Исторический прорыв Китая в газовой сфере вызывает сомнения . «Горючий лед» тронулся

МОСКВА, 18 мая - РИА Новости. Китай объявил об успешном эксперименте по извлечению со дна Южно-Китайского моря "горючего льда" — гидрата природного газа. По заявлениям представителей Министерства природных ресурсов Китая в эфире телекомпании CCTV, начало промышленной добычи газогидрата может означать переход к чистой альтернативной энергетике будущего.
По сообщению представителя Китайской Геологической службы Е Цзянляна (Ye Jianliang), работы по извлечению газогидратов с глубины более километра проводятся с 10 мая. За это время удалось произвести более 120 тысяч кубических метров газа.
По мнению заведующего отделом исследования энергетического комплекса мира и России Института энергетических исследований Российской академии наук Вячеслава Кулагина, говорить о начале энергетической революции пока преждевременно.

"То, что Китаю удалось подтвердить возможность извлечения газа из газогидратов, с точки зрения науки это действительно достижение, — комментирует Вячеслав Кулагин. - Но на сегодняшний день ключевым вопросом является экономическая эффективность такого метода добычи метана, которая пока не раскрывается. По существующим на данный момент оценкам, на ближайшие годы и даже десятилетия извлечение газа из газогидратов вряд ли станет рентабельным, и тот же Китай не рассматривает в своих стратегических документах газогидраты в качестве одного из основных видов топлива в среднесрочной перспективе. Например, активные исследования по добыче сланцевого газа проводились в течение 35 лет, прежде чем технология стала экономически эффективной, а первая добыча сланцевого газа была еще в далеком 1821 г. В ситуации с гидратами всё станет понятнее, когда будут объявлены экономические показатели проекта".

OilPrice: сланцевый газ не поможет США снова стать "великими" Экспорт сланцевого газа стал глупым шагом для США, и явное подтверждение тому – катастрофические экономические показатели американских компаний, пишет интернет-издание OilPrice.

"Горючий лед" — газогидрат — представляет собой ледяное кристаллическое соединение, образованное природным газом (метаном) и водой при высоком давлении и низкой температуре. Один кубический метр "горючего льда" содержит 164 кубических метра обычного природного газа и практически не содержит примесей. Общемировые предполагаемые запасы горючего льда более чем в два раза превосходят запасы угля, нефти и природного газа. Самые крупные месторождения находятся у побережья Китая. Первые удачные опыты по извлечению природного газа из газогидратов провела Япония в 2013 году, однако в дальнейшем прекратила разработки.

Энергия – это «наше все» в масштабах человечества. Точнее, энергоресурсы. За них ведутся войны, их обвиняют в усугублении глобальных экологических проблем, без них не может существовать современное общество. Поэтому поиск альтернативных источников энергии находится на вершине повестки дня во многих странах. Так, Китай на этой неделе потряс мир официальным сообщением о том, что впервые удалось добыть с океанического дна гидрат природного газа, или «горючий лед».

Это достижение уже приравнивается по значению к открытию технологии добычи сланцевого газа некогда в США, а новому энергоресурсу приписывается роль катализатора мировой энергетической революции. По заверениям китайских исследователей, в мире этого уникального топлива в разы больше, чем нефти, газа и угля вместе взятых. А значит, с помощью «горючего льда» можно будет решить проблему невозобновляемости ресурсов. Более того, на сайте правительства Китая сказано, что именно «гидрат природного газа – это богатейший альтернативный источник энергии, который сыграет в будущем стратегическую роль».

За последнюю неделю из скважины, расположенной в Южно-Китайском море, на глубине 1200 м, уже было добыто более 120 куб. м «горючего льда» – соединения воды и газа, напоминающего рыхлый снежный ком. И пока одни рассуждают, заменит ли в будущем этот энергоресурс все традиционные топливные источники, другие не спешат призывать всех к энергетической революции.

