтеза белков и всех ферментов в клетке являются рибосомы - это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому , что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Тематические задания

А1. Какое из утверждений неверно?

1) генетический код универсален

2) генетический код вырожден

3) генетический код индивидуален

4) генетический код триплетен

А2. Один триплет ДНК кодирует:

1) последовательность аминокислот в белке

2) один признак организма

3) одну аминокислоту

4) несколько аминокислот

А3. «Знаки препинания» генетического кода

1) запускают синтез белка

2) прекращают синтез белка

3) кодируют определенные белки

4) кодируют группу аминокислот

А4. Если у лягушки аминокислота ВАЛИН кодируется триплетом ГУУ, то у собаки эта аминокислота может кодироваться триплетами:

1) ГУА и ГУГ

2) УУЦ и УЦА

3) ЦУЦ и ЦУА

4) УАГ и УГА

А5. Синтез белка завершается в момент

1) узнавания кодона антикодоном

2) поступления и-РНК на рибосомы

3) появления на рибосоме «знака препинания»

4) присоединения аминокислоты к т-РНК

А6. Укажите пару клеток в которой у одного человека содержится разная генетическая информация?

1) клетки печени и желудка

2) нейрон и лейкоцит

3) мышечная и костная клетки

4) клетка языка и яйцеклетка

А7. Функция и-РНК в процессе биосинтеза

1) хранение наследственной информации

2) транспорт аминокислот на рибосомы

3) передача информации на рибосомы

4) ускорение процесса биосинтеза

А8. Антикодон т-РНК состоит из нуклеотидов УЦГ. Какой триплет ДНК ему комплементарен?

1. Полимеризация и поликонденсация, при к-рых строение образующегося полимера и (или) кинетика процесса определяются др. макромолекулами (матрицами), находящимися в непосредств. контакте с молекулами одного или неск. мономеров и растущими цепями. Пример М. с. в живой природе - синтез нуклеиновых к-т и белков, в к-ром роль матрицы играют ДНК и РНК, а состав и порядок чередования звеньев в растущей (дочерней) цепи однозначно определяются составом и структурой матрицы. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Такой М. с. реализуется при условии хим. и стерич. соответствия (комплементарности) мономеров и растущей цепи, с одной стороны, и матрицы - с другой; при этом элементарные акты осуществляются между мономерами и растущими макромолекулами (а также олигомерами - при матричной поликонденсации), связанными с матрицей. Обычно мономеры и олигомеры обратимо связываются с матрицей достаточно слабыми межмол. взаимод. - электростатич., донорно-акцепторным и т. д. Дочерние цепи практически необратимо ассоциируют с матрицей ("узнают" матрицу) только после того, как достигнут нек-рой определенной длины, зависящей от энергии взаимод. между звеньями матрицы и дочерней цепи. "Узнавание" матрицы растущей цепью - необходимая стадия М. с.; дочерние цепи практически всегда содержат фрагмент или фрагменты, образовавшиеся по "обычному" механизму, т. е. без влияния матрицы. Скорость М. с. может быть выше, ниже или равна скорости процесса в отсутствие матрицы (кинетич. матричный эффект). Структурный матричный эффект проявляется в способности матрицы влиять на длину и хим. строение дочерних цепей (в т. ч. их стерич. структуру), а если в М. с. участвуют два или более мономера - то также на состав сополимера и способ чередования звеньев. Методом М. с. получают полимер-полимерные комплексы, обладающие более упорядоченной структурой, чем поликомплексы, синтезируемые простым смешением р-ров полимеров, а также поликомплексы, к-рые нельзя получить из готовых полимеров вследствие нерастворимости одного из них. М. с. - перспективный метод получения новых полимерных материалов. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Лит.: Кабанов В. А., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1979, т. 21, № 2, с. 243-81; Картина О. В. [и др.], "ДАН СССР", 1984, т. 275, №3, с. 657-60; Литманович А. А., Марков С. В., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1986, т. 28, №6, с. 1271-78; Ferguson J., Al-Alawi S., Graumayen R., "European Polymer Journall", 1983, v. 19, № 6, p. 475-80; Polоwinski S., "J. Polymer. Sci.", Polimer Chemistry Edition, 1984, v. 22, № 11, p. 2887-94. И. М. Паписов.
2. Хим. р-ции, в к-рых строение образующегося мономолекулярного орг. соед. и (или) кинетика процесса определяется атомом металла (т. наз. темплатный синтез). Атом металла может входить в состав соли или комплексного соед. и выполнять в М. с. разл. ф-ции. Он координирует молекулы и тем самым ориентирует их реагирующие фрагменты (т. наз. кинетич. эффект в М. с.); в этом случае образование целевого продукта без участия в р-ции атома металла вообще не происходит. Атом металла может связывать в комплекс только один из конечных продуктов, к-рые образуются в равновесной р-ции (т. наз. термодинамич. эффект в М. с.); образование целевого продукта может происходить и в отсутствие металла, однако под влиянием последнего выход р-ции существенно возрастает. Часто оба эти механизма проявляются одновременно. Известны случаи, когда равновесная р-ция осуществляется на стадии образования промежут. продукта. Последний фиксируется в виде металлокомплекса, и дальнейшее превращ. идет специфич. образом (т. наз. равновесный эффект в М. с.). Возможны и др. механизмы М. с. М. с. обычно используют для синтеза циклич. соединений. Типичный пример М. с. - получение коррина (промежут. в-ва в синтезе витамина В 12) из соед. I:


В отсутствие Со соед. I переходит преим. в эндо -изомер, к-рый бесполезен для дальнейшего синтеза. Нужную экзо- структуру (I) закрепляют, получая комплексное соединение (II). Наличие атома Со в комплексе (он необходим и в витамине В 12) обусловливает пространств. сближение тиометильной и метиленовой групп, что имеет ключевое значение для образования цикла коррина (III). Важное значение приобрел М. с. краун-эфиров в присут. ионов щелочных или щел.-зем. металлов (М). Матричный эффект ионов М n+ обусловлен их способностью к реорганизации пространств. строения молекулы открытоцепного реагента в конфигурацию, удобную для замыкания цикла. При этом обеспечивается большая прочность координац. связей в переходном состоянии, чем в комплексе М n+ с открытоцепной молекулой. Возникает прямой предшественник макроциклич. комплекса, в к-ром соблюдается соответствие между диаметром М n+ и размером полости макроцикла. Ионы атомов металла, размеры к-рых меньше или больше определенного размера (разного для разл. соед.), после осуществления М. с. могут и не входить в координац. полость конечного макроцикла. Так, при конденсации фурана с ацетоном в кислой среде без ионов металла образуется полимер линейного строения; выход циклич. тетрамера IV незначителен. В присут. LiClO 4 выход линейного продукта резко падает, а основным направлением становится образование макрогетероцикла IV:


В подобных р-циях связывание катиона металла посторонними и более сильными комплексообразователями, напр. краун-эфирами, блокирует М. с. Если по завершении М. с. ион металла не уходит самопроизвольно, а образовавшийся лиганд принципиально может существовать в своб. виде, встает задача деметаллизации продукта. Этого достигают действием к-т, реагентов, специфично связывающих металлы (цианиды связывают Ni, о-фенантролин - Fe). Иногда деметаллизацию осуществляют, снижая координац. способность металла изменением его валентности с помощью окислит.-восстановит. р-ций. Принципиально важны случаи, когда образуется продукт, координац. связь к-рого с ионом металла слабее, чем связь этого иона с исходными реагентами. Тогда продукт легко "соскальзывает" с иона металла; исходные реагенты образуют с металлом новый комплекс, идентичный первоначальному. К числу таких р-ций принадлежит циклоолигомеризация ацетилена под действием Ni(CN) 2 . Кол-во атомов С в образующемся цикле зависит от числа молекул ацетилена, координированных у атома Ni, и от их взаимного расположения. Если возникает октаэдрич. шестикоординационный комплекс V, в к-ром 4 координац. места заняты p-связанными молекулами ацетилена, то образуется циклооктатетраен:


Если в реакц. среде присутствует РРh 3 , формируется комплекс VI, в к-ром на долю ацетилена остается лишь 3 своб. места; конечный продукт циклизации - бензол:


В присут. 1,10-фенантролина образуется комплекс VII, в к-ром ацетилен занимает 2 разобщенных положения. Катализатор при этом отравляется и циклизация не происходит.

В нек-рых случаях М. с. могут вызывать и ионы водорода; макроцикл как бы наращивается на протоны, действующие в паре на таком расстоянии между ними, к-рое минимально допустимо с точки зрения кулоновского отталкивания, напр.:


М. с. имеет важное значение для изучения механизмов р-ций. Кроме чисто топологич. ф-ции подготовки и сближения реакц. центров, ионы металлов стабилизируют неустойчивые промежут. соед., облегчая их выделение и исследование. С помощью М. с. получены многочисл. циклич. соед., используемые в разл. областях. Лит.: Гэрбэлэу Н. В., Реакции на матрицах, Киш., 1980; Дзиомко В. М., "Химия гетероциклических соединений", 1982, № 1, с. 3 18; Mandolini L., "Pure and Appl. Chem.", 1986, v.58, № 11, p. 1485-92. 3. В. Тодрес.

  • - pseudobridge, matrix bridge - “псевдомост”, .Aнафазный мост, образующийся в результате слипания хромосомного матрикса расходящихся к противоположным полюсам хромосом...

    Молекулярная биология и генетика. Толковый словарь

  • - англ. matrix analysis; нем. Matrixanalyse. В социологии - метод исследования свойств соц. объектов на основе использования правил теории матриц...

    Энциклопедия социологии

  • - в полиграфии - пресс для тиснения стереотипных матриц или неме-таллич. стереотипов, как правило, гидравлический...

    Большой энциклопедический политехнический словарь

  • - Устройство, применяемое для прессования картонных или винипластовых матриц, а также пластмассовых стереотипов...

