Лавуазье прокаливание олова и ртути. «Десять самых красивых экспериментов в истории науки»

В 1764 г. Парижская Академия наук объявила конкурс на тему "Найти лучший способ освещения улиц большого города, соединяющий в себе яркость освещения, легкость обслуживания и экономичность". Лучшим был признан проект под девизом "И путь свой отметит огнями" (слова из "Энеиды" Вергилия). В проекте научно обосновывались различные устройства уличного освещения: фонарями масляными и с сальными свечами, с рефлекторами и без них и т.д.

9 апреля 1765 г. победителю была вручена золотая медаль Академии. Им оказался двадцатидвухлетний Антуан Лоран Лавуазье - будущая гордость французской и мировой науки.

Родился он 26 августа 1743 г. в семье адвоката парижского суда. Отец хотел видеть Антуана адвокатом и отдал его в старинное аристократическое учебное заведение-коллеж Мазарини, затем учеба была продолжена на юридическом факультете университета.

Антуан, отличавшийся прекрасными способностями, учился легко, так как с юных лет он выработал привычку к напряженному систематическому труду. В университете кроме юридических наук Лавуазье изучает и естественные, которыми увлекается все больше. Он слушает курс лекций по химии у известного химика Г. Руэля, занимается минералогией у Ж. Геттара, ботаникой - у Б. де Жюссье.

В 1764 г. Лавуазье окончил университет со званием адвоката, а в феврале следующего года он представляет в Парижскую Академию наук свою первую работу по химии "Анализ гипса", в которой проявилась его самостоятельность и оригинальность мышления. Если до этого о составе минералов судили в основном по "действию огня", то он изучал "на гипсе действие воды-этого почти универсального растворителя"; исследовал процесс кристаллизации и установил, что при застывании гипс поглощает воду.

В 1768 г. он избирается в Академию наук адъюнктом по классу химии. Французские ученые возлагали на него большие надежды, и они не ошиблись.

В том же году Лавуазье становится генеральным откупщиком. Как один из членов Компании Генерального откупа он получил право взимать налоги и пошлины с населения. Выполняя задания Компании, он инспектировал табачные фабрики и таможни на западе Франции. Доходы шли главным образом на приобретение дорогостоящих приборов для научных исследований. Участие в Генеральном откупе стало причиной трагической гибели великого ученого во время буржуазной революции.

Имея много обязанностей по делам откупа, Лавуазье занимался химией только с 6 до 9 часов утра и с 7 до 10 часов вечера ежедневно и один раз в неделю (по субботам) полностью весь день.

С 1772 г. Лавуазье начинает изучать горение и обжиг металлов, предполагая "повторить с новыми предосторожностями, дабы объединить все то, что мы знаем о том воздухе, который связывается или выделяется из тел (речь идет о СO 2 - Б. К.), с другими добытыми познаниями и создать теорию". В том же году он начал опыты по горению, а также кальцинации металлов. Первый эксперимент-сжигание алмаза. Лавуазье поместил его в закрытый сосуд и нагревал с помощью увеличительного стекла до тех пор, пока алмаз не исчез. Исследовав образовавшийся газ, Лавуазье установил, что это "связанный воздух" (СO 2). Затем ученый подверг сжиганию фосфор и серу в герметически закрытых колбах, предварительно взвесив их. Анализируя результаты опытов, он убедился, что вес фосфора и серы при горении увеличился, а такое "увеличение происходит благодаря громадному количеству воздуха, который связывается при горении". Это наводит Лавуазье на мысль, что и при кальцинации металлов происходит поглощение воздуха. В доказательство он ставит в следующем году специальные опыты (опять же проводя тщательное взвешивание). В закрытых сосудах нагревались различные металлы: олово, свинец, цинк. Вначале на их поверхности образовывался слой окалины (оксидов), но через некоторое время процесс прекращался. Однако окалина тяжелее исходного металла, вес же сосуда до и после нагревания оставался тем же. Значит, прибавление в весе металла могло произойти только за счет имевшегося в сосуде воздуха, но тогда там должно быть разреженное пространство. И действительно, когда сосуд открывали, в него устремлялся воздух и вес сосуда становился больше (вспомните опыты М. В. Ломоносова).

Почему же с металлами соединяется не весь воздух? Какая из его составных частей реагирует с веществами? Эти вопросы волновали Лавуазье. Ответы на них пришли после встречи с Пристли.

Повторив опыты английского ученого, Лавуазье констатировал, что 1 / 5 часть воздуха соединяется с ртутью, превращая ее в окалину (оксид ртути), а оставшиеся 4 / 5 воздуха не поддерживают горение и дыхание. При нагревании оксида выделяется тот же объем воздуха, который, смешиваясь с оставшимся, дает первоначальный воздух. Следовательно, обычный воздух состоит из двух частей: "чистого воздуха" и "удушающего воздуха".

В 1775 г. Лавуазье становится "главным распорядителем порохов" (управляющим селитряной и пороховой промышленностью). Он переезжает в Арсенал, где устраивает отличную лабораторию; в ней он проработал почти до конца жизни.

Выполненные работы подводили Лавуазье к мысли о том, что при горении веществ важную роль играет "чистый", или "живительный", воздух, а не фантастический флогистон. Весь свой богатый экспериментальный материал ученый обобщил в трех статьях, которые представил в Академию.

В первой рассматривалось взаимодействие ртути с "купоросной кислотой" (серной) и обжиг образующегося при этом ртутного купороса. Вторая статья "О горении вообще" была наиболее важной, так как в ней Лавуазье предлагал "новую теорию горения". Согласно этой теории горение есть процесс соединения тел с кислородом с одновременным выделением тепла и света. Получающиеся при этом продукты-не простые вещества, а сложные, состоящие из тела и кислорода. При горении вес веществ увеличивается. Третья статья имела название "Опыты над дыханием животных и об изменениях, которые совершаются в воздухе, проходящем через легкие". В ней автор отмечал, что дыхание животных тождественно горению, только идет оно медленнее, и образующееся при этом тепло поддерживает постоянную температуру в организме.

Эти работы были высоко оценены Ф. Энгельсом, который писал, что Лавуазье "впервые поставил на ноги всю химию, которая в своей флогистонной форме стояла на голове".

Кислородная теория горения опровергала теорию флогистона. Недаром крупнейшие химики того времени - приверженцы флогистона, и среди них Шееле, Кавендиш, Пристли, отказывались ее признать. В Германии же поклонники "огненной материи" в знак протеста даже сожгли портрет Лавуазье...

За свои новаторские исследования Лавуазье в 1778 г. был избран академиком Парижской Академии наук.