Кстати, исследования этого ресурса уже давно известны науке. Свои предположения о существовании на дне Мирового океана «горючего льда» высказывали советские ученые, а в последние годы попытки организовать разведку газового гидрата были не только у Китая, но также у США и Японии. Но, как мы видим, преуспел именно первый.

Экспертное мнение

Дмитрий Николаевич Редька, кандидат технических наук, ассистент к афедры квантовой электроники и оптико-электронных приборов СПбГЭТУ ʺЛЭТИʺ

«По сути «горючий лед» представляет собой кристаллическое соединение, сформированное из воды и природного газа. То есть это все тот же привычный, знакомый нам газ, но в другой «упаковке». Поэтому надо понимать, что мы видим не принципиально новый энергоресурс, а нестандартную химическую форму. И прежде чем говорить о его революционности, необходимо ответить на ряд вопросов. Во-первых, неизвестно, в каких объемах можно в перспективе добывать этот «горючий лед». Далее, какие можно осуществлять модификации с ним? Каким способом можно оптимально его добывать и транспортировать? Насколько это все окажется экономически оправдано и рентабельно? Ответы тут могут быть неоднозначные. Тем не менее, попытка найти новый энергоресурс или более эффективный и безопасный способ получения природного газа может быть встречена только положительно».

Этого горючего льда и совершить революцию в энергетике.

Не знаю, что там японцы, а вот нефтяники из Китая стали первыми, кто смог добыть с океанического дна «горючий лед» — гидрат природного газа. Об этом сообщило Центральное телевидение Китая со ссылкой на министерство земельных и природных ресурсов КНР.

«Тот факт, что мы сумели успешно осуществить добычу этого полезного ископаемого, свидетельствует о том, что в плане теоретической базы и соответствующих технологий Китай в данном направлении достиг беспрецедентных успехов <…>. Это будет таким же крупным событием, как произошедшая ранее в США сланцевая революция»,— заявил заместитель Управления геологических исследований министерства Ли Цзиньфа.

Также в министерстве земельных и природных ресурсов Китая подчеркнули, что подобный прорыв способен привести к энергетической революции во всем мире.

Образцы были подняты с глубины более 1,2 км, сама 200-метровая подводная скважина находится в Южно-Китайском море в 285 км к юго-востоку от Гонконга.

Сообщается, что за 8 дней работы добыто 120 куб. м этого энергоносителя, содержание метана в котором составляет 99,5%.

При этом 1 кубический метр этого вещества эквивалентен 160 куб. м природного газа в газообразном состоянии (на 100 литрах газа автомобиль может проехать 300 км, тогда как на 100 л «горючего льда» — 50 тыс. км).

Аналогичными проектами по добыче природного ресурса занимаются и другие страны, в частности Канада и Япония, однако «горючий лед» удалось извлечь со дна моря только Китаю

ЧТО ТАКОЕ МЕТАНГИДРАТ?


Метангидрат сосредоточен на глубинах от 500 до 2000 метров у берегов некоторых континентов, как правило, на крутых подводных склонах. Есть он и в Арктике, что доказывают сейсмические измерения и бурение. Метангидрат, состоящий из воды и метана, выглядит как обычный серый хрупкий лед. На ощупь — гладкий и холодный. Запаха не имеет, сгорает желтовато-синим пламенем.

Метановый лед относится к так называемым «ящичным» соединениям. В них не возникает химических связей между молекулами метана и молекулами воды. Метан размещается в пустотах кристаллической решетки водяного льда. Единичный конгломерат из воды и газа составляют 32 молекулы воды и 8 молекул метана. В одном кубическом метре этого вещества содержится значительно больше энергии, чем в кубометре природного газа (при одинаковом давлении). В ледовых пустотах одного кубометра метангидрата «запрятано» 164 кубометра газа. Молекулы льда, а значит, и метана уложены здесь более плотно.