    Краткий толковый словарь по полиграфии

  • - анализ, основанный на применении теории матриц, по которым вычисляются параметры элементов модели, составляющие экономические системы...

    Словарь бизнес терминов

  • - метод научного исследования свойств объектов на основе использования правил теории матриц, по которым определяется значение элементов модели, отображающих взаимосвязи экономических объектов...

    Большой экономический словарь

  • - в экономике, метод научного исследования свойств объектов на основе использования правил теории матриц, по которым определяется значение элементов модели, отображающих взаимосвязи экономических объектов...

    Большая Советская энциклопедия

  • - метод исследования взаимосвязей между экономическими объектами с помощью их матричного моделирования...

    Большой энциклопедический словарь

  • - ...

    Орфографический словарь русского языка

  • - МА́ТРИ-А, -ы, ж. ...

    Толковый словарь Ожегова

  • - МА́ТРИЧНЫЙ, матричная, матричное. прил. к матрица. Матричный картон...

    Толковый словарь Ушакова

  • - ма́тричный I прил. соотн. с сущ. матрица I, связанный с ним II прил. 1. соотн. с сущ. матрица II, связанный с ним 2. Обеспечивающий печать с помощью матрицы. III прил. соотн...

    Толковый словарь Ефремовой

  • - м"...

    Русский орфографический словарь

  • - ...

    Формы слова

  • - прил., кол-во синонимов: 1 матрично-векторный...

    Словарь синонимов

  • - прил., кол-во синонимов: 1 четырех...

    Словарь синонимов

"МАТРИЧНЫЙ СИНТЕЗ" в книгах

Синтез

Из книги Листы дневника. Том 2 автора

Синтез Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранно. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

13. СИНТЕЗ

Из книги Рерих автора Антология гуманной педагогики

13. СИНТЕЗ Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранно. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

Речевые «формулы детства»: «Понимать – говорить – читать – писать» и «Синтез – анализ – синтез»

Из книги Психология речи и лингвопедагогическая психология автора Румянцева Ирина Михайловна

Речевые «формулы детства»: «Понимать – говорить – читать – писать» и «Синтез – анализ – синтез» Можно сказать, что одними из главных положений в обучении через ИЛПТ являются два психологических и психолингвистических закона, которые мы окрестили «формулами детства»,

Беседа 8. Я несу величайший синтез, который возможен для вас в этом мире, - синтез любви и медитации

Из книги Приходи, следуй за Мною. Беседы по притчам Иисуса. Том 3 автора Раджниш Бхагван Шри

Беседа 8. Я несу величайший синтез, который возможен для вас в этом мире, - синтез любви и медитации 18 декабря 1975г., ПунаУ меня часто возникает желание иметь изолированное безопасное место, способствующее отказу от мира. Медитации по нескольку часов в день, все более и

Синтез

Из книги О Вечном… автора Рерих Николай Константинович

Синтез Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранено. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

Синтез

Из книги Легенды Азии (сборник) автора Рерих Николай Константинович

Синтез Синтез самый вмещающий, самый доброжелательный может создавать то благотворное сотрудничество, в котором все человечество так нуждается сейчас. От высших представителей духовного мира до низшего материалиста-торговца - все согласятся на том, что без

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства Термины и понятия, проверяемые в экзаменационной работе: антикодон, биосинтез, ген, генетическая информация,

Матричный анализ

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Синтез

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

СИНТЕЗ

Из книги Рок-энциклопедия. Популярная музыка в Ленинграде-Петербурге, 1965–2005. Том 3 автора Бурлака Андрей Петрович

СИНТЕЗ Группу СИНТЕЗ организовал в декабре 1976 года музыкант-любитель и специалист по электронике Александр Супрунов (р. 2.07.53 в Ленинграде). В конце 60-х он впервые услышал на альбомах западных рок-групп звучание тогдашних электронных клавишных инструментов

Матричный замер

Из книги Цифровая фотография от А до Я автора Газаров Артур Юрьевич

Матричный замер Матричный замер (Matrix metering, Pattern Evaluative, E) также называют мультизонным, многозональным, многосегментным, оценочным. В автоматическом режиме камера устанавливает стандартный матричный экспозамер, используемый чаще других. Это самый интеллектуальный замер,

12.9. Матричный метод разработки решений

Из книги Системное решение проблем автора Лапыгин Юрий Николаевич

12.9. Матричный метод разработки решений Принятие решения на основе матричного метода сводится к осуществлению выбора с учетом интересов всех заинтересованных сторон. Схематично процесс решений при этом выглядит так, как это показано на рис. 12.7. Как мы видим, существует

8.11. Матричный метод РУР

Из книги Управленческие решения автора Лапыгин Юрий Николаевич

8.11. Матричный метод РУР Принятие решения на основе матричного метода сводится к осуществлению выбора с учетом интересов всех заинтересованных сторон. Схематично процесс РУР при этом выглядит так, как это показано на рис. 8.13. Рис. 8.13. Модель РУР матричным методомНа

11.3. Матричный метод разработки стратегий

Из книги Стратегический менеджмент: учебное пособие автора Лапыгин Юрий Николаевич

11.3. Матричный метод разработки стратегий Разработка видения организацииРазличные состояния внешней и внутренней среды организаций объясняют разнообразие самих организаций и их фактическое состояние.Многофакторность параметров, определяющих положение каждой

Синтез

Из книги Суверенитет духа автора Матвейчев Олег Анатольевич

Синтез Следующий, и, наверное, завершающий (почему завершающей, мы увидим ниже) всю западную политическую мысль, этап связан с диалектикой Гегеля.В логике вообще, говорит Гегель, смысл слова «единичность» познается только в отношении к «некоторости» и «множественности».

