Какой самый распространенный элемент во Вселенной? Рекорды в науке и технике. Элементы Термины, которые следует знать

Химический элемент - это собирательный термин, описывающий совокупность атомов простого вещества, т. е. такого, которое не может быть разделено на какие-либо более простые (по структуре их молекул) составляющие. Представьте себе, что вы получаете кусок чистого железа с просьбой разделить его на гипотетические составляющие с помощью любого устройства или метода, когда-либо изобретенного химиками. Однако вы ничего не сможете сделать, никогда железо не разделится на что-нибудь попроще. Простому веществу - железу - соответствует химический элемент Fe.

Теоретическое определение

Отмеченный выше экспериментальный факт может быть объяснен с помощью такого определения: химический элемент - это абстрактная совокупность атомов (не молекул!) соответствующего простого вещества, т. е. атомов одного и того же вида. Если бы существовал способ смотреть на каждый из отдельных атомов в куске чистого железа, упомянутого выше, то все они были бы однаковыми - атомами железа. В противоположность этому, химическое соединение, например, оксид железа, всегда содержит по меньшей мере два различных вида атомов: атомы железа и атомы кислорода.

Термины, которые следует знать

Атомная масса : масса протонов, нейтронов и электронов, которые составляют атом химического элемента.

Атомный номер : число протонов в ядре атома элемента.

Химический символ : буква или пара латинских букв, представляющих обозначение данного элемента.

Соединение химическое : вещество, которое состоит из двух или более химических элементов, соединенных друг с другом в определенной пропорции.

Металл : элемент, который теряет электроны в химических реакциях с другими элементами.

Металлоид : элемент, который реагирует иногда как металл, а иногда и как неметалл.

Неметалл : элемент, который стремится получить электроны в химических реакциях с другими элементами.

Периодическая система химических элементов : система классификации химических элементов в соответствии с их атомными номерами.

Синтетический элемент : тот, который получен искусственно в лаборатории, и, как правило, не встречается в природе.

Природные и синтетические элементы

Девяносто два химических элемента встречаются в природе на Земле. Остальные были получены искусственно в лабораториях. Синтетический химический элемент - это, как правило, продукт ядерных реакций в ускорителях частиц (устройствах, используемых для увеличения скорости субатомных частиц, таких как электроны и протоны) или ядерных реакторах (устройствах, используемых для управления энергией, выделяющейся при ядерных реакциях). Первым полученным синтетическим элементом с атомным номером 43 стал технеций, обнаруженный в 1937 году итальянскими физиками К. Перрье и Э. Сегре. Кроме технеция и прометия, все синтетические элементы имеют ядра большие, чем у урана. Последний получивший свое название синтетический химический элемент - это ливерморий (116), а перед ним был флеровий (114).

Два десятка распространенных и важных элементов

Название Символ Процент всех атомов *

Свойства химических элементов

(при обычных комнатных условиях)

Во вселенной В земной коре В морской воде

В человеческом организме

Алюминий Al - 6,3 - - Легкий, серебристый металл
Кальций Ca - 2,1 - 0,02

Входит в состав природных минералов, ракушек, костей

Углерод С - - - 10,7 Базис всех живых организмов
Хлор Cl - - 0,3 - Ядовитый газ
Медь Cu - - - - Только красный металл
Золото Au - - - - Только желтый металл
Гелий He 7,1 - - - Очень легкий газ
Водород Н 92,8 2,9 66,2 60,6 Самый легкий из всех элементов; газ
Йод I - - - -

Неметалл; используется в качестве антисептического средства

Железо Fe - 2,1 - -

Магнитный металл; используется для производства чугуна и стали

Свинец Pb - - - - Мягкий, тяжелый металл
Магний Mg - 2,0 - - Очень легкий металл
Ртуть Hg - - - -

Жидкий металл; один из двух жидких элементов

Никель Ni - - - -

Устойчивый против коррозии металл; используют в монетах

Азот N - - - 2,4 Газ, основной компонент воздуха
Кислород О - 60,1 33,1 25,7

Газ, второй важный

компонент воздуха

Фосфор Р - - - 0,1 Неметалл; важен для растений
Калий К - 1.1 - -

Металл; важен для растений; обычно называют "поташ"

* Если величина не указана, то элемент составляет менее 0,1 процента.