В 1789 г. выходит "Начальный курс химии" в трех частях - один из важнейших трудов ученого. В том же году во Франции началась буржуазная революция. В марте 1792 г. ликвидируется откуп, а в следующем году Конвент принимает решение об аресте откупщиков, в том числе и Лавуазье. После суда все откупщики были приговорены к смертной казни. 8 мая 1794 г. Лавуазье был гильотинирован. Он расплачивался, по словам К. А. Тимирязева, "за грехи целых поколений хищников, высасывавших из французского народа его жизненные соки".

Восемнадцатый век, Франция, Париж. Антуан Лоран Лавуазье, один из будущих творцов химической науки, после многолетних экспериментов с разными веществами в тиши своей лаборатории вновь и вновь убеждается в том, что совершил подлинную революцию в науке. Его простые по сути химические опыты по сжиганию веществ в герметически закрытых объемах полностью опровергают общепринятую в то время теорию флогистона. Но веские, строго количественные доказательства в пользу новой "кислородной" теории горения в ученом мире не принимаются. Очень уж прочно засела в головах наглядная и удобная флогистонная модель.

Что же делать? Убив два-три года на бесплодные усилия отстоять свою идею, Лавуазье приходит к заключению, что до чисто теоретических аргументов его научное окружение еще не дозрело и следует пойти совершенно иным путем. В 1772 году великий химик решается с этой целью на необычный эксперимент. Он приглашает всех желающих принять участие в зрелище по сжиганию в запаянном котле… увесистого куска алмаза. Как же тут удержаться от любопытства? Ведь речь идет не о чем-нибудь, а об алмазе!

Вполне понятно, что вслед за сенсационным сообщением в лабораторию вместе с обывателями валом повалили и ярые оппоненты ученого, до этого никак не желавшие вникать в его опыты со всякой там серой, фосфором и углем. Помещение было надраено до блеска и сияло не меньше, чем приговоренный к публичному сожжению драгоценный камень. Надо сказать, что лаборатория Лавуазье по тем временам принадлежала к одной из лучших в мире и вполне соответствовала дорогостоящему эксперименту, в котором идейным противникам хозяина теперь просто не терпелось принять участие.

Алмаз не подвел: сгорел без видимого следа, согласно тем же законам, что распространялись и на другие презренные вещества. Ничего существенно нового с научной точки зрения не произошло. Зато "кислородная" теория, механизм образования "связанного воздуха" (углекислого газа) наконец-то дошли до сознания даже самых закоренелых скептиков. Они поняли, что алмаз исчез не бесследно, а под воздействием огня и кислорода претерпел качественные изменения, превратился в нечто иное. Ведь по окончании эксперимента колба весила ровно столько, сколько в начале. Так с ложным исчезновением у всех на глазах алмаза из научного лексикона навсегда исчезло слово "флогистон", обозначающее гипотетическую составную часть вещества, якобы теряемую при его горении.

Но свято место пусто не бывает. Одно ушло, другое пришло. Флогистонную теорию вытеснил новый фундаментальный закон природы - закон сохранения материи. Лавуазье был признан историками науки первооткрывателем этого закона. Убедить в его существовании человечество помог алмаз. В то же время эти же историки напустили вокруг нашумевшего события такие клубы тумана, что разобраться в достоверности фактов до сих пор представляется довольно непростым делом. Приоритет важного открытия вот уже много лет и без всяких к тому оснований оспаривается "патриотическими" кругами самых разных стран: России, Италии, Англии…

Какими же аргументами обосновываются претензии? Самыми нелепыми. В России, например, закон сохранения материи приписывается Михаилу Васильевичу Ломоносову, который в действительности его не открывал. Причем в качестве доказательств борзописцы химической науки беспардонно используют выдержки из его личной переписки, где ученый, делясь с коллегами своими рассуждениями о свойствах материи, якобы собственноручно свидетельствует в пользу этой точки зрения.

Итальянские историографы притязания на приоритет мирового открытия в химической науке объясняют тем, что… Лавуазье не первого осенила догадка использовать в опытах алмаз. Оказывается, еще в 1649 году видные европейские ученые познакомились с письмами, в которых сообщалось о подобных экспериментах. Они были предоставлены Флорентийской Академией наук, и из их содержания следовало, что местные алхимики уже тоща подвергали алмазы и рубины сильному воздействию огня, помещая их в герметически закрытые сосуды. При этом алмазы исчезали, а рубины сохранялись в первозданном виде, из чего делался вывод об алмазе как "поистине волшебном камне, природа которого не поддается объяснению". Ну и что? Все мы так или иначе движемся по стопам предшественников. А то, что алхимиками итальянского Средневековья не была распознана природа алмаза, только лишь наводит на мысль о недоступности их сознанию и многих других вещей, в том числе вопроса о том, куда девается масса вещества при его нагревании в исключающем доступ воздуха сосуде.

Весьма шатко выглядят и авторские амбиции англичан, которые вообще отрицают причастность Лавуазье к сенсационному эксперименту. По их убеждению, в актив великого французского аристократа была несправедливо занесена заслуга, принадлежащая на самом деле их соотечественнику Смитсону Теннанту, который известен человечеству как первооткрыватель двух самых дорогих в мире металлов - осмия и иридия. Именно он, как заявляют англичане, проделывал подобные демонстрационные трюки. В частности, сжигал в золотом сосуде алмаз (до этого графит и древесный уголь). И именно ему принадлежит важное для развития химии умозаключение о том, что все эти вещества имеют одинаковую природу и при сгорании образуют углекислый газ в строгом соответствии с весом сгораемых веществ.

Но как ни тщятся отдельные историки науки хоть в России, хоть в Англии умалить выдающиеся достижения Лавуазье и отвести ему второстепенную роль в уникальных исследованиях, у них все равно ничего не получается. Гениальный француз продолжает оставаться в глазах мировой общественности человеком всеобъемлющего и оригинального ума. Достаточно вспомнить его знаменитый опыт с дистиллированной водой, который раз и навсегда поколебал бытующий в то время среди многих ученых взгляд на способность воды превращаться при нагревании в твердое вещество.

Сложился этот неверный взгляд на основе следующих наблюдений. Когда воду упаривали "досуха", на дне сосуда неизменно обнаруживался твердый остаток, который для простоты называли "землей". Отсюда и ходили разговоры о превращении воды в землю.

В 1770 году Лавуазье подверг расхожее мнение проверке. Для начала он сделал все, чтобы получить как можно более чистую воду. Достичь этого можно было тогда только одним способом - перегонкой. Взяв самую лучшую в природе дождевую воду, ученый перегнал ее восемь раз. Затем наполнил очищенной от примесей водой заранее взвешенную стеклянную емкость, герметично закупорил ее и снова зафиксировал вес. Затем в течение трех месяцев он нагревал этот сосуд на горелке, доведя его содержимое почти до кипения. В итоге на дне емкости действительно оказалась "земля".