Метангидрат образуется под давлением на глубине в порах донных осадков, куда сверху постоянно поступает органический материал и где царят низкие температуры и достаточно высокое давление. Сырьем для него служат отмершие растения и останки живых существ, поставляемых реками и самой океанской водой. Ил, содержащий углерод, быстро покрывается другими осадками, и доступ к нему аэробных бактерий, которые бы превратили биологический осадок в двуокись углерода, прекращается. Однако защищенный от этих микроорга низмов ил становится пищей для гнилостных бактерий. Результат их деятельности — метан.

Скопления метангидрата образуются и там, где океаническая кора сталкивается с континентальной и уходит под нее в магму. Это обстоятельство легло в основу другой точки зрения на происхождение метангидрата. Из российских источников почерпнута гипотеза, которая рассматривает не только органическое, но и космическое происхождение метана.

Уже сказано, что месторождения метанового льда встречаются и в тех местах океана, где океанское дно ныряет под континент. Там между двумя гигантскими трущимися друг о друга плитами есть щели, через них метан может высвобождаться из магмы в глубины океана. Этот газ присутствовал в протопланетном облаке, из которого родилось семейство планет, вращающихся ныне вокруг нашего Солнца. В протопланетном облаке, когда зажглось центральное светило, происходила дифференциация вещества: легкие молекулы — газы — давлением солнечного света отгонялись на периферию облака (не случайно дальние планеты-гиганты — Юпитер и Сатурн — содержат в своих атмосферах огромные массы аммиака и метана). Земля, как близкая к Солнцу планета, сложилась из более тяжелых элементов, но изрядное количество метана ей все-таки перепало. Теперь он выделяется из магмы, когда давление в щели между материковыми и океанскими плитами падает.

Оба предположения о природе метана — органической, то есть вторичной, и космической — могут мирно сосуществовать.

Глубины океана — печальная картина: на дне — немногочисленные морские огурцы, пятилучевые звезды и сотни всевозможных червей. Все они ждут падающих сверху остатков пищи животных, занявших солнечные этажи океана. Редкие рыбы-хищники проплывают здесь в надежде приманить жертву своими светящимися глазами или пятнами. Вечная тьма не дает никаких шансов для жизни растений.

Но некоторые места океанских глубин подобны оазисам в пустыне — здесь на дне жизнь расцветает. Тут благоденствуют раковинные моллюски, по дну ползают щетинистые и трубчатые черви, а само дно сочится нефтью и метаном. Это признак того, что где-то неподалеку находятся залежи метангидрата. Совместно углеводы и сероводород заменяют для жителей глубин свет и кислород. Бактерии вполне удовлетворены условиями жизни, предоставляемыми океанским дном. Свою энергию они расходуют на то, чтобы производить углеводы, которые служат пищей многим обитателям этого оазиса.

В 1997 году в Мексиканском заливе был открыт экзотический обитатель — розоватый щетинистый червь. Сотни этих тварей кишмя кишели на глыбе осадочных пород. Они проделывали себе отверстия в тех местах, где открывался доступ к метангидрату. Очевидно, здесь встретился новый случай симбиоза — червей с метановыми бактериями, но детали их взаимодействия еще не изучены. Живой мир, обитающий в местах выделения этого газа, остается почти непознанным.


КРУПНЕЙШЕЕ ХРАНИЛИЩЕ УГЛЕРОДА


По приблизительным оценкам, на планете хранится от 10 000 до 15 000 гигатонн углерода в виде метангидрата (гига равна 1 миллиарду). Эти числа выведены на основе бурения и сейсмической разведки в ограниченном числе мест, но полученные данные распространены на те области океана, где есть сходные условия.

Огромная масса запрятанного на глубине метана перекрывает по запасам все известные на Земле природные источники энергии. Вопрос только в том, как воспользоваться этим богатством, не нарушив природного равновесия и не вызвав катастрофы, подобной той, что случилась в плеоцене. Но и природные катастрофы способны дестабилизировать подводные хранилища метангидрата. Правда, в настоящее время с потеплением климата уровень океана растет, способствуя тем самым росту давления в нижних слоях, а следовательно, стабильности метангидрата.