Большой взрыв как первопричина образования материи

Какой химический элемент был самым первым во Вселенной? Ученые считают, что ответ на этот вопрос лежит в звездах и в процессах, с помощью которых формируются звезды. Вселенная, как полагают, возникла в какой-то момент времени от 12 до 15 миллиардов лет назад. До этого момента ничего сущего, кроме энергии, не мыслится. Но что-то произошло, что превратило эту энергию в огромный взрыв (так называемый Большой взрыв). В следующие секунды после Большого взрыва начала формироваться материя.

Первыми появившимися простейшими формами материи были протоны и электроны. Некоторые из них объединяются в атомы водорода. Последний состоит из одного протона и одного электрона; это самый простой атом, который может существовать.

Медленно, в течение длительных периодов времени атомы водорода стали собираться вместе в определенных областях пространства, образуя плотные облака. Водород в этих облаках стягивался в компактные образования гравитационными силами. В конце концов эти облака водорода стали достаточно плотными, чтобы сформировать звезды..

Звезды как химические реакторы новых элементов

Звезда - просто масса вещества, которая генерирует энергию ядерных реакций. Наиболее распространенная из этих реакций представляет комбинацию четырех атомов водорода, образующих один атом гелия. Как только звезды начали формироваться, то гелий стал вторым элементом, появившимся во Вселенной.

Когда звезды становятся старше, они переходят от водородно-гелиевых ядерных реакций на другие их типы. В них атомы гелия образуют атомы углерода. Позже атомы углерода образуют кислород, неон, натрий и магний. Еще позже неон и кислород соединяются друг с другом с образованием магния. Поскольку эти реакции продолжаются, то все более и более химических элементов образуются.

Первые системы химических элементов

Более 200 лет назад химики начали искать способы их классификации. В середине девятнадцатого века были известны около 50 химических элементов. Один из вопросов, который стремились разрешить химики. сводился к следующему: химический элемент - это полностью отличное от любого другого элемента вещество? Или некоторые элементы, связанные с другими в некотором роде? Есть ли общий закон, их объединяющий?

Химики предлагали различные системы химических элементов. Так, например, английский химик Уильям Праут в 1815 г. предположил, что атомные массы всех элементов кратны массе атома водорода, если принять ее равной единице, т. е. они должны быть целыми числами. В то время атомные массы многих элементов уже были вычислены Дж. Дальтоном по отношению к массе водорода. Однако если для углерода, азота, кислорода это примерно так, то хлор с массой 35,5 в эту схему никак не вписывался.

Немецкий химик Иоганн Вольфганг Доберайнер (1780 — 1849) показал в 1829 году, что три элемента из так называемой группы галогенов (хлор, бром и йод) могут классифицироваться по их относительным атомным массам. Атомный вес брома (79,9) оказался почти точно средним из атомных весов хлора (35,5) и йода (127), а именно 35,5 + 127 ÷ 2 = 81,25 (близко к 79,9). Это был первый подход к построению одной из групп химических элементов. Доберайнер обнаружил еще две таких триады элементов, но сформулировать общий периодический закон ему не удалось.

Как появилась периодическая система химических элементов

Большинство ранних классификационных схем было не очень успешными. Затем, около 1869 года, двумя химиками было сделано почти одно открытие и почти в одно время. Русский химик Дмитрий Менделеев (1834-1907) и немецкий химик Юлиус Лотар Мейер (1830-1895) предложили организовать элементы, которые имеют аналогичные физические и химические свойства, в упорядоченную систему групп, рядов и периодов. При этом Менделеев и Мейер указывали, что свойства химических элементов периодически повторяются в зависимости от их атомных весов.