Но откуда? Чтобы ответить на этот вопрос, Лавуазье вновь взвесил сухой сосуд, масса которого уменьшилась. Установив, что вес сосуда изменился настолько, насколько появилось в нем "земли", экспериментатор понял, что смущавший коллег твердый остаток просто выщелачивается из стекла, и ни о каких чудодейственных превращениях воды в землю не может быть и речи. Такой вот происходит любопытный химический процесс. И под воздействием высоких температур он протекает намного быстрее.

Юрий Фролов.

История естествознания полна экспериментов, заслуживающих названия странных. Описанная ниже десятка выбрана целиком на вкус автора, с которым можно не соглашаться. Одни из опытов, попавших в эту подборку, закончились ничем. Другие привели к появлению новых отраслей науки. Есть эксперименты, начатые много лет назад, но не оконченные до сих пор.

Так выглядит в наше время полустанок, мимо которого ездила платформа с трубачами, проверяя принцип Доплера.

Доналд Келлог и Гуа.

С помощью этого рисунка можно проверить своё цветовое зрение. Люди с нормальным зрением видят в кружке число 74, дальтоники - число 21.

Что было видно через телескоп во время эксперимента по проверке шарообразности Земли. Рисунок А. Уоллеса.

Пройдёт ещё лет пять, и девятая с 1938 года капля вязкой смолы упадёт в подставленный стакан.

«Биосфера-2» - гигантский герметизированный комплекс зданий из бетона, стальных труб и 5600 стеклянных панелей.

ПРЫЖКИ НЬЮТОНА

В детстве Исаак Ньютон (1643-1727) рос довольно хилым и болезненным мальчиком. В играх на свежем воздухе он обычно отставал от сверстников.

Третьего сентября 1658 года умер Оливер Кромвель, английский революционер, ненадолго ставший полновластным правителем страны. В этот день над Англией пронёсся необычайно сильный ветер. Народ говорил: это сам дьявол прилетал за душой узурпатора! Но в местечке Грэнтем, где в то время жил Ньютон, дети затеяли состязание по прыжкам в длину. Заметив, что прыгать лучше по ветру, чем против него, Исаак обскакал всех соперников.

Позже он занялся опытами: записал, на сколько футов удаётся прыгнуть по ветру, на сколько - против ветра и на какую дальность он может прыгнуть в безветренный день. Так он получил представление о силе ветра, выраженной в футах. Уже став знаменитым учёным, он говорил, что считает эти прыжки своими первыми экспериментами.

Ньютон известен как великий физик, но его первый эксперимент можно отнести скорее к метеорологии.

КОНЦЕРТ НА РЕЛЬСАХ

Был и обратный случай: метеоролог провёл эксперимент, доказавший справедливость одной физической гипотезы.

Австрийский физик Христиан Доплер в 1842 году выдвинул и теоретически обосновал предположение о том, что частота световых и звуковых колебаний должна меняться для наблюдателя в зависимости от того, движется ли источник света либо звука от наблюдателя или к нему.

В 1845 году голландский метеоролог Христофор Бейс-Баллот решил проверить гипотезу Доплера. Он нанял паровоз с грузовой платформой, посадил на платформу двух трубачей и попросил их держать ноту соль (два трубача были нужны для того, чтобы один из них мог набирать воздух, пока другой тянет ноту, и таким образом звук не прерывался). На перроне одного полустанка между Утрехтом и Амстердамом метеоролог разместил нескольких музыкантов без инструментов, но с абсолютным музыкальным слухом. После чего паровоз стал с разной скоростью таскать платформу с трубачами мимо перрона со слушателями, а те отмечали, какую ноту слышат. Потом наблюдателей заставили ездить, а трубачи играли, стоя на перроне. Опыты продолжались два дня, в результате стало ясно, что Доплер прав.

Кстати, позже Бейс-Баллот основал голландскую метеослужбу, сформулировал закон своего имени (если в Северном полушарии стать спиной к ветру, то область низкого давления будет от вас по левую руку) и стал иностранным членом-корреспондентом Петербургской академии наук.

НАУКА, РОДИВШАЯСЯ ЗА ЧАШКОЙ ЧАЯ

Один из основателей биометрии (математической статистики для обработки результатов биологических экспериментов) английский ботаник Роберт Фишер работал в 1910-1914 годах на агробиологической станции близ Лондона.

Коллектив сотрудников состоял из одних мужчин, но однажды на работу приняли женщину, специалистку по водорослям. Ради неё решено было учредить в общей комнате файф-о-клоки. На первом же чаепитии зашёл спор на извечную для Англии тему: что правильнее - добавлять молоко в чай или наливать чай в чашку, где уже есть молоко? Некоторые скептики стали говорить, что при одинаковой пропорции никакой разницы во вкусе напитка не будет, но Мюриэль Бристоль, новая сотрудница, утверждала, что легко отличит «неправильный» чай (английские аристократы считают правильным доливать молоко в чай, а не наоборот).

В соседней комнате приготовили при участии штатного химика разными способами несколько чашек чаю, и леди Мюриэль показала тонкость своего вкуса. А Фишер задумался: сколько раз надо повторить опыт, чтобы результат можно было считать достоверным? Ведь если чашек было бы всего две, угадать метод приготовления вполне можно было чисто случайно. Если три или четыре - случайность тоже могла бы сыграть роль...

Из этих размышлений родилась классическая книга «Статистические методы для научных сотрудников», опубликованная в 1925 году. Методы Фишера биологи и медики используют до сих пор.

Заметим, что Мюриэль Бристоль, по воспоминаниям одного из участников чаепития, правильно определила все чашки.

Кстати, причина того, почему в английском высшем свете принято доливать молоко в чай, а не наоборот, связана с физическим явлением. Знать всегда пила чай из фарфора, который может лопнуть, если сначала налить в чашку холодное молоко, а потом добавить горячий чай. Простые же англичане пили чай из фаянсовых или оловянных кружек, не опасаясь за их целость.

ДОМАШНИЙ МАУГЛИ

В 1931 году необычный эксперимент провела семья американских биологов - Уинтроп и Люэлла Келлог. Прочитав статью о печальной судьбе детей, росших среди животных - волков или обезьян, биологи задумались: а что, если сделать наоборот - попытаться воспитать обезьяньего детёныша в человеческой семье? Не приблизится ли он к человеку? Сначала учёные хотели переселиться со своим маленьким сыном Доналдом на Суматру, где нетрудно было бы среди орангутанов найти компаньона для Доналда, но на это не хватило денег. Однако Йельский центр по изучению человекоподобных обезьян одолжил им маленькую самку шимпанзе, которую звали Гуа. Ей было семь месяцев, а Доналду - 10.

