Как составить формулу числовой последовательности. Определение предела последовательности

Предположим, что каждому натуральному числу соответствует определенное действительное число: числу 1 соответствует а 1 , числу 2 – а 2 , числу n – а n . В таком случае мы говорим, что задана числовая последовательность, которую записывают так: а 1 , а 2 , …, а n , где а 1 – первый член, а 2 – второй член, …, а n – n-й член последовательности.

Существует три основных способа задания последовательности.

1. Аналитический. Последовательность задается формулой n-го члена; например, формулой а n = n/(n+1) задается последовательность а 1 , а 2 , …, а n , у которой

а 1 = 1/(1+1) = 1/2; а 2 = 2/(2+1) = 2/3 …;

т.е. последовательность 1/2, 2/3, 3/4, …, n/(n + 1).

2. Реккурентный. Любой член последовательности выражается через предшествующие члены. При данном способе задания последовательности обязательно указывается первый член последовательности и формула, которая позволяет вычислить любой член последовательности по известным предыдущим членам.

Найдем несколько членов последовательности а 1 = 1, а 2 = 1…, а n +2 = а n + а n +1.

а 3 = а 1 + а 2 = 1 + 1 = 2;

а 4 = а 2 + а 3 = 1 + 2 = 3 и др.

В результате получаем последовательность: 1, 1, 2, 3, 5 ….

3. Словесный. Это задание последовательности описанием. Например, последовательность десятичных приближений по недостатку числа е.

Последовательности бывают возрастающими и убывающими.

Последовательность (а n), каждый член которой меньше следующего за ним, т.е. если а n < а n +1 для любого n, называется возрастающей последовательностью.

Последовательность (а n), каждый член которой больше следующего за ним, т.е. если а n > а n +1 для любого n, называется убывающей последователностью.

Например:

а) 1, 4, 9, 16, 25, …, n 2 , … – последовательность возрастающая;

б) -1, -2, -3, -4, …, -n, … – последовательность убывающая;

в) -1, 2, -3, 4, -5, 6, …, (-1) n ∙ n, … – не возрастающая и не убывающая последовательность;

г) 3, 3, 3, 3, 3, 3, …, 3, … – постоянная (стационарная) последовательность.

Если каждый член последовательности (а n), начиная со второго, равен предыдущему, сложенному с одним и тем же числом d, то такая последовательность называется арифметической прогрессией. Число d получило название разности прогрессии.

Т.о., арифметическая прогрессия задана равенством: а n +1 = а n + d. Например,

а 5 = а 4 + d.

При d > 0 арифметическая прогрессия возрастает, при d < 0 убывает.

Последовательность 3, 5, 7, 9, 11, 13 … является арифметической прогрессией,
где а 1 = 3, d = 2 (5 – 3, 7 – 5, 9 – 7 и т.д.).

Иногда рассматривают не всю последовательность, являющуюся арифметической прогрессией, а лишь ее первые несколько членов. В этом случае говорят о конечной арифметической прогрессии.

Арифметическая прогрессия обладает тремя свойствами .

1. Формула n-го члена арифметической прогрессии:

а n = а 1 + d(n – 1)

2. Формулы суммы n первых членов арифметической прогрессии:

а) S n = ((a 1 + a n)/2) ∙ n;

б) S n = ((2a 1 + d(n – 1))/2) ∙ n.

Здесь S 1 = a 1 , S n = а 1 + а 2 + а 3 + … + а n .

3. Характеристическое свойство арифметической прогрессии: последовательность является арифметической последовательностью тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной арифметической прогрессии), равен среднему арифметическому предыдущего и последующего членов:

a n = (a n -1 + a n +1) / 2.

Если первый член последовательности (b n) отличен от нуля и каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же отличное от нуля число q, то такая последовательность называется геометрической прогрессией. Число q получило название знаменателя прогрессии.