Сегодня Менделеев, как правило, считается первооткрывателем периодического закона, потому что он сделал один шаг, который Мейер не сделал. Когда все элементы были расположены в периодической таблице, в ней появились некоторые пробелы. Менделеев предсказал, что это места для элементов, которые еще не были обнаружены.

Однако он пошел еще дальше. Менделеев предсказал свойства этих еще не открытых элементов. Он знал, где они расположены в периодической таблице, так что мог прогнозировать их свойства. Примечательно, что каждый предсказанный химический элемент Менделеева,будущие галлий, скандий и германий, были обнаружены менее чем через десять лет после опубликования им периодического закона.

Короткая форма периодической таблицы

Были попытки подсчитать, сколько вариантов графического изображения периодической системы предлагалось разными учеными. Оказалось, больше 500. Причем 80% общего числа вариантов - это таблицы, а остальное - геометрические фигуры, математические кривые и т. д. В итоге практическое применение нашли четыре вида таблиц: короткая, полудлинная, длинная и лестничная (пирамидальная). Последняя была предложена великим физиком Н. Бором.

На рисунке ниже показана короткая форма.

В ней химические элементы расположены по возрастанию их атомных номеров слева направо и сверху вниз. Так, первый химический элемент периодической таблицы водород имеет атомный номер 1 потому, что ядра атомов водорода содержит один и только один протон. Аналогично и кислород имеет атомный номер 8, так как ядра всех атомов кислорода содержат 8 протонов (см. рисунок ниже).

Главные структурные фрагменты периодической системы - периоды и группы элементов. В шести периодах все клетки заполнены, седьмой еще не завершен (элементы 113, 115, 117 и 118 хотя и синтезированы в лабораториях, однако еще официально не зарегистрированы и не имеют названий).

Группы подразделяются на главные (A) и побочные (B) подгруппы. Элементы первых трех периодов, содержащих по одному ряду-строке, входят исключительно в A-подгруппы. Остальные четыре периода включают по два ряда-строки.

Химические элементы в одной группе, как правило, имеют схожие химические свойства. Так, первую группу составляют щелочные металлы, вторую - щелочноземельные. Находящиеся в одном периоде элементы имеют свойства, медленно изменяющиеся от щелочного металла до благородного газа. Рисунок ниже показывает, как одно из свойств - атомный радиус - изменяется для отдельных элементов в таблице.

Длиннопериодная форма периодической таблицы

Она показана на рисунке ниже и делится в двух направлениях, по строкам и по столбцам. Есть семь строк-периодов, как и в короткой форме, и 18 столбцов, называемых группами или семьями. По сути, увеличение числа групп с 8 в короткой форме до 18 в длинной получено путем размещения всех элементов в периодах, начиная с 4-го, не в две, а в одну строку.

Две разных системы нумерации используются для групп, как показано в верхней части таблицы. Система на основе римских цифр (IA, IIA, IIB, IVB и т. д.) традиционно была популярна в США. Другая система (1, 2, 3, 4 и т. д.) традиционно используется в Европе, а несколько лет назад была рекомендована для использования в США.

Вид периодических таблиц на рисунках выше немного вводит в заблуждение, как и в любой такой опубликованной таблице. Причиной этого является то, что две группы элементов, показанных в нижней части таблиц, на самом деле должны быть расположены внутри них. Лантаноиды, например, принадлежат к периоду 6 между барием (56) и гафнием (72). Кроме того, актиноиды принадлежат периоду 7 между радием (88) и резерфордием (104). Если бы они были вставлены в таблицу, то она стала бы слишком широкой, чтобы поместиться на листе бумаги или настенной диаграмме. Поэтому принято эти элементы размещать в нижней части таблицы.

В природе встречаются 94 химических элемента. К настоящему времени искусственно получены ещё 15 трансурановых элементов (элементы с 95-го по 109-ый), существование 10 из них бесспорно.

Самые распространенные

Литосфера. Кислород (O), 46,60% по весу. Открыт в 1771 г. Карлом Шееле (Швеция).