Супруги Келлог знали, что почти за 20 лет до их эксперимента русская исследовательница Надежда Ладыгина уже пыталась воспитывать, как воспитывают детей, годовалого шимпанзёнка и за три года не добилась успехов в «очеловечивании». Но Ладыгина проводила опыт без участия детей, и Келлоги надеялись, что совместное воспитание с их сыном даст другие результаты. К тому же нельзя было исключить, что годовалый возраст уже поздноват для «перевоспитания».

Гуа приняли в семью и стали воспитывать наравне с Доналдом. Друг другу они понравились и вскоре стали неразлучны. Экспериментаторы записывали каждую деталь: Доналду нравится запах духов, Гуа его не любит. Проводили опыты: кто быстрее догадается, как с помощью палки добыть печенье, подвешенное к потолку посреди комнаты на нитке? А если завязать мальчику и обезьянке глаза и позвать их по имени, кто лучше определит направление, откуда идёт звук? В обоих тестах победила Гуа. Зато когда Доналду дали карандаш и бумагу, он сам начал что-то карябать на листе, а обезьянку пришлось учить, что можно делать с карандашом.

Попытки приблизить обезьяну к человеку под влиянием воспитания оказались скорее неудачными. Хотя Гуа часто передвигалась на двух ногах и научилась есть ложкой, даже стала немножко понимать человеческую речь, она приходила в замешательство, когда знакомые люди появлялись в другой одежде, её не удалось научить выговаривать хотя бы одно слово - «папа» и она, в отличие от Доналда, не смогла освоить простенькую игру типа наших «ладушек».

Однако эксперимент пришлось прервать, когда выяснилось, что к 19 месяцам и Дональд не блистал красноречием - он освоил всего три слова. И что ещё хуже, желание поесть он стал выражать типичным обезьяньим звуком вроде взлаивания. Родители испугались, что постепенно мальчик опустится на четвереньки, а человечий язык так и не освоит. И Гуа отослали обратно в питомник.

ГЛАЗА ДАЛЬТОНА

Речь пойдёт об эксперименте, проведённом по просьбе экспериментатора после его смерти.

Английский учёный Джон Дальтон (1766-1844) памятен нам в основном своими открытиями в области физики и химии, а также первым описанием врождённого недостатка зрения - дальтонизма, при котором нарушено распознавание цветов.

Сам Дальтон заметил, что страдает этим недостатком, только после того, как в 1790 году увлёкся ботаникой и оказалось, что ему трудно разобраться в ботанических монографиях и определителях. Когда в тексте шла речь о белых или жёлтых цветках, он не испытывал затруднений, но если цветки описывались как пурпурные, розовые или тёмно-красные, все они казались Дальтону неотличимыми от синих. Нередко, определяя растение по описанию в книге, учёному приходилось спрашивать у кого-нибудь: это голубой или розовый цветок? Окружающие думали, что он шутит. Дальтона понимал только его брат, обладавший тем же наследственным дефектом.

Сам Дальтон, сравнивая своё цветовосприятие с видением цветов друзьями и знакомыми, решил, что в его глазах имеется какой-то синий светофильтр. И завещал своему лаборанту после смерти извлечь его глаза и проверить, не окрашено ли в голубоватый цвет так называемое стекловидное тело - студенистая масса, заполняющая глазное яблоко?

Лаборант выполнил завещание учёного и не нашёл в его глазах ничего особенного. Он предположил, что у Дальтона, возможно, было что-то не в порядке со зрительными нервами.

Глаза Дальтона сохранились в банке со спиртом в Манчестерском литературно-философском обществе, и уже в наше время, в 1995 году, генетики выделили и исследовали ДНК из сетчатки. Как и следовало ожидать, в ней обнаружились гены дальтонизма.

Нельзя не упомянуть ещё о двух крайне странных опытах с органами зрения человека. Исаак Ньютон, вырезав из слоновой кости тонкий изогнутый зонд, запускал его себе в глаз и давил им на заднюю сторону глазного яблока. При этом в глазу возникали цветные вспышки и круги, из чего великий физик сделал вывод, что мы видим окружающий мир потому, что свет оказывает давление на сетчатку. В 1928 году один из пионеров телевидения, английский изобретатель Джон Бэйрд, пытался использовать человеческий глаз в качестве передающей камеры, но, естественно, потерпел неудачу.

НЕУЖЕЛИ ЗЕМЛЯ - ШАР?

Редкий пример эксперимента в географии, которая вообще-то не является экспериментальной наукой.

Выдающийся английский биолог-эволюционист, соратник Дарвина - Альфред Рассел Уоллес был активным борцом против лженауки и всяческих суеверий (см. «Наука и жизнь» № 5, 1997 г.).

В январе 1870 года Уоллес прочитал в одном научном журнале объявление, податель которого предлагал спор на 500 фунтов стерлингов тому, кто возьмётся наглядно доказать шарообразность Земли и «продемонстрирует способом, понятным каждому разумному человеку, выпуклую железную дорогу, реку, канал или озеро». Спор предлагал некий Джон Хэмден, автор книги, доказывавшей, что Земля на самом деле - плоский диск.

Уоллес решил принять вызов и для демонстрации закруглённости Земли выбрал прямолинейный отрезок канала длиной шесть миль. В начале и в конце отрезка стояли два моста. На одном из них Уоллес установил строго горизонтально 50-кратный телескоп с нитями визира в окуляре. Посреди канала, на расстоянии трёх миль от каждого моста, он поставил высокую вешку с чёрным кружком на ней. На другой мост навесил доску с горизонтальной чёрной полосой. Высота над водой телескопа, чёрного кружка и чёрной полосы была совершенно одинаковой.

Если Земля (и вода в канале) плоская, чёрная полоса и чёрный кружок должны совпасть в окуляре телескопа. Если же поверхность воды выпуклая, повторяет выпуклость Земли, то чёрный кружок должен оказаться выше полосы. Так и получилось (см. рисунок). Причём размер расхождения хорошо совпадал с расчётным, выведенным из известного радиуса нашей планеты.

Однако Хэмден отказался даже посмотреть в телескоп, прислав для этого своего секретаря. А секретарь заверил собравшихся, что обе метки находятся на одном уровне. Если некоторое расхождение и наблюдается, то это связано с аберрациями линз телескопа.

Последовал многолетний судебный процесс, в результате которого Хэмдена всё же заставили выплатить 500 фунтов, но Уоллес потратил на судебные издержки значительно больше.