Как уже упоминалось (стр. 59), важнейшие биополимеры – белки и нуклеиновые кислоты - синтезируются в живом организме путем матричной поликонденсации. Для осуществления матричного синтеза полимера необходима макромолекула-матрица , несущая всю информацию о первичной структуре синтезируемой макромолекулы. В ходе синтеза происходит «считывание» этой информации, и разные мономеры вступают в реакции синтеза в определенном порядке . Для этого необходимо, чтобы каждый мономер «узнавал» то место на макромолекуле-матрице, где «записана» информация именно об этом мономере. Иными словами, необходимо некое структурное соответствие между молекулой мономера и соответствующим ему участком матрицы; это соответствие принято называть комплементарностью (в некоторых русскоязычных источниках встречается написание «компли ментарность»; дело, вероятно, в том, что английское слово с ompl e mentary произносится как ‘kompl i ment ry ).

Принцип комплементарности макромолекулы-матрицы и синтезируемого полимера может быть использован для синтеза полимеров с определенной первичной структурой любым методом (и полимеризациейи поликонденсацией); ведутся исследования по матричному получению синтетических сополимеров. Однако до настоящего времени единственными эффективными примерами матричных синтезов полимеров являются синтезы белков и нуклеиновых кислот путем матричной поликонденсации. Все эти синтезы протекают в ходе генетических процессов , прежде всего – репликации, транскрипции и трансляции (синтез небольших участков ДНК протекает также в ходе еще одного генетического процесса – репарации).

Во всех этих случаях матрицей является макромолекула нуклеиновой кислоты : при репликации и транскрипции – ДНК, при трансляции – матричной (информационной) РНК. Комплементарное узнавание осуществляется: А. При репликации и транскрипции (а также репарации) - между нуклеотидными звеньями макромолекулы матрицы и мономерами (нуклеозидтрифосфатами); Б. При трансляции – между нуклеотидными звеньями макромолекулы - матрицы и нуклеотидными звеньями антикодонов. Это узнавание осуществляется путем образования водородных связей между гетероциклическими основаниями: для ДНК в парах аденин-тимин (A-T, Ade-Thy) и гуанин-цитозин (G-C, Gua-Cyt), для РНК – в парах аденин-урацил (А-U, Ade-Ura) и гуанин-цитозин. В парах А-Т и А-U образуются две водородные связи, в паре G-C – три:

Эти пары имеют абсолютно одинаковый размер (1,085 нм); это делает возможным построение регулярных вторичных структур (прежде всего, двойной спирали ДНК).

Репликация, транскрипция и трансляция начинаются и заканчиваются в строго определенных местах макромолекулы-матрицы (иначе говоря, для матричных синтезов существуют «старт-сигнал» и «стоп-сигнал»). Начало этих процессов называют инициацией , процесс формирования полимерной цепи – элонгацией, окончание – терминацией. Все эти процессы протекают при катализе несколькими ферментами.

Репликация. В ходе этого генетического процесса происходит удвоение молекул ДНК, т.е. копирование генетической информации. Суть процесса – расплетение двойной спирали ДНК на единичные цепи; каждая из них служит матрицей для синтеза новой (дочерней) цепи из мономеров – дезоксирибонуклеозид-5’-трифосфатов. Синтез катализируется ферментами ДНК-полимеразами , которые осуществляют линейный синтез (т.е. на каждой стадии формирования цепи взаимодействуют полимер и мономер) по направлению 5’→3’ (т.е. на каждой стадии реагируют 3’-концевая группа ОН полимера и 5’-трифосфатная группа мономера:

Поскольку каждый мономер узнает свой участок, дочерняя цепь представляет собой точную копию отделившейся [если в ходе синтеза все же к цепи присоединяется «неправильный» мономер (т.е. не комплементарный своему звену матрицы), то фермент осуществляет коррекцию – отщепляет это звено].