Атмосфера. Азот (N), 78,09% по объему, 75,52% по массе. Открыт в 1772 г. Резерфордом (Великобритания).

Вселенная. Водород (Н), 90% всего вещества. Открыт в 1776 г. Генри Кавендишем (Beликобритания).

Самый редкий (из 94)

Литосфера. Астат (At): 0,16 г в земной коре. Открыт в 1940 г. Корсоном (США) с сотрудниками. Встречающийся в природе изотоп астат 215 (215 Аt) (открыт в 1943 г. Б. Карликом и Т. Бернертом, Австрия) существует в количестве лишь 4,5 нанограмма.

Атмосфера. Радон (Rn): всего 2,4 кг (6·10 –20 объема одной части на 1 млн). Открыт в 1900 г. Дорном (Германия). Концентрация этого радиоактивного газа в районах залежей гранитных пород предположительно стала причиной ряда раковых заболеваний. Общая масса радона, находящегося в земной коре, из которой и пополняются атмосферные запасы газа, равна 160 т.

Самый легкий

Газ. Водород (Н) имеет плотность 0,00008989 г/см 3 при температуре 0°С и давлении в 1 атм. Открыт в 1776 г. Кавендишем (Великобритания).

Металл. Литий (Li), имеющий плотность 0,5334 г/см 3 , является самым лёгким из всех твёрдых веществ. Открыт в 1817 г. Арфведсоном (Швеция).

Максимальная плотность

Осмий (Os), имеющий плотность 22,59 г/см 3 , является самым тяжёлым из всех твёрдых веществ. Открыт в 1804 г. Теннантом (Великобритания).

Самый тяжёлый газ

Им является радон (Rn), плотность которого 0,01005 г/см 3 при 0°С. Открыт в 1900 г. Дорном (Германия).

Последний из полученных

Элемент 108, или уннилоктий (Uno). Это предварительное название дано Международным союзом теоретической и прикладной химии (IUPAC). Получен в апреле 1984 г. Г. Мюнценбергом с сотрудниками (Западная Германия), которые наблюдали всего 3 атома этого элемента в лаборатории Общества по исследованию тяжёлых ионов в Дармштадте. В июне того же года появилось сообщение о том, что этот элемент был получен также Ю.Ц. Оганесяном с сотрудниками в Объединённом институте ядерных исследований, Дубна, СССР.

Единственный атом унниленния (Une) был получен в результате бомбардировки висмута ионами железа в лаборатории Общества по исследованию тяжёлых ионов, Дармштадт, Западная Германия, 29 августа 1982 г. У него самый большой порядковый номер (элемент 109) и самая большая атомная масса (266). По самым предварительным данным, советские ученые наблюдали образование изотопа элемента 110 с атомной массой 272 (предварительное название – унуннилий(Uun)).

Самый чистый

Гелий-4 (4 Не), полученный в апреле 1978 г. П.В. Маклинтоком из Ланкастерского университета, США, имеет менее 2 частей примесей на 10 15 частей объема.

Самый твёрдый

Углерод (С). В аллотропной форме алмаза имеет твёрдость по методу Кноопа – 8400. Известен с доисторических времен.

Самый дорогой

Калифорний (Сf) продавался в 1970 г. по цене 10 долл. за микрограмм. Открыт в 1950 г. Сиборгом (США) с сотрудниками.

Самый пластичный

Золото (Аu). Из 1 г можно вытянуть проволоку длиной 2,4 км. Известно с 3000 г. до н.э.

Самый высокий предел прочности на разрыв

Бор (В) – 5,7 ГПа. Открыт в 1808 г. Гей-Люссаком и Тенаром (Франция) и X. Дэви (Великобритания).

Точка плавления/кипения

Самая низкая. Среди неметаллов гелий-4 (4Не) имеет самую низкую точку плавления –272,375°С при давлении 24,985 атм и самую низкую точку кипения –268,928°С. Гелий открыт в 1868 г. Локьером (Великобритания) и Жансеном (Франция). Одноатомный водород (Н) должен быть несжижаемым сверхтекучим газом. Среди металлов соответствующие параметры у ртути (Hg): –38,836°С (точка плавления) и 356,661°С (точка кипения).