ДВА САМЫХ ДОЛГИХ ЭКСПЕРИМЕНТА

Возможно, самый начат 130 лет назад (см. «Наука и жизнь» № 7, 2001 г.) и пока не закончен. Американский ботаник У. Дж. Бил в 1879 году закопал в землю 20 бутылок с семенами распространённых сорняков. С тех пор периодически (сначала каждые пять, потом десять, а ещё позже - каждые двадцать лет) учёные выкапывают одну бутылку и проверяют семена на всхожесть. Некоторые особо стойкие сорняки прорастают до сих пор. Следующую бутылку должны достать весной 2020 года.

Самый длительный физический эксперимент начал в университете австралийского города Брисбена профессор Томас Парнелл. В 1927 году он поместил в укреплённую на штативе стеклянную воронку кусок твёрдой смолы - вара, который по молекулярным свойствам является жидкостью, хотя и очень вязкой. Затем Парнелл нагрел воронку, чтобы вар слегка расплавился и затёк в носик воронки. В 1938 году первая капля смолы упала в подставленный Парнеллом лабораторный стакан. Вторая упала в 1947 году. Осенью 1948 года профессор скончался, и наблюдение за воронкой продолжили его ученики. С тех пор капли падали в 1954, 1962, 1970, 1979, 1988 и 2000 годах. Периодичность падения капель в последние десятилетия замедлилась из-за того, что в лаборатории смонтировали кондиционер и стало холоднее. Любопытно, что ни разу капля не падала в присутствии кого-либо из наблюдателей. И даже когда в 2000 году перед воронкой смонтировали веб-камеру для передачи изображения в интернет, в момент падения восьмой и на сегодня последней капли камера отказала!

Опыт ещё далёк от завершения, но уже ясно, что вар в сто миллионов раз более вязок, чем вода.

БИОСФЕРА-2

Это самый масштабный эксперимент из попавших в наш произвольный список. Решено было сделать действующую модель земной биосферы.

В 1985 году более двухсот американских учёных и инженеров объединились для того, чтобы построить в пустыне Сонора (штат Аризона) огромное стеклянное здание с образцами земной флоры и фауны. Планировали герметически закрыть здание от любых поступлений посторонних веществ и энергии (кроме энергии солнечного света) и поселить здесь на два года команду из восьми добровольцев, которых сразу прозвали «бионавтами». Эксперимент должен был способствовать изучению связей в естественной биосфере и проверить возможность длительного существования людей в замкнутой системе, например при дальних космических полётах. Поставлять кислород должны были растения; вода, как рассчитывали, будет обеспечиваться естественным круговоротом и процессами биологического самоочищения, пища - растениями и животными.

Внутренняя площадь здания (1,3 га) делилась на три основные части. В первой разместились образцы пяти характерных экосистем Земли: участок тропического леса, «океан» (бассейн с солёной водой), пустыня, саванна (с протекающей через неё «рекой») и болото. Во всех этих частях поселили отобранных ботаниками и зоологами представителей флоры и фауны. Вторую часть здания отвели системам жизнеобеспечения: четверть гектара для выращивания съедобных растений (139 видов, считая тропические фрукты из «леса»), бассейны для рыбы (взяли тиляпию, как неприхотливый, быстро растущий и вкусный вид) и отсек биологической очистки сточных вод. Наконец, имелись жилые отсеки для «бионавтов» (каждому - 33 квадратных метра с общей столовой и гостиной). Солнечные батареи обеспечивали электроэнергию для компьютеров и ночного освещения.

В конце сентября 1991 года восемь человек «замуровались» в стеклянной оранжерее. И вскоре начались проблемы. Погода оказалась необычайно облачной, фотосинтез шёл слабее нормы. К тому же в почве размножились бактерии, потребляющие кислород, и за 16 месяцев его содержание в воздухе снизилось с нормальных 21% до 14%. Пришлось добавлять кислород извне, из баллонов. Урожаи съедобных растений оказались ниже расчётных, население «Биосферы-2» постоянно голодало (хотя уже в ноябре пришлось вскрыть продуктовый НЗ, за два года опыта средняя потеря веса составила 13%). Исчезли заселённые насекомые-опылители (вообще вымерло от 15 до 30% видов), зато размножились тараканы, которых никто не заселял. «Бионавты» всё же худо-бедно смогли просидеть в заточении намеченные два года, но в целом эксперимент оказался неудачным. Впрочем, он лишний раз показал, насколько тонки и уязвимы механизмы биосферы, обеспечивающие нашу жизнь.

Гигантское сооружение используется сейчас для отдельных опытов с животными и растениями.

СЖИГАНИЕ АЛМАЗА

В наше время уже никого не удивляют опыты дорогостоящие и требующие огромных экспериментальных установок. Однако 250 лет назад это было в новинку, поэтому смотреть на поразительные опыты великого французского химика Антуана Лорана Лавуазье сходились толпы народа (тем более что опыты проходили на свежем воздухе, в саду около Лувра).

Лавуазье исследовал поведение разных веществ при высоких температурах, для чего построил гигантскую установку с двумя линзами, концентрировавшими солнечный свет. Изготовить собирательную линзу диаметром 130 сантиметров и сейчас задача нетривиальная, а в 1772 году это было просто невозможно. Но оптики нашли выход: сделали два круглых вогнутых стекла, спаяли их и в промежуток между ними налили 130 литров спирта. Толщина такой линзы в центре составляла 16 сантиметров. Вторая линза, помогавшая собрать лучи ещё сильнее, была раза в два меньше, и её изготовили обычным способом - шлифованием стеклянной отливки. Эту оптику установили на (её рисунок можно видеть в «Науке и жизни» 8, 2009 г.). Продуманная система рычагов, винтов и колёс позволяла наводить линзы на Солнце. Участники опыта были в закопчённых очках.

В фокус системы Лавуазье помещал различные минералы и металлы: песчаник, кварц, цинк, олово, каменный уголь, алмаз, платину и золото. Он отметил, что в герметически запаянном стеклянном сосуде с вакуумом алмаз при нагревании обугливается, а на воздухе сгорает, полностью исчезая. Опыты обошлись в тысячи золотых ливров.

ЛАВУАЗЬЕ

В истории химии известно мало имен, с которыми было связано столько важных химических событий, как с именем Антуана Лорана Лавуазье. Сам он сделал сравнительно мало открытий, но обладал весьма редким даром объединять новые факты, открытия других и свои собственные опыты в одно целое. Это был один из самых выдающихся естествоиспытателей, работа которого оказала громадное влияние на развитие не только химии, но и других естественных наук, внеся в них количественные способы исследования и точность. Прекрасный язык, которым излагает Лавуазье свои мысли, простой и образный, где каждое слово вызывает в читателе именно то представление, которое хочет дать автор, стало прообразом того, к чему должен стремиться каждый ученый.