Т.о., геометрическая прогрессия задана равенством b n +1 = b n ∙ q. Например, b 7 = b 6 ∙ q.

Последовательность 100, 30, 9, 27/10, … является геометрической прогрессией, где b 1 = 100, q = 3/10.

Геометрическая прогрессия характеризуется тремя свойствами

1. Формула n-го члена геометрической прогрессии:

b n = b 1 ∙ q n -1 .

2. Формулы суммы первых n членов геометрической прогрессии:

а) S n = (b n q – b 1) / (q – 1);

б) S n = (b 1 (q n – 1)) / (q – 1).

3. Характеристическое свойство геометрической прогрессии: последовательность является геометрической последовательностью тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной геометрической прогрессии), связан с предыдущим и последующим членами формулой:

b n 2 = b n -1 ∙ b n +1 .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Рассмотрим ряд натуральных чисел: 1, 2, 3, , n – 1, n ,  .

Если заменить каждое натуральное число n в этом ряду некоторым числом a n , следуя некоторому закону, то получим новый ряд чисел:

a 1 , a 2 , a 3 , , a n –1 , a n , ,

кратко обозначаемый и называемыйчисловой последователь- ностью . Величина a n называется общим членом числовой последовательности. Обычно числовая последовательность задается некоторой формулой a n = f (n ) позволяющей найти любой член последовательности по его номеру n ; эта формула называется формулой общего члена. Заметим, что задать числовую последовательность формулой общего члена не всегда возможно; иногда последовательность задается путем описания ее членов.

По определению, последовательность всегда содержит бесконечное множество элементов: любые два разных ее элемента отличаются, по крайней мере, своими номерами, которых бесконечно много.

Числовая последовательность является частным случаем функции. Последовательность является функцией, определенной на множестве натуральных чисел и принимающей значения в множестве действительных чисел, т. е. функцией вида f : N R .

Последовательность
называетсявозрастающей (убывающей ), если для любого n N
Такие последовательности называютсястрого монотонными .

Иногда в качестве номеров удобно использовать не все натуральные числа, а лишь некоторые из них (например, натуральные числа, начиная с некоторого натурального числа n 0). Для нумерации также возможно использование не только натуральных, но и других чисел, например, n = 0, 1, 2,  (здесь в качестве еще одного номера к множеству натуральных чисел добавлен ноль). В таких случаях, задавая последовательность, указывают, какие значения принимают номера n .

Если в некоторой последовательности для любого n N
то последовательность называетсянеубывающей (невозрастающей ). Такие последовательности называются монотонными .

Пример 1 . Числовая последовательность 1, 2, 3, 4, 5, … является рядом натуральных чисел и имеет общий член a n = n .

Пример 2 . Числовая последовательность 2, 4, 6, 8, 10, … является рядом четных чисел и имеет общий член a n = 2n .

Пример 3 . 1.4, 1.41, 1.414, 1.4142, … − числовая последовательность приближенных значений с увеличивающейся точностью.

В последнем примере невозможно дать формулу общего члена последовательности.

Пример 4 . Записать первых 5 членов числовой последовательности по ее общему члену
. Для вычисленияa 1 нужно в формулу для общего члена a n вместо n подставить 1, для вычисления a 2 − 2 и т. д. Тогда имеем:

Тест 6 . Общим членом последовательности 1, 2, 6, 24, 120,  является:

1)

2)

3)

4)

Тест 7 .
является:

1)

2)

3)

4)

Тест 8 . Общим членом последовательности
является:

1)

2)

3)

4)

Предел числовой последовательности

Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу А при увеличении порядкового номера n . В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Число А называется пределом числовой последовательности
:

(1)

если для любого  > 0 найдется такое число n 0 = n 0 (), зависящее от , что
приn > n 0 .