Самая высокая. Среди неметаллов самая высокая точка плавления и точка кипения у известного с доисторических времен углерода (С): 530°С и 3870°С. Однако представляется спорным, что графит стабилен при высоких температурах. Переходя при 3720°С из твёрдого в парообразное состояние, графит может быть получен как жидкость при давлении в 100 атм и температуре 4730°С. Среди металлов соответствующие параметры у вольфрама (W): 3420°С (точка плавления) и 5860°С (точка кипения). Открыт в 1783 г. Х.Х. и Ф. д"Элуярами (Испания).

Изотопы

Наибольшее количество изотопов (по 36 у каждого) у ксенона (Xe), открыт в 1898 г. Рамзаем и Траверсом (Великобритания), и у цезия (Cs), открыт в 1860 г. Бунзеном и Кирхгофом (Германия). Наименьшее количество (3: протий, дейтерий и тритий) у водорода (Н), открыт в 1776 г. Кавендишем (Великобритания).

Самый стабильный. Теллур-128 (128 Те), по данным двойного бета-распада, имеет период полураспада 1,5·10 24 лет. Теллур (Те) открыт в 1782 г. Мюллером фон Райхенштайном (Австрия). Изотоп 128 Те впервые обнаружен в естественном состоянии в 1924 г. Ф. Астоном (Великобритания). Данные о его сверхстабильности были вновь подтверждены в 1968 г. исследованиями Е. Александера-младшего, Б. Шринивасана и О. Маньюэла (США). Рекорд альфа-распада принадлежит самарию-148 (148 Sm) – 8·10 15 лет. Рекорд бета-распада принадлежит изотопу кадмия 113 (113 Cd) – 9·10 15 лет. Оба изотопа были обнаружены в естественном состоянии Ф. Астоном, соответственно, в 1933 и в 1924 гг. Радиоактивность 148 Sm была открыта Т. Уилкинсом и А. Демпстером (США) в 1938 г., а радиоактивность 113 Cd в 1961 г. обнаружили Д. Уотт и Р. Гловер (Великобритания).

Самый нестабильный. Время жизни лития-5 (5 Li) ограничено 4,4·10 –22 с. Изотоп впервые обнаружен Е. Титтертоном (Австралия) и Т. Бринкли (Великобритания) в 1950 г.

Жидкостный ряд

Учитывая разницу между точкой плавления и точкой кипения, элементом с самым коротким жидкостным рядом является инертный газ неон (Ne) – всего навсего 2,542 градуса (от –248,594°С до –246,052°С), тогда как самый продолжительный жидкостный ряд (3453 градуса) характерен для радиоактивного трансуранового элемента нептуния (Np) (от 637°С до 4090°С). Однако если принять во внимание истинный ряд жидкостей – от точки плавления до критической точки, –то самый короткий период имеет элемент гелий (Не) – всего 5,195 градуса (от абсолютного нуля до –268,928°С), а самый продолжительный – 10200 градусов – для вольфрама (от 3420°С до 13 620°С).

Самое ядовитое

Среди нерадиоактивных веществ самые строгие ограничения установлены для бериллия (Ве) – предельно допустимая концентрация (ПДК) этого элемента в воздухе всего 2 мкг/м 3 . Среди радиоактивных изотопов, существующих в природе или вырабатываемых ядерными установками, самые строгие ограничения по содержанию в воздухе установлены для тория-228 (228 Th), который был впервые обнаружен Отто Ганом (Германия) в 1905 г. (2,4·10 –16 г/м 3), а по содержанию в воде – для радия-228 (228 Ra), открытого О. Ганом в 1907 г. (1,1·10 –13 г/л). С точки зрения экологии они имеют значительные периоды полураспада (т.е. свыше 6 месяцев).