А нтуан Лоран Лавуазье родился в 1743 г. Мальчик рос в обществе высокоодаренных людей – родственников и знакомых его отца, занимавших важные служебные посты и привыкших обсуждать в своем кругу разные вопросы науки и общественной жизни. При таких обсуждениях всегда присутствовал и будущий ученый, вскоре обративший на себя внимание своей смышленостью и развитием. Отец его, известный юрист, хотел дать сыну юридическое образование, но, заметив в молодом человеке склонность к математике и естественным наукам, поместил его в колледж Мазарини, в программу которого входили эти науки.
По окончании колледжа Лавуазье поступил в высшее юридическое училище, где получил степень бакалавра прав, а через год – лиценциата прав. Но при этом он не прекращал занятий естественными науками, к которым еще в колледже сильно пристрастился, продолжая изучать их под руководством самых выдающихся ученых своего времени – астронома Николы Луи Лакайля, ботаника Бернара Жюсьё, геолога и минералога Жана Этьена Геттара, ассистентом которого он стал. Особенно же привлекали молодого юриста лекции по химии профессора Гийома Франсуа Руэля. Прекрасно обставленные, сопровождавшиеся многочисленными опытами, лекции эти собирали всегда полную аудиторию. Из записей этих лекций, дошедших до нас в нескольких экземплярах, видно, что Руэль стремился дать слушателям полное представление о состоянии тогдашней химии. Подобно другим химикам той эпохи, он был сторонником теории флогистона и, исходя из нее, объяснял химические явления. В конце концов Лавуазье совершенно забросил юриспруденцию и весь отдался занятиям естествознанием. Исключительная работоспособность и систематичность делали эти занятия весьма продуктивными, он пытался всегда доходить до сути вещей и находить объяснения явлениям.
Наряду с этим Лавуазье живо интересовался вопросами техническими и социально-экономическими. Первое его научное исследование о составе гипса стало в то же время и первым сообщением, сделанным им в 1765 г. в Парижской академии наук. В том же году Лавуазье принял участие в конкурсе, объявленном академией на изыскание лучшего способа уличного освещения Парижа. За свой доклад Лавуазье получил золотую медаль.
Естественно, что вскоре поступило предложение избрать Лавуазье как человека, образованного, умного, энергичного и весьма полезного для науки, в члены Академии наук. Избрание состоялось в 1768 г. Лавуазье впервые присутствовал на заседании академии, где он был избран членом нескольких комиссий. Деятельность его в этих комиссиях отмечена той же методичностью, которая характеризует всю его работу.
Желая улучшить свое материальное положение, Лавуазье в том же году совершил поступок, имевший для него роковые последствия: он сделался одним из откупщиков по внутренним налогам, «генеральным фермером», предварительно очень основательно изучив все, касающееся «Генерального откупа»*. Откупщики брали налоги на откуп от государства, т. е. вносили в казну ежегодно определенную сумму денег, а сами собирали с народа налоги; разница шла в их пользу. Ему были поручены надсмотр над производством табака, надзор над таможенными операциями и другие дела по косвенным налогам. За это дело Лавуазье взялся со свойственной ему энергией и в 1769–1770 гг. много путешествовал по Франции в интересах откупа.
Эти поездки он использовал также для исследования питьевых и иных природных вод. Изучая их, Лавуазье заметил, что даже стократная перегонка не позволяет вполне избавить воду от примесей, растворенных в ней. Предполагая, что источником последних являются применяемые для перегонки сосуды, он в продолжение 100 дней нагревал в стеклянном сосуде воду до 90 °С. Затем путем точного взвешивания он определил потерю веса сосуда и вес выделенных из воды загрязнений: оба веса оказались тождественными. Так Лавуазье опроверг стародавнее мнение, что вода может превращаться в «землю».

Д есять лет – с 1771 по 1781 г. – были, пожалуй, самыми плодотворными в научном отношении: в течение их Лавуазье доказал справедливость своей новой теории горения как химического взаимодействия тел с кислородом. Масса обязанностей заставляла Лавуазье методически точно распределять свой день. Часы с 6 до 9 утра и с 7 до 10 вечера были посвящены химии, остальное время дня он отдавал работе в академии, по откупу в разных комиссиях. Один день в неделю целиком был отведен работе в лаборатории; сюда приходили посетители, принимавшие непосредственное участие в обсуждении получаемых результатов.
Приступая к изучению явлений горения и обжигания металлов, Лавуазье писал: «Я предполагаю повторить все сделанное предшественниками, принимая всевозможные меры предосторожности, чтобы объединить уже известное о связанном или освобождающемся воздухе с другими фактами и дать новую теорию. Работы упомянутых авторов, если их рассматривать с этой точки зрения, дают мне отдельные звенья цепи... Но надо сделать очень многие опыты, чтобы получить полную последовательность».
Соответствующие опыты, начатые в октябре 1772 г., были поставлены строго количественно: тщательно взвешивались взятые и полученные вещества. Один из первых результатов опытов – обнаружено увеличение веса при горении серы, фосфора, угля. Затем также тщательно были изучены явления обжигания металлов.
Приведем здесь некоторые данные об опытах, теперь редко упоминаемых, но в свое время вызвавших огромный интерес среди современников, – об опытах сжигания алмазов.
Давно уже было сделано наблюдение, что при достаточно сильном нагревании на воздухе алмазы исчезают бесследно. Лавуазье на опыте доказал, что решающая роль в этом явлении принадлежит воздуху; алмаз, к которому воздух не имеет доступа, не изменяется при той же температуре. Алмаз, сожженный под стеклянным колоколом солнечными лучами, собранными в фокусе зажигательного стекла, дал, как и предполагал Лавуазье, бесцветный газ, образовывавший с известковой водой белый осадок, который вскипал при обливании его кислотой, – это был углекислый газ. Для подтверждения этого был сожжен в тех же условиях кусочек древесного угля. В результате, как и при сожжении алмаза, был получен углекислый газ. Отсюда Лавуазье сделал вывод, что алмаз есть видоизменение угля: оба вещества при горении дают углекислый газ.
Опыты ученого и важнейшие выводы из них описаны им в 1774 г. Мастерское изложение дает убедительные доказательства мнения, что воздух состоит из двух газов, один из которых соединяется с веществами при горении и обжигании. Приходится удивляться, как после этого теория флогистона могла еще удержать за собою неистовых приверженцев. Дальнейшие выводы из этих опытов приведены в статье 1775 г., в которой Лавуазье специально рассмотрел природу образующихся при горении газов, особенно углекислого газа.
Наряду с этими научными работами Лавуазье самым деятельным образом занимался и практическими вопросами, связанными с производством табака, соли и т.д. В 1775 г. он был назначен «главным распорядителем порохов», т. е. инспектором выделки пороха. Он совершенно преобразовал это дело, сосредоточив его, начиная с производства селитры и кончая выделкой пороха, в руках государства. В результате производительность заводов значительно возросла, а стоимость пороха понизилась.