Но если океанские течения изменят свои маршруты и теплые воды проникнут в нижние слои океанов, особенно в Северной Атлантике, то метановый лед растает и освобожденный газ уйдет в атмосферу. Возможно, именно такое событие объясняет потепление, случившееся в плеоцене. В ту эпоху в сравнительно короткое время было выброшено в атмосферу, по расчетам ученых, примерно 1000 гигатонн углерода. Избыток углерода, попавший тогда в атмосферу, задержался в ней около 140 тысяч лет, пока не был поглощен океанской водой и не пошел на построение раковин многих морских животных, а затем стал частью донных известковых отложений.

За последние 1000 лет человечество с помощью своих печей и двигателей выбросило в газовую оболочку Земли значительно больше углерода — от 2000 до 4000 гигатонн. (Числа, относящиеся к плеоцену, получены Рихардом Норрисом из Океанографического института и Урсулой Роль из Бременского университета с помощью анализа кернов, добытых в Западной Атлантике около Флориды.)

Но спусковым курком для развязывания катастрофы в наше время могут стать, по мнению одного из сотрудников Оксфордского университета, и природные катаклизмы: обширное землетрясение или вулканические взрывы, в результате которых понизится давление (оно станет меньше 50 атмосфер) и поднимется температура в зоне океана, содержащего метангидрат. Исследователи предполагают, что под слоем метанового льда — его толщина достигает порой нескольких сотен метров — находится чистый метан. Сотрясение земных недр может выпустить этот запечатанный газ наверх через трещины в ледяном слое.

БЕРМУДСКИЙ ТРЕУГОЛЬНИК — МЕТАНГИДРАТОВАЯ ЛОВУШКА?


По мнению некоторых исследователей, в Мировом океане существуют места, где время от времени происходит выход метана. Не с этим ли связаны те или иные катастрофы в тех местах?

5 декабря 1945 года пять американских самолетов-торпедоносцев совершали тренировочный полет. Они стартовали с аэродромов Флориды в направлении Багамских островов. За полчаса до намеченной по плану посадки командный пункт получил радиограмму: командир эскадрильи сообщал о непонятном поведении компаса и о загадочных свечениях в атмосфере. И тут же радиосвязь оборвалась. На поиски эскадрильи был послан шестой самолет, он тоже исчез. Ни машины, ни люди так и не были найдены.

Возникло множество фантастических объяснений причин исчезновения самолетов, а впоследствии и судов у берегов Флориды. Среди тех, кто искал реальную причину непонятных катастроф, был геохимик Рихард Мак-Ивер. Он считает, что произошли подвижки метанового льда, покрывающего дно в треугольнике Флорида, Пуэрто-Рико и Бермуды, газ, до того запечатанный слоем метанового льда, высвободился и огромным пузырем взлетел через воду в атмосферу. Попавшие в этот поток самолеты рухнули в море.

Некоторые доказательства возможности такой катастрофы принесло бурение в Западной Атлантике. В поднятом керне после слоя, где еще присутствуют микроорганизмы, лежит двадцатисантиметровый слой ила. Исследовав его, группа ученых из университета Нью-Джерси удостоверилась, что этот ил, как они и ожидали, содержит метановый лед. Большая волна типа цунами вполне могла вызвать обрушение его подводного склона.

Действительно, условия у берегов Флориды не исключают возможности смещения полей метанового льда. Когда такой слой приходит в движение, размышляют ученые, газ из-под лежащих на нем слоев льда вполне может высвобождаться и в виде гигантских пузырей подниматься на поверхность океана. Если корабль, самолет попадут в такой пузырь, они, потеряв подъемную силу, тотчас уйдут под воду.