Книга рекордов Гиннеса, 1998 г.

Самые распространенные

Литосфера. Кислород (O), 46,60% по весу. Открыт в 1771 г. Карлом Шееле (Швеция).
Атмосфера. Азот (N), 78,09% по объему, 75,52% по массе. Открыт в 1772 г. Резерфордом (Великобритания).
Вселенная. Водород (Н), 90% всего вещества. Открыт в 1776 г. Генри Кавендишем (Beликобритания).

Самый редкий (из 94)

Литосфера.
Астат (At): 0,16 г в земной коре. Открыт в 1940 г. Корсоном (США) с сотрудниками. Встречающийся в природе изотоп астат 215 (215Аt) (открыт в 1943 г. Б. Карликом и Т. Бернертом, Австрия) существует в количестве лишь 4,5 нанограмма.
Атмосфера.
Радон (Rn): всего 2,4 кг (6·10–20 объема одной части на 1 млн). Открыт в 1900 г. Дорном (Германия). Концентрация этого радиоактивного газа в районах залежей гранитных пород предположительно стала причиной ряда раковых заболеваний. Общая масса радона, находящегося в земной коре, из которой и пополняются атмосферные запасы газа, равна 160 т.

Самый легкий

Газ:
Водород (Н) имеет плотность 0,00008989 г/см3 при температуре 0°С и давлении в 1 атм. Открыт в 1776 г. Кавендишем (Великобритания).
Металл.
Литий (Li), имеющий плотность 0,5334 г/см3, является самым лёгким из всех твёрдых веществ. Открыт в 1817 г. Арфведсоном (Швеция).

Максимальная плотность

Осмий (Os), имеющий плотность 22,59 г/см3, является самым тяжёлым из всех твёрдых веществ. Открыт в 1804 г. Теннантом (Великобритания).

Самый тяжёлый газ

Им является радон (Rn), плотность которого 0,01005 г/см3 при 0°С. Открыт в 1900 г. Дорном (Германия).

Последний из полученных

Элемент 108, или уннилоктий (Uno). Это предварительное название дано Международным союзом теоретической и прикладной химии (IUPAC). Получен в апреле 1984 г. Г. Мюнценбергом с сотрудниками (Западная Германия), которые наблюдали всего 3 атома этого элемента в лаборатории Общества по исследованию тяжёлых ионов в Дармштадте. В июне того же года появилось сообщение о том, что этот элемент был получен также Ю.Ц. Оганесяном с сотрудниками в Объединённом институте ядерных исследований, Дубна, СССР.

Единственный атом унниленния (Une) был получен в результате бомбардировки висмута ионами железа в лаборатории Общества по исследованию тяжёлых ионов, Дармштадт, Западная Германия, 29 августа 1982 г. У него самый большой порядковый номер (элемент 109) и самая большая атомная масса (266). По самым предварительным данным, советские ученые наблюдали образование изотопа элемента 110 с атомной массой 272 (предварительное название – унуннилий(Uun)).

Самый чистый

Гелий-4 (4Не), полученный в апреле 1978 г. П.В. Маклинтоком из Ланкастерского университета, США, имеет менее 2 частей примесей на 1015 частей объема.

Самый твёрдый

Углерод (С). В аллотропной форме алмаза имеет твёрдость по методу Кноопа – 8400. Известен с доисторических времен.

Самый дорогой

Калифорний (Сf) продавался в 1970 г. по цене 10 долл. за микрограмм. Открыт в 1950 г. Сиборгом (США) с сотрудниками.

Самый пластичный

Золото (Аu). Из 1 г можно вытянуть проволоку длиной 2,4 км. Известно с 3000 г. до н.э.

Самый высокий предел прочности на разрыв

Бор (В) – 5,7 ГПа. Открыт в 1808 г. Гей-Люссаком и Тенаром (Франция) и X. Дэви (Великобритания).