Двойная связь начинает расплетаться в каком-то определенном месте; синтез дочерних цепей начинается сразу вслед за началом расплетения двойной спирали; двойная спираль продолжает расплетаться, а вслед за расплетением (движением «репликативной вилки») идет наращивание дочерних цепей. При этом на двух одиночных цепях-матрицах синтез идет по разным схемам. Дело в том, что в двойной спирали исходной (материнской) ДНК цепи ориентированы антипараллельно ; поэтому для одной цепи репликативная вилка движется в направлении 5’→3’ (эта цепь называется ведущей ), а для другой – в направлении 3’→5’ (эта цепь называется отстающей ). Поскольку синтез дочерней цепи может идти только в направлении 5’→3’, то на ведущей цепи она синтезируется в том же направлении , что и движение вилки, а на отстающей – в противоположном направлении. Поэтому на ведущей цепи идет непрерывный синтез «вдогонку» движению вилки, а на отстающей – прерывистый , в виде отдельных фрагментов, называемых фрагментами Оказаки (пока синтезируется один фрагмент, вилка движется в обратном направлении и освобождается место на матрице; тогда синтез этого фрагмента прекращается, и на освободившемся месте начинается синтез второго фрагмента и т.д.):

После окончания синтеза фрагменты Оказаки сшиваются специальными ферментами (лигазами) в одну цепь. Таким образом, на одной цепи (ведущей) идет чисто линейный синтез, а на другой – отстающей – блочный (конвергентный).

Дочерние цепи образуют с материнскими цепями двойные спирали – копии исходных двойных спиралей.

Полимеразная цепная реакция (амплификация фрагментов ДНК)

Относительно недавно (К. Маллис, 1988) разработана методика, позволяющая проводить процесс, подобный репликации, не в организме, а «в колбе» (in vitro ) . Такой процесс получил название полимеразной цепной реакции, ПЦР (Polymerase Chain Reaction , PCR ) . Полимеразная цепная реакция позволяет многократно увеличивать количество первоначально взятой ДНК; такое увеличение количества (размножение) принято обозначать термином «амплификация». Амплификации по способу ПЦР подвергается не вся нативная ДНК, а ее фрагменты, содержащие гены, интересующие исследователя. Для получения таких фрагментов нативную ДНК подвергают специфическому расщеплению (рестрикции) специальными ферментами – рестриктазами (будут рассмотрены в дальнейшем). Необходимое условие для амплификации: для амплифицируемого фрагмента должна быть известна первичная структура с 3’- концов обеих цепей примерно на 20-30 звеньев.

Для проведения полимеразной цепной реакции необходимо иметь праймеры – олигонуклеотиды длиной 20-30 звеньев, комплементарные первичным структурам обоих цепей с 3’ –концов. Синтез таких олигонуклеотидов разработан достаточно хорошо.

Для проведения ПЦР в реакционный сосуд помещают амплифицируемый фрагмент ДНК, прибавляют большой избыток обоих праймеров и мономеров – дезоксирибонуклеотид – 5’-трифосфатов - и вводят ДНК-полимеразу; обычно используют термостойкую полимеразу, выделенную из термобактерий. Смесь нагревают до 95 0 С; при этом двойная спираль амплифицируемого фрагмента ДНК распадается на одиночные цепи; затем быстро охлаждают до 60 0 С; при этом праймеры координируются с комплементарными им 3’-концами каждой цепи. Это более вероятно, чем воссоздание распавшейся двойной спирали, т.к. праймеры находятся в большом избытке. Праймеры, ассоциированные с цепями, служат затравками для матричного синтеза ДНК из мономеров, который катализируется ДНК-полимеразой. Синтез идет в направлении 5’→3’; на каждой цепи синтезируется комплементарная ей вторая цепь и, следовательно, количество ДНК удваивается. Далее цикл нагрев-охлаждение повторяется; каждая из макромолекул ДНК снова удваивается и т.д. Таким образом, удается провести несколько циклов и многократно увеличить количество ДНК; большой избыток праймеров и мономеров это позволяет сделать. Проведение ПЦР представлено на приведенной ниже схеме; для упрощения изображены праймеры длиной 7 звеньев, хотя в действительности они заметно длиннее (20-30 звеньев):

Синтез полинуклеотидных цепей идет, разумеется, по той же схеме (полимер + мономер), что и при обычной репликации (стр. 91).

Транскрипция. В ходе этого процесса происходит передача информации от ДНК на матричную (информационную) ДНК (а также на транспортные и рибосомальные РНК). Процесс имеет много общего с репликацией: макромолекула ДНК является матрицей для синтеза макромолекулы РНК из мономеров – рибонуклеозид-5 ’-трифосфатов; синтез также начинается с расплетения двойной спирали ДНК и протекает в направлении 5’→3’ по линейной схеме при катализе ферментами –РНК-полимеразами. Однако имеются и принципиальные особенности: 1) В отличие от репликации, матрицей служит только одна цепь исходной ДНК (так называемая минус-цепь); 2) Синтезируемая цепь не образует двойную спираль с молекулой-матрицей, а отделяется в виде единичной цепи; молекула- матрица снова образует двойную спираль с ранее отделившейся цепью ДНК (плюс-цепью): двойная спираль ДНК-ДНК устойчивее спирали ДНК-РНК:

И при репликации и при транскрипции синтезируются весьма высокомолекулярные полинуклеотидные цепи с высочайшей скоростью (у эукариот –1000-3000 звеньев в мин., у прокариот – до 50000 тыс. звеньев в мин.). А. Скорость процесса обусловлена: 1. Точной пространственной ориентацией реагирующих частиц : 5’-трифосфатная группа мономера точно подводится к 3’-ОН-концевому звену синтезируемой цепи; это происходит в процессе комплементарного узнавания; 2. Ферментативным катализом , который, как известно, наиболее эффективен. Матричный синтез нуклеиновых кислот, в отличие от нематричного, не требует защиты «лишних групп»: приведенные факторы обеспечивают абсолютную специфичность взаимодействия функциональных групп. Б. Высокая молекулярная масса синтезируемого полимера достигается полным удалением низкомолекулярного продукта реакции – пирофосфата, которых гидролизуется до фосфата [как уже упоминалось (стр. 72), синтез нуклеиновых кислот относится к равновесной поликонденсации].

Трансляция. Матричный биосинтез полипептидов. В ходе трансляции происходит передача генетической информации от матричной РНК (мРНК) на белок.

Матрицей для синтеза полипептидной цепи служит молекула мРНК; при этом возникает проблема перевода информации из 4- буквенного «алфавита» РНК на 20-буквенный «алфавит» полипептидной цепи (одно из значений термина «трансляция» – перевод). Иными словами, необходимо существование структурного соответствия между определенными участками РНК-матрицы и определенными мономерами для синтеза полипептидов - α-аминокислотами. Это соответствие получило название белкового кода. Код является триплетным : каждая аминокислота соответствует участку мРНК, содержащему три нуклеотидных звена ; иначе говоря, она кодируется триплетом нуклеотидных звеньев; такой триплет называется кодоном. Совокупность всех кодонов – белковый код .

Белковый код является вырожденным – большинство α-аминокислот кодируется более чем одним кодоном. Кодоны, кодирующие одну и ту же аминокислоту, называют синонимичными ; как правило, первые два звена синонимичных кодонов одинаковы, а третье различается: например, пролин (Pro ) кодируется четырьмя кодонами: ССU, CCA, CCC, CCG. Из 64 кодонов (это число возможных сочетаний из четырех типов звеньев по три) 61 кодируют α-аминокислоты, а три не кодируют ничего; они называются терминальными или стоп-кодонами; на этих участках матрицы синтез полипептида останавливается. Код, как правило, не перекрывается, кодоны идут «встык» один за другим: если, например, в последовательности GAAUGUCCG первые три звена (GAA) кодируют одну аминокислоту, то вторые три (UGU) – вторую, а третьи (CCG) – третью; в то же время, например, триплет AAU здесь кодоном не является.

Белковый код был расшифрован в 60-х годах ХХ века во многом благодаря использованию синтетических матриц – продуктов поликонденсации олигонуклеотидов (стр. 89).

α-Аминокислоты не могут непосредственно узнавать соответствующие им кодоны, поскольку нет прямой комплементарности между их структурами. Узнавание осуществляется с помощью молекул- посредников (адапторов или уж совсем по русски - переходников) – молекул, которые могут специфически координироваться с одной стороны с кодонами, а с другой – с соответствующими им α-аминокислотами. Такими адапторами являются транспортные РНК (тРНК) – сравнительно низкомолекулярные полинуклеотиды (73-85 нуклеотидных звеньев); эти РНК растворимы и весьма мобильны, что и позволяет им выполнять транспортную функцию – доставку аминокислот к матрице. Транспортная РНК имеет специфическую пространственную структуру («клеверного листа»); один из фрагментов этой структуры («акцепторный стебель») специфически связывается со своей α-аминокислотой (и только с ней!); другой фрагмент («антикодоновая петля») содержит триплет нуклеотидных звеньев, комплементарных кодону, который кодирует именно эту аминокислоту; этот триплет называют антикодоном (например, если аминокислота кодируется триплетом UСA, то в ее тРНК антикодон – AGU).

Перед процессом собственно трансляции происходит узнавание α-аминокислотами «своих» тРНК и далее ковалентное связывание с ними с образованием сложного эфира по 3’-концевому звену «акцепторного стебля» - аминоацил-тРНК:

Ковалентное связывание происходит при участии 5’-аденозинтрифосфата (АТР, рррА), который поставляет необходимую для этого энергию (расщепляясь до аденозинмонофосфата и пирофосфата). Образование аминоацил-тРНК катализируются ферментами – аминоацил-тРНК-синтетазами; каждая из них узнает с одной стороны «свою» α-аминокислоту, а с другой – «свою» тРНК («двойной контроль», практически исключающий ошибки при узнавании).

Далее т-РНК транспортирует связанную с ней α-аминокислоту к матрице, где и происходит «сборка» полипептидной цепи. Матрица – мРНК – образует комплекс с рибосомой – клеточной органеллой, представляющей собой специфический комплекс рибосомальных РНК с белками. Рибосома в ходе синтеза перемещается вдоль цепи мРНК от кодона к кодону (это перемещение называется транслокацией) . Именно на рибосоме и происходит синтез полипептидной цепи. Опуская описание строения рибосомы, отметим, что на ней имеются два центра связывания А-центр (аминокислотный) и Р-центр (пептидный), которые и принимают непосредственное участие в синтезе.