Л авуазье переселился в Арсенал, где устроил себе лабораторию, в которой работал в течение почти всей своей жизни. Эта лаборатория сделалась центром собраний ученых: и французских, и заграничных, принимавших деятельное участие не только в обсуждениях, но и в самих опытах. Обычно здесь до представления доклада Академии наук Лавуазье производил необходимые опыты перед друзьями и знакомыми и вместе с ними обсуждал результаты их в свете своей кислородной теории. Неопровержимо доказав справедливость этой теории, он перенес центр своей научной деятельности в другую область, связанную с прежней: он занялся всесторонним изучением химической стороны дыхания и тех изменений, которые при этом происходят с воздухом.
Он доказал присутствие в выдыхаемом воздухе того же углекислого газа, который образуется при горении. То обстоятельство, что водный раствор этого газа обладает кислыми свойствами, как и растворы продуктов горения серы и фосфора, дало повод Лавуазье считать, что все кислородные соединения - кислоты, что он и выразил в названии «кислород», т. е. образователь кислот. Интересно отметить, что название «углекислота», данное тогда углекислому газу, до сих пор применяется многими, хотя еще более ста лет назад было доказано, что углекислота и углекислый газ - два разных вещества.
В 1785 г. Лавуазье был назначен директором Академии наук и тотчас же приступил к ее преобразованию. С этого времени он еще теснее, чем раньше, связан с академией. Темп химических работ Лавуазье в это время замедлился, но тем не менее из-под его пера вышел ряд важных работ, интересных для практических приложений химии. Из таких приложений упомянем лишь деятельность в комитете по воздухоплаванию, тогда только что зарождавшемуся: первый воздушный шар, наполненный водородом, взлетел в 1783 г.
К 1790 г. было закончено большое исследование о природе теплоты, сделанное ученым совместно с академиком Пьером Симоном Лапласом. В этой работе они показали, как измерять количество теплоты, определять теплоемкость тел; изобретенные ими приборы - калориметры - применяются с этой целью и в настоящее время. От этих работ Лавуазье перешел к изучению возникновения теплоты в животном организме и установил, что теплота есть результат медленного процесса горения, вполне аналогичного горению угля.
Необходимо сказать еще о работах Лавуазье по разложению воды, осуществленному в 1783 г. пропусканием водяного пара над раскаленным железом, и по ее синтезу. Эти работы окончательно доказали сложный состав воды и природу водорода – ее образователя. В связи с полученными им результатами Лавуазье стал более энергично выступать против теории флогистона, теории, которая, конечно, могла существовать только в химии того периода, не применявшей количественных определений.

Лабораторные приборы и аппараты
А.Л.Лавуазье

В сю свою новую химию в окончательном виде Лавуазье опубликовал в 1787-1789 гг. Первая из этих дат – время составления новых названий веществ, названий, указывающих состав тел из образующих их химических элементов по данным химического анализа. Эта первая научная химическая номенклатура имела целью отграничить новую химию от старой – флогистонной. Эта же номенклатура приведена и в «Элементарном курсе химии» (1789).
Первая часть этого замечательного труда посвящена описанию количественных опытов образования и разложения газов, горения простых веществ, образования кислот и солей. Изучив явление брожения, Лавуазье подчеркнул особенность химического взаимодействия следующими словами: «Ничто не творится ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции имеется одинаковое количество материи до и после, что качество и количество начал остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано все искусство делать опыты в химии. Необходимо предполагать во всех настоящее (полное) равенство между началами исследуемого тела и получаемого из него анализом. Это химическое равенство - математическое выражение равенства веса тела до и после взаимодействия».
Вторая часть курса посвящена простым, не разлагаемым анализом веществам, которые составляют химические элементы. Таковых Лавуазье насчитал 33 (в том числе свет и теплота, причем он указал, что усовершенствование методов анализа может обусловить разложение некоторых элементов). Далее идут образуемые ими взаимные соединения.
Наконец, третья часть курса, посвященная приборам и операциям в химии, иллюстрирована многочисленными гравюрами, сделанными женой Лавуазье.
Лавуазье участвовал в завершении разработки системы мер и весов, предпринятой Академией наук. Эта работа была продолжена в Национальном собрании, которое постановило ввести десятичную систему мер и весов, основанную на длине земного меридиана. Для этого был образован ряд комитетов и комиссий, во главе которых стояли А.Л.Лавуазье, Ж.А.Н.Кондорсе, П.С.Лаплас. Они выполнили порученную им работу, результатом которой и стала метрическая система, применяемая теперь всюду. Это одна из последних научных работ ученого.
«Генеральный откуп» и откупщики давно уже составляли предмет справедливой ненависти народа. Национальное собрание в марте 1791 г. отменило откуп и предложило к 1 января 1794 г. ликвидировать его. С этого времени Лавуазье оставил работу в этом учреждении. Движение против откупщиков продолжало развиваться, и в 1793 г. Конвент постановил арестовать откупщиков и ускорить ликвидацию откупа. Вместе с другими 24 ноября был арестован и Лавуазье.
После разбирательства дела в трибунале 8 мая 1794 г. все откупщики были приговорены к смертной казни, и в тот же день вместе с другими Лавуазье был гильотинирован.

* Общество по сбору налогов с населения.

Зачем Антуан Лавуазье сжигал алмаз?

Восемнадцатый век, Франция, Париж. Антуан Лоран Лавуазье, один из будущих творцов химической науки, после многолетних экспериментов с разными веществами в тиши своей лаборатории вновь и вновь убеждается в том, что совершил подлинную революцию в науке. Его простые по сути химические опыты по сжиганию веществ в герметически закрытых объемах полностью опровергают общепринятую в то время теорию флогистона. Но веские, строго количественные доказательства в пользу новой "кислородной" теории горения в ученом мире не принимаются. Очень уж прочно засела в головах наглядная и удобная флогистонная модель.

Что же делать? Убив два-три года на бесплодные усилия отстоять свою идею, Лавуазье приходит к заключению, что до чисто теоретических аргументов его научное окружение еще не дозрело и следует пойти совершенно иным путем. В 1772 году великий химик решается с этой целью на необычный эксперимент. Он приглашает всех желающих принять участие в зрелище по сжиганию в запаянном котле… увесистого куска алмаза. Как же тут удержаться от любопытства? Ведь речь идет не о чем-нибудь, а об алмазе!