Точка плавления/кипения

Самая низкая.
Среди неметаллов гелий-4 (4Не) имеет самую низкую точку плавления –272,375°С при давлении 24,985 атм и самую низкую точку кипения –268,928°С. Гелий открыт в 1868 г. Локьером (Великобритания) и Жансеном (Франция). Одноатомный водород (Н) должен быть несжижаемым сверхтекучим газом. Среди металлов соответствующие параметры у ртути (Hg): –38,836°С (точка плавления) и 356,661°С (точка кипения).
Самая высокая.
Среди неметаллов самая высокая точка плавления и точка кипения у известного с доисторических времен углерода (С): 530°С и 3870°С. Однако представляется спорным, что графит стабилен при высоких температурах. Переходя при 3720°С из твёрдого в парообразное состояние, графит может быть получен как жидкость при давлении в 100 атм и температуре 4730°С. Среди металлов соответствующие параметры у вольфрама (W): 3420°С (точка плавления) и 5860°С (точка кипения). Открыт в 1783 г. Х.Х. и Ф. д"Элуярами (Испания).

Изотопы

Наибольшее количество изотопов (по 36 у каждого) у ксенона (Xe), открыт в 1898 г. Рамзаем и Траверсом (Великобритания), и у цезия (Cs), открыт в 1860 г. Бунзеном и Кирхгофом (Германия). Наименьшее количество (3: протий, дейтерий и тритий) у водорода (Н), открыт в 1776 г. Кавендишем (Великобритания).

Самый стабильный

Теллур-128 (128Те), по данным двойного бета-распада, имеет период полураспада 1,5·1024 лет. Теллур (Те) открыт в 1782 г. Мюллером фон Райхенштайном (Австрия). Изотоп 128Те впервые обнаружен в естественном состоянии в 1924 г. Ф. Астоном (Великобритания). Данные о его сверхстабильности были вновь подтверждены в 1968 г. исследованиями Е. Александера-младшего, Б. Шринивасана и О. Маньюэла (США). Рекорд альфа-распада принадлежит самарию-148 (148Sm) – 8·1015 лет. Рекорд бета-распада принадлежит изотопу кадмия 113 (113Cd) – 9·1015 лет. Оба изотопа были обнаружены в естественном состоянии Ф. Астоном, соответственно, в 1933 и в 1924 гг. Радиоактивность 148Sm была открыта Т. Уилкинсом и А. Демпстером (США) в 1938 г., а радиоактивность 113Cd в 1961 г. обнаружили Д. Уотт и Р. Гловер (Великобритания).

Самый нестабильный

Время жизни лития-5 (5Li) ограничено 4,4·10–22 с. Изотоп впервые обнаружен Е. Титтертоном (Австралия) и Т. Бринкли (Великобритания) в 1950 г.

Самое ядовитое

Среди нерадиоактивных веществ самые строгие ограничения установлены для бериллия (Ве) – предельно допустимая концентрация (ПДК) этого элемента в воздухе всего 2 мкг/м3. Среди радиоактивных изотопов, существующих в природе или вырабатываемых ядерными установками, самые строгие ограничения по содержанию в воздухе установлены для тория-228 (228Th), который был впервые обнаружен Отто Ганом (Германия) в 1905 г. (2,4·10–16 г/м3), а по содержанию в воде – для радия-228 (228Ra), открытого О. Ганом в 1907 г. (1,1·10–13 г/л). С точки зрения экологии они имеют значительные периоды полураспада (т.е. свыше 6 месяцев).

Человек всегда стремился отыскать материалы, которые не оставляют никаких шансов своим конкурентам. Издревле учёные искали самые твердые материалы в мире , самые лёгкие и самые тяжелые. Жажда открытий привела к открытию идеального газа и идеально чёрного тела. Представляем вам самые удивительные вещества в мире.

1. Самое черное вещество

Самое чёрное вещество в мире называется Vantablack и состоит из совокупности углеродных нанотрубок (см. углерод и его аллотропные модификации). Проще говоря, материал состоит из бесчисленного множества «волосков», попав в которые, свет отскакивает от одной трубки к другой. Таким образом поглощается около 99,965% светового потока и лишь ничтожная часть отражается обратно наружу.
Открытие Vantablack открывает широкие перспективы применения этого материала в астрономии, электронике и оптике.