Опять-таки опуская начало (инициацию) процесса трансляции, рассмотрим единичный цикл элонгации – совокупность процессов, при которых полипептидная цепь увеличивается на одно звено (рис. 9)

Один цикл элонгации включает три этапа. Перед первым этапом Р-центр занят тРНК, связанной с С-концевым звеном формирующейся полипептидной цепи; А-центр свободен и находится у кодона, кодирующего следующую аминокислоту. На первом этапе (1) тРНК, связанная с этой следующей аминокислотой (здесь – фенилаланином), узнает кодон этой аминокислоты (при помощи антикодона) и координируется с ним, закрепляясь на А-центре. При этом весьма важно, что пептидная цепь на Р-центре и очередная аминокислота точно ориентированы друг по отношению к другу – группа NH 2 очередной аминокислоты точно «нацелена» на сложноэфирный карбонил С-концевого звена пептидной цепи. Такая ориентация обусловлена специфической структурой рибосомы. Точная ориентация позволяет весьма эффективно осуществить ключевой второй этап (2) – образование пептидной связи (конденсацию). Эта реакция идет по типу аминолиза сложного эфира; «спиртовая» компонента – тРНК – вытесняется и остается на Р-центре, а пептидная цепь, удлинившаяся на одно звено, теперь связана с новой молекулой тРНК, прикрепленной к А-центру.

Образование пептидной связи катализируется ферментом – пептидилтрансферазой – и протекает с очень большой скоростью – за время порядка 10 -2 – 10 -3 сек.

Далее следует третий этап (3), который состоит из трех стадий. На первой стадии освободившаяся тРНК предыдущей аминокислоты уходит с Р-центра (удаление побочного продукта равновесной поликонденсации). На второй стадии тРНК с прикрепленной к ней пептидной цепью переходит с А-центра на освободившийся Р-центр. Наконец, на третьей стадии рибосома перемещается вдоль цепи мРНК на один кодон (на рисунке - вправо), т.е. происходит транслокация. После этого картина полностью аналогична исходной (до начала первого этапа), но полипептидная цепь имеет на одно звено больше, а рядом с А-центром находится новый кодон; далее все повторяется. Один цикл элонгации проходит в течение порядка 0,05 сек., так что синтез достаточно большого белка из 400 звеньев проходит за 20 сек. Синтез идет в направлении 5"->3" мРНК и от N-конца полипептидной цепи к ее С-концу.

Терминация трансляции наступает при попадании А-центра рибосомы на стоп-кодон; синтез прекращается, готовая полипептидная цепь отделяется от последней тРНК и покидает рибосому.

Рис. 9. Схема одного цикла элонгации при трансляции

Резюме

Процессы поликонденсации в подавляющем большинстве случаев (за исключением поли- рекомбинации) сводятся к взаимодействию между собой функциональных групп мономеров. Если каждый мономер содержит две группы, образуется линейный полимер (линейная поликонденсация), если три или более – возможно сшивание с образованием трехмерной структуры (трехмерная поликонденсация). Концевые группы полимеров – неиспользованные функциональные группы мономеров.

Для поликонденсации используют самые разнообразные взаимодействия между функциональными группами, из которых, вероятно, наиболее часто – полиацилирование; по этой схеме, в частности, идет синтез белков и по сходной схеме – синтез нуклеиновых кислот.

Реакции поликонденсации протекают по ступенчатым механизмам. Конечный результат линейной поликонденсации определяется, в основном, двумя факторами: степенью обратимости реакции и соотношением реагирующих групп. По степени обратимости различают равновесную и неравновесную поликонденсацию. В первом случае обратные реакции (деструкции) протекают в заметной степени, поэтому необходимо удаление низкомолекулярного продукта реакции; во втором случае такое удаление не обязательно. Нарушение эквивалентности реагирующих групп во всех случаях ограничивает длину полимерной цепи. Поэтому для достижения высоких молекулярных масс нужно обеспечить строгую эквивалентность групп; напротив, для получения олигомеров нужно использовать рассчитанный избыток одной из групп. Для трехмерной поликонденсации эти ограничения не столь существенны, т.к. для сшивания во многих случаях достаточно неполной глубины процесса.

При обычной непрограммируемой поликонденсации образуются полимеры с высокой степенью полидисперсности; однако, долю молекул любой величины (как по числу, так и по массе) во многих случаях можно достаточно точно рассчитать.

С другой стороны, именно поликонденсация предоставляет возможность осуществления программируемых синтезов, в результате которых образуются монодисперсные полимеры, в том числе сополимеры с заданной первичной структурой. Это могут быть синтезы с контролем каждой стадии формирования полимерной цепи (синтез дендримеров, синтезы полипептидов и полинуклеотидов «в пробирке»). Наиболее совершенный вариант программируемого синтеза – матричный синтез, в ходе которого считывается информация, «записанная» на молекуле-матрице. Это – процессы репликации, транскрипции и трансляции; ферментативный катализ и точная ориентация реагирующих молекул позволяет проводить эти синтезы не только с высочайшей точностью, но и с высочайшей скоростью.