Вполне понятно, что вслед за сенсационным сообщением в лабораторию вместе с обывателями валом повалили и ярые оппоненты ученого, до этого никак не желавшие вникать в его опыты со всякой там серой, фосфором и углем. Помещение было надраено до блеска и сияло не меньше, чем приговоренный к публичному сожжению драгоценный камень. Надо сказать, что лаборатория Лавуазье по тем временам принадлежала к одной из лучших в мире и вполне соответствовала дорогостоящему эксперименту, в котором идейным противникам хозяина теперь просто не терпелось принять участие.

Алмаз не подвел: сгорел без видимого следа, согласно тем же законам, что распространялись и на другие презренные вещества. Ничего существенно нового с научной точки зрения не произошло. Зато "кислородная" теория, механизм образования "связанного воздуха" (углекислого газа) наконец-то дошли до сознания даже самых закоренелых скептиков. Они поняли, что алмаз исчез не бесследно, а под воздействием огня и кислорода претерпел качественные изменения, превратился в нечто иное. Ведь по окончании эксперимента колба весила ровно столько, сколько в начале. Так с ложным исчезновением у всех на глазах алмаза из научного лексикона навсегда исчезло слово "флогистон", обозначающее гипотетическую составную часть вещества, якобы теряемую при его горении.

Но свято место пусто не бывает. Одно ушло, другое пришло. Флогистонную теорию вытеснил новый фундаментальный закон природы - закон сохранения материи. Лавуазье был признан историками науки первооткрывателем этого закона. Убедить в его существовании человечество помог алмаз. В то же время эти же историки напустили вокруг нашумевшего события такие клубы тумана, что разобраться в достоверности фактов до сих пор представляется довольно непростым делом. Приоритет важного открытия вот уже много лет и без всяких к тому оснований оспаривается "патриотическими" кругами самых разных стран: России, Италии, Англии…

Какими же аргументами обосновываются претензии? Самыми нелепыми. В России, например, закон сохранения материи приписывается Михаилу Васильевичу Ломоносову, который в действительности его не открывал. Причем в качестве доказательств борзописцы химической науки беспардонно используют выдержки из его личной переписки, где ученый, делясь с коллегами своими рассуждениями о свойствах материи, якобы собственноручно свидетельствует в пользу этой точки зрения.

Итальянские историографы притязания на приоритет мирового открытия в химической науке объясняют тем, что… Лавуазье не первого осенила догадка использовать в опытах алмаз. Оказывается, еще в 1649 году видные европейские ученые познакомились с письмами, в которых сообщалось о подобных экспериментах. Они были предоставлены Флорентийской Академией наук, и из их содержания следовало, что местные алхимики уже тоща подвергали алмазы и рубины сильному воздействию огня, помещая их в герметически закрытые сосуды. При этом алмазы исчезали, а рубины сохранялись в первозданном виде, из чего делался вывод об алмазе как "поистине волшебном камне, природа которого не поддается объяснению". Ну и что? Все мы так или иначе движемся по стопам предшественников. А то, что алхимиками итальянского Средневековья не была распознана природа алмаза, только лишь наводит на мысль о недоступности их сознанию и многих других вещей, в том числе вопроса о том, куда девается масса вещества при его нагревании в исключающем доступ воздуха сосуде.

Весьма шатко выглядят и авторские амбиции англичан, которые вообще отрицают причастность Лавуазье к сенсационному эксперименту. По их убеждению, в актив великого французского аристократа была несправедливо занесена заслуга, принадлежащая на самом деле их соотечественнику Смитсону Теннанту, который известен человечеству как первооткрыватель двух самых дорогих в мире металлов - осмия и иридия. Именно он, как заявляют англичане, проделывал подобные демонстрационные трюки. В частности, сжигал в золотом сосуде алмаз (до этого графит и древесный уголь). И именно ему принадлежит важное для развития химии умозаключение о том, что все эти вещества имеют одинаковую природу и при сгорании образуют углекислый газ в строгом соответствии с весом сгораемых веществ.

Но как ни тщятся отдельные историки науки хоть в России, хоть в Англии умалить выдающиеся достижения Лавуазье и отвести ему второстепенную роль в уникальных исследованиях, у них все равно ничего не получается. Гениальный француз продолжает оставаться в глазах мировой общественности человеком всеобъемлющего и оригинального ума. Достаточно вспомнить его знаменитый опыт с дистиллированной водой, который раз и навсегда поколебал бытующий в то время среди многих ученых взгляд на способность воды превращаться при нагревании в твердое вещество.

Сложился этот неверный взгляд на основе следующих наблюдений. Когда воду упаривали "досуха", на дне сосуда неизменно обнаруживался твердый остаток, который для простоты называли "землей". Отсюда и ходили разговоры о превращении воды в землю.

В 1770 году Лавуазье подверг расхожее мнение проверке. Для начала он сделал все, чтобы получить как можно более чистую воду. Достичь этого можно было тогда только одним способом - перегонкой. Взяв самую лучшую в природе дождевую воду, ученый перегнал ее восемь раз. Затем наполнил очищенной от примесей водой заранее взвешенную стеклянную емкость, герметично закупорил ее и снова зафиксировал вес. Затем в течение трех месяцев он нагревал этот сосуд на горелке, доведя его содержимое почти до кипения. В итоге на дне емкости действительно оказалась "земля".

Но откуда? Чтобы ответить на этот вопрос, Лавуазье вновь взвесил сухой сосуд, масса которого уменьшилась. Установив, что вес сосуда изменился настолько, насколько появилось в нем "земли", экспериментатор понял, что смущавший коллег твердый остаток просто выщелачивается из стекла, и ни о каких чудодейственных превращениях воды в землю не может быть и речи. Такой вот происходит любопытный химический процесс. И под воздействием высоких температур он протекает намного быстрее.

Последние материалы раздела:

Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т
Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т

МОУ «ООШ с. Озёрки Духовницкого района Саратовской области » Киреевой Татьяны Константиновны 2009 – 2010 год Введение. «Грамотное письмо – не...

Презентация: Монако Презентация на тему
Презентация: Монако Презентация на тему

Религия: Католицизм: Официальная религия - католичество. Однако конституция Монако гарантирует свободу вероисповедания. В Монако есть 5...

Научный стиль современного русского языка презентация
Научный стиль современного русского языка презентация

Стилеобразующие факторы и языковые особенности научного стиля Стурикова Марина Владимировна, преподаватель русского языка и культуры речи История...