2. Самое горючее вещество

Трифторид хлора является самым горючим веществом из когда-либо известных человечеству. Является сильнейшим окислителем и реагирует практически со всеми химическими элементами. Трифторид хлора способен прожечь бетон и легко воспламеняет стекло! Применение трифторида хлора практически невозможно из-за его феноменальной воспламеняемости и невозможности обеспечить безопасность использования.

3. Самое ядовитое вещество

Самый сильный яд — это ботулотоксин. Мы знаем его под названием ботокс, именно так он называется в косметологии, где нашел свое основное применение. Ботулотоксин — это химическое вещество, которое выделяют бактерии Clostridium botulinum. Помимо того, что ботулотоксин — самое ядовитое вещество, так он ещё и обладает самой большой молекулярной массой среди белков. О феноменальной ядовитости вещества говорит тот факт, что достаточно всего 0,00002 мг мин/л ботулотоксина, чтобы на полдня сделать зону поражения смертельно опасной для человека.

4. Самое горячее вещество

Это, так называемый, кварк-глюонная плазма. Вещество было создано с помощью столкновением атомов золота при почти световой скорости. Кварк-глюонная плазма имеет температуру 4 триллиона градусов Цельсия. Для сравнения, этот показатель выше температуры Солнца в 250 000 раз! К сожалению, время жизни вещества ограничено триллионной одной триллионной секунды.

5. Самая едкая кислота

В этой номинации чемпионом становится фторидно-сурьмяная кислота H. Фторидно-сурьмяная кислота в 2×10 16 (двести квинтиллионов) раз более едкая, чем серная кислота. Это очень активное вещество, которое может взорваться при добавлении небольшого количества воды. Испарения этой кислоты смертельно ядовиты.

6. Самое взрывоопасное вещество

Самое взрывоопасное вещество — гептанитрокубан. Он очень дорогой и применяется лишь для научных исследований. А вот чуть менее взрывоопасный октоген успешно применяется в военном деле и в геологии при бурении скважин.

7. Самое радиоактивное вещество

«Полоний-210» — изотоп полония, который не существует в природе, а изготавливается человеком. Используется для создания миниатюрных, но в тоже время, очень мощных источников энергии. Имеет очень короткий период полураспада и поэтому способен вызывать тяжелейшую лучевую болезнь.

8. Самое тяжёлое вещество

Это, конечно же, фуллерит. Его твердость почти в 2 раза выше, чем у натуральных алмазов. Подробнее о фуллерите можно прочитать в нашей статье Самые твердые материалы в мире .

9. Самый сильный магнит

Самый сильный магнит в мире состоит из железа и азота . В настоящее время, широкой общественности недоступны детали об этом веществе, однако уже сейчас известно, что новый супер-магнит на 18% мощнее самых сильных магнитов применяющихся сейчас — неодимовых. Неодимовые магниты изготавливаются из неодима, железа и бора.

10. Самое текучее вещество

Сверхтекучий Гелий II почти не имеет вязкости при температурах близких к абсолютному нулю. Этим свойством обусловлено его уникальное свойство просачиваться и выливаться из сосуда, изготовленного из любого твёрдого материала. Гелий II имеет перспективы использования в качестве идеального термопроводника, в котором не рассеивается тепло.

Последние материалы раздела:

Бактерии- древние организмы
Бактерии- древние организмы

Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...

Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т
Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т

МОУ «ООШ с. Озёрки Духовницкого района Саратовской области » Киреевой Татьяны Константиновны 2009 – 2010 год Введение. «Грамотное письмо – не...

Презентация: Монако Презентация на тему
Презентация: Монако Презентация на тему

Религия: Католицизм: Официальная религия - католичество. Однако конституция Монако гарантирует свободу вероисповедания. В Монако есть 5...