Cтраница 1


Матричный синтез ДНК, катализируемый ДНК-полимераэами, выполняет две основные функции: репликацию ДНК, т.е. синтез новых дочерних цепей, комплементарных исходным материнским цепям, и репарацию двунитевых ДНК, имеющих бреши в одной из цепей, образовавшиеся в результате вырезания поврежденных участков этой цепи специальными нуклеазами. В обоих случаях ДНК-полимеразы катализируют перенос дезоксирибонуклеотидных фрагментов от дезоксирибонуклеозид-5 - трифосфатов на гидроксигруппу 3 -концевого фрагмента растущей или подлежащей регенерации цепи.  

Многоступенчатый матричный синтез белка, или собственно трансляцию, протекающую в рибосоме, также условно делят на 3 стадии: инициацию, элонгацию и терминацию.  

Матричным синтезом было положено начало конструированию и сборке молекул любой сложности. Однако, чтобы перейти к синтезу твердого тела, необходимо использовать матрицу не для роста на ней синтезируемой цепи, а для сборки структурных единиц в монослои - двухмерные структуры, а затем и для сборки системы монослоев - трехмерной структуры. Если первая операция была подготовлена теорией и практикой сорбции, то последняя может исходить из результатов изучения эпитаксии.  

Сущность матричного синтеза заключается в следующем.  

Субстратами матричного синтеза белка являются аминокислоты, соединенные с тРНК, причем последние способствуют переводу информации с последовательности нуклеотидов на последовательность аминокислот. Транспортные РНК представляют собой одноцепочечные молекулы сравнительно небольшой молекулярной массы (22 - 26 kDa) и состоящие из 80 - 100 нуклеотидов. Каждой аминокислоте соответствует от одной до шести транспортных РНК, с которыми она может образовывать комплекс (гл.  

Проблема исследования матричного синтеза биополимеров требует создания модельных систем, повторяющих в общих чертах основные закономерности синтеза макромолекул в биологических системах. Первым шагом на этом пути является реализация и исследование процессов полимеризации в наиболее простых системах, где матрица состоит из одинаковых звеньев, содержащих функциональные группы, способные адсорбировать данный мономер. С другой стороны, исследование закономерностей полимеризации мономеров, предварительно организованных и химически активированных в результате взаимодействия с макромолекулярным агентом, представляет несомненно значительный интерес.  

Схема вторичной структуры дезоксирибонуклсино-вой кислоты (модель Уотсона и Крина.| Комплементарность оснований во вторичной структуре дезоксирибонуклеиновой к-ты.  

Идея о матричном синтезе высказывалась давно как некая умозрительная абстракция. Принцип комплс-ментарности придает ей вполне ясный физич.  

Схема вторичной структуры дезоксирибонуклеиновой кислоты (модель Уотсона и Крика.| Комплементарность оснований во вторичной структуре дезоксирибонуклеиновой к-ты.  

Идея о матричном синтезе высказывалась давно как некая умозрительная абстракция. Принцип комплементарности придает ей вполне ясный физич.  

В этом случае матричный синтез на ДНК протекает с ошибками. В синтезируемой нити ДНК оказывается на один нуклеотид больше или меньше обычного и возникают мутации.  

Ферменты, катализирующие матричный синтез нуклеиновых кислот, называются ДНК - или РНК-полимеразами. В некоторых случаях цепь мРНК может служить матрицей не только для синтеза белка, но и для синтеза ДНК. Этот процесс катализируется ферментом обратной транскриптазой. Каждый из трех синтезов биополимеров включает в себя три этапа: инициацию - начало образования полимера из двух мономеров, элонгацию - наращивание полимерной цепи и терминацию - прекращение матричного синтеза. Механизмы синтеза ДНК одинаковы для прокариот и для эукариот. В их основе заложены принципы комплементарное азотистых оснований (АТ и ГЦ), обеспечивающие строгое соответствие нуклеотидной последовательности родительской и дочерней цепей ДНК.  

Итак, смысл матричного синтеза состоит в том, что мы разыскиваем управление в классе линейных функций от величин, определяющих отклонение состояний системы от программной траектории. Эта ситуация - является типичной для инженерных задач теорий управления.  

Итак, смысл матричного синтеза состоит в том, что мы разыскиваем управление в классе линейных функций от величин, определяющих отклонение состояний системы от программной траектории. Эта ситуация является типичной для инженерных задач теории управления.  

Осуществив в 1962 г. матричный синтез полипептидов, Мерри-фельд показал, что путь для получения веществ любой, даже самой сложной структуры, открыт.  

Последние материалы раздела:

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...

Конспект урока по окружающему миру на тему: «Режим дня II
Конспект урока по окружающему миру на тему: «Режим дня II

Тема Режим дня Учебная задача Цель темы научиться планировать распорядок дня Сформировать понятие о режиме дня школьника Показать...