Теоретически это возможно, соглашается исследователь из США Вильям Диллон, руководитель исследования газовых гидратов при американской геологической службе. Но, по его мнению, нет никаких данных, которые бы говорили о том, что в Бермудском треугольнике суда гибнут чаще, чем в других местах океана.

Другой позиции придерживается Томас Гольд, геолог из Корнеллского университета. Он считает, что выбросы газа со дна океана ответственны по крайней мере за четыре крупные аварии самолетов у североамериканских берегов. Эти катастрофы случились недавно, и они у многих, вероятно, в памяти. Последней было падение в море после старта самолета компании «Egupt Air-990″ в октябре 1999 года. По мнению эксперта, здесь нет «нормально го» объяснения трагедии. Как и во всех четырех случаях, причиной падения должно было служить нечто внезапное, что не дало пилотам возможности передать по радио какие-либо детали возникших неполадок. Хотя объяснения Т. Гольда и встретили возражения, его гипотезу поддерживают еще два факта: перед падением двух крупных машин в воздухе были видны газовое пламя и огненные шары. Может быть, это горел метан, вырвавшийся из воды? Гольд предполагает, что причиной тому послужило легкое землетрясение в прибрежной зоне дна.

Некоторые ученые скептически относятся к гипотезе о том, что свободный метан способен пробить толстый слой метанового льда. Однако есть свидетельства, подтверждающие выход метана на поверхность океана, правда, не в столь больших количествах.

Германское экспедиционное судно «Полярная звезда» побывало в арктическом море Лаптевых и у берегов Пакистана — в акваториях, где сосредоточены обильные скопления метангидрата. Оно нашло на дне кратеры диаметром 20 и 30 метров. Эти углубления, по мнению исследователей, — следы взрыва газа. В 1997 году российское исследовательское судно «Сергей Вавилов» у побережья Новой Земли оказалось в районе, где из моря происходило интенсивное выделение газов. В прошлом году немецкие и американские исследователи впервые наблюдали, как пузыри метана вырывались из воды. Это было в Тихом океане у берегов штата Орегон. При погружении исследовательской лодки «Alvin» ученые впервые увидели на дне отверстия, из которых выплывали газовые пузыри. Они, по их предположению, исходили из скоплений под слоями метангидрата (его толщина здесь равняется 140 метрам — согласно сейсмическим измерениям). Ученые считают, что метан стремительно прорывается через слой метангидрата: при медленном просачивании он застревал бы в этом слое и замерзал.

ПЕРВЫЕ ПОПЫТКИ «ПРИРУЧИТЬ» МЕТАНГИДРАТ


Еще нет полного описания всех запасов метангидрата, но, даже пользуясь приблизительными оценками того, что накопила Природа у океанских побережий, ученые оценивают его энергетический эквивалент как самый крупный резерв энергии, доступный человечеству, если иметь в виду горючие ископаемые. Только углерода в метангидрате содержится больше, чем в привычных каменном угле, торфе, сланцах и нефти, вместе взятых (но в это соединение входит еще и водород — самый ценный энергоноситель). Можно с уверенностью считать, что этого вида топлива человечеству хватит еще на многие тысячелетия. Вопрос: как к нему подобраться?

В марте 1998 года канадско-японская геологическая экспедиция на северо-западе Канады провела испытательное бурение в дельте реки Мак-Кензи. На глубине 900 метров бур наткнулся на метангидрат. На поверхность был извлечен керн — хрупкий лед серого цвета, пронизанный илом. Когда ученые положили кусок керна в миску с водой, началось бурное, подобно кипению, высвобождение газа из ледяного плена. Но эта энергия очень мала по сравнению с той, которую мы получаем при химическом взаимодействии метана с кислородом, то есть при горении.

Сегодня еще нет отлаженной промышленной технологии добычи нового топлива. Высказывается, например, идея, что при добыче следует предусмотреть крышу над слоем этого вещества или полог, чтобы случайное повышение температуры или действие химических веществ не высвободили газ из-под слоя льда. Даже бурение метанового льда — рискованная операция: оно может снизить давление, следовательно, породить нестабиль ность. Пока неясны такие исходные данные, как концентрация метангидрата в донных отложениях. Поскольку он сохраняет стабильность только при больших давлениях, то еще ни разу не удалось поднять на борт достаточно большую глыбу конгломерата.