Это определение означает, что А есть предел числовой последовательности, если ее общий член неограниченно приближается к А при возрастании n . Геометрически это значит, что для любого  > 0 можно найти такое число n 0 , что, начиная с n > n 0 , все члены последовательности расположены внутри интервала (А – , А + ). Последовательность, имеющая предел, называется сходящейся ; в противном случае – расходящейся .

Числовая последовательность может иметь только один предел (конечный или бесконечный) определенного знака.

Пример 5 . Гармоническая последовательность имеет пределом число 0. Действительно, для любого интервала (–; +) в качестве номера N 0 можно взять какое-либо целое число, больше . Тогда для всехn > n 0 >имеем

Пример 6 . Последовательность 2, 5, 2, 5,  является расходящейся. Действительно, никакой интервал длины, меньшей, например, единицы, не может содержать всех членов последовательности, начиная с некоторого номера.

Последовательность называется ограниченной , если существует такое число М , что
для всехn . Всякая сходящаяся последовательность ограничена. Всякая монотонная и ограниченная последовательность имеет предел. Всякая сходящаяся последовательность имеет единственный предел.

Пример 7 . Последовательность
является возрастающей и ограниченной. Она имеет предел
=е .

Число e называется числом Эйлера и приблизительно равно 2,718 28.

Тест 9 . Последовательность 1, 4, 9, 16,  является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

Тест 10 . Последовательность
является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

4) арифметической прогрессией;

5) геометрической прогрессией.

Тест 11 . Последовательность не является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

4) гармонической.

Тест 12 . Предел последовательности, заданной общим членом
равен.

Числовая последовательность и ее предел представляют собой одну из важнейших проблем математики на протяжении всей истории существования этой науки. Постоянно пополняемые знания, формулируемые новые теоремы и доказательства - все это позволяет рассматривать данное понятие с новых позиций и под разным

Числовая последовательность, в соответствии с одним из самых распространенных определений, представляет собой математическую функцию, основанием которой служит множество натуральных чисел, располагающихся согласно той или иной закономерности.

Существует несколько вариантов создания числовых последовательностей.

Во-первых, эта функция может быть задана так называемым «явным» способом, когда имеется определенная формула, при помощи которой каждый ее член может быть определен простой подстановкой порядкового номера в заданную последовательность.

Второй способ получил название «реккурентного». Его суть состоит в том, что задаются несколько первых членов числовой последовательности, а также специальная реккурентная формула, с помощью которой, зная предыдущий член, можно найти последующий.

Наконец, наиболее общим способом задания последовательностей является так называемый когда без особого труда можно не только выявить тот или иной член под определенным порядковым номером, но и, зная несколько последовательных членов, прийти к общей формуле данной функции.

Числовая последовательность может быть убывающей или возрастающей. В первом случае каждый последующей ее член меньше предыдущего, а во втором - наоборот, больше.

Рассматривая данную тему, нельзя не затронуть вопрос про пределы последовательностей. Пределом последовательности называется такое число, когда для любой, в том числе для бесконечно малой величины, существует порядковый номер, после которого уклонение следующих друг за другом членов последовательности от заданной точки в числовом виде становится меньше величины, заданной еще при формировании этой функции.

Понятие предела числовой последовательности активно используется при проведении тех или иных интегральных и дифференциальных счислений.

Математические последовательности обладают целым набором достаточно интересных свойств.

Во-первых, любая числовая последовательность есть пример математической функции, следовательно, те свойства, которые характерны для функций, можно смело применять и для последовательностей. Самым ярким примером таких свойств является положение о возрастающих и убывающих арифметических рядах, которые объединяются одним общим понятием - монотонные последовательности.

Во-вторых, существует достаточно большая группа последовательностей, которые нельзя отнести ни к возрастающим, ни к убывающим, - это периодические последовательности. В математике ими принято считать те функции, в которых существует так называемая длина периода, то есть с определенного момента (n) начинает действовать следующее равенство y n = y n+T , где Т и будет являться той самой длиной периода.

Последние материалы раздела:

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...