Соединенные Штаты, согласно перспективным расчетам, к 2020 году должны на 30 процентов увеличить потребление энергии. готовы они использовать и метангидрат: конгресс страны отпустил 42 миллиона долларов на разрабтку программы включения нового топлива в энергетический баланс страны.

Особенно заинтересована в освоении добычи метангидрата Япония — страна, лишенная нефтяных месторождений, но обладающая обширными запасами метана, спрятанного в океане — во льду и под ним. Японцы стремятся освоить коммерческую, промышленную добычу. Бурение, предпринятое в канадской Арктике, в дельте реки Мак-Кензи, в условиях вечной мерзлоты, показало, что в кернах поры льда заполнены газом на 80 процентов. Японцы выдвигают свои буровые в сторону Тихого океана, и опробуются различные технологии. Однако о результатах их экспериментальных работ пока ничего не известно.

Геолог Скотт Даллимор считает, что бурение в Сибири и на Аляске показало концентрацию газа в порах льда от 50 до 80 процентов. Морские залежи крупнее, но там заполняемость газом равна примерно 20 процентам. В России, в Сибири, есть месторождение Meссоякское — газовое поле, расположенное в вечной мерзлоте, — единственное место в мире, где обычный природный газ получают из метангидрата. Это довольно мощное месторождение, работающее уже много лет. От него проложен трубопровод до Норильска — крупного потребителя энергии.

В отличие от вечной мерзлоты океанские запасы, как уже говорилось, состоят из двух частей: метанового льда, слой которого может превышать несколько сотен метров, и удерживаемого этим слоем газового пузыря. Сейчас идет поиск промышленной технологии, которая позволила бы чрезвычайно аккуратно добывать газ, не допуская его утечек в атмосферу: метан и углекислый газ ответственны за парниковый эффект — его влияние в последние годы мы все почувствовали. Если в дополнение к СО2 в атмосферу вырвутся еще и большие массы метана, то растущая ее температура может возродить те условия, в которых оказалась наша планета 55 миллионов лет назад, о чем говорилось в начале статьи.

Не годится также и обычное сжигание вновь добываемых гигантских объемов метана — мы получим в большом количестве все тот же СО2, парниковый газ, то есть и в этом случае атмосфера начнет энергичнее разогревать ся. Природа припасла для человека щедрый подарок, но ученым и инженерам придется хорошенько поломать головы, прежде чем удастся воспользоваться ее милостью.


С нежелательным образованием газогидратов столкнулись в 2010 году американские нефтяники, ликвидировавшие нефтяной прорыв после гибели платформы Deepwater Horizon в Мексиканском заливе. Тогда для контроля над вырывающейся нефтью соорудили специальный короб, который планировали поставить над аварийным устьем скважины. Но нефть оказалась весьма газированной, и метан стал образовывать на стенках короба целые наледи газогидратов. Они примерно на 10% легче воды, и когда количество газогидратов стало достаточно большим, они просто стали поднимать короб , что, в общем-то, заранее предсказывалось специалистами.

Поэтому в сообщениях японских геологов очень аккуратно говорится о перспективе разработки метангидратов - ведь катастрофа буровой платформы Deepwater Horizon, по мнению ряда ученых, включая профессора Калифорнийского университета в Беркли Роберта Би, стала следствием взрыва гигантского пузыря метана, который образовался из потревоженных буровиками донных залежей гидратов.

Но как бы ни закончилось сейчас это дело у японских газовиков, оно свидетельствует об одной важной тенденции - именно газ уверенно выходит на позиции главного энергетического ресурса XXI века. Ставка на газ вполне оправдана, так как метана на Земле много. Общемировые запасы метана в классических месторождениях на конец минувшего десятилетия составляли около 179 трлн кубических метров, при этом на долю России приходится почти 48 трлн. Второе и третье место делят Иран и Катар - у них примерно по 26 трлн кубометров. А вот четвертое и пятое место разделили между собой Саудовская Аравия и США, у них примерно по 7 трлн кубометров газа, что соответствует потенциальным запасам японского шельфа.

Если учитывать так называемый сланцевый газ (это тот же метан, только из месторождений другого типа), то США рассчитывают на 30 трлн кубометров технически извлекаемых запасов, Китай может располагать 45 трлн, Аргентина, замыкая тройку лидеров, - 27 трлн. Всемирные запасы сланцевого газа оцениваются американскими специалистами в 236 трлн кубометров.

Но все эти богатства бледнеют перед морскими или, как их еще называют, аквальными месторождениями газогидратов. Суммарный объем метана в них оценивается в 20 тысяч трлн кубических метров! Это колоссальные запасы, они неизмеримо больше, чем запасы сланцевого газа и газа в классических месторождениях. Можно говорить о том, что этих запасов хватит на несколько столетий самой беспощадной эксплуатации. Стоит напомнить, что эти месторождения находятся в шельфовой зоне не только Японии, но и России (особенно в Охотском море), а также Украины и Грузии.

Если человечеству удастся решить вопрос безопасной добычи и хранения газа в газогидратной форме, это может открыть огромные возможности для его использования, например, в качестве автомобильного топлива. А это значит, что приближается время новой, ориентированной на газообразное топливо транспортной инфраструктуры.

Как Катон, заканчивавший каждую свою речь в сенате Древнего Рима требованием разрушения Карфагена, так и автор этих строк хочет вновь обратиться к российским инвесторам - пришло время создавать новые двигатели, а скорее всего - топливные системы, которые бы работали на природном газе - метане, потому что за этим будущее. Японский успех - это очередной звонок, возвещающий начало новой эпохи.





источники

Как известно, вода имеет достаточно сложную структуру. Вода является универсальным растворителем, одним из двух главных универсальных растворителей, известных химикам. Вода способна смешиваться почти с любыми веществами и тем более с метаном. При растворении метана в воде образуются такие кластеры, структуры которых при обычной комнатной температуре и при атмосферном давлении являются жидкостью, но эти кластеры при температуре порядка 4°C и давления несколько сот атмосфер в отличие от воды становятся твердыми и образуют так называемые газовые гидраты. Гидраты образуются не только с метаном, они могут образовываться также с другими углеводородными и неуглеводородными газами. Это достаточно распространенное явление.

Если эти газовые гидраты оказываются в условиях, когда они стабильны, то они накапливаются. Многие бактерии, которые живут в толще морской воды, выделяют метан. Этот метан связывается с водой и опускается на дно, потому что газовые гидраты оказываются тяжелее воды. И на дне накапливаются залежи газовых гидратов. Во всех глубоких океанских впадинах есть эти гидраты. В России существуют целые месторождения газовых гидратов на суше. Это газы, которые находятся в смеси с водой и в твердом состоянии. Вечная мерзлота имеет температуру от 0 до -3 °C, в этих условиях даже при атмосферном давлении могут образовываться гидраты.

Новости о том, что Китай добыл со дна моря «горючий лед» ничего не значат, это утверждение на уровне того, что Россия - родина слонов. Это может быть утверждением некомпетентного человека на не слишком широко известную тему или утверждение компетентного человека, который хочет обмануть некомпетентных людей. Ничего нового они не открыли.

О существовании газовых гидратов на дне глубоких океанских впадин известно более полувека. В 70-е годы было доказано, что такие гидраты существуют и на суше, их обнаружили в зоне вечной мерзлоты в Якутии. Тогда советские ученые получили диплом на открытие. Как вы знаете, получить патент на изобретение несложно, а вот дипломов в год выдают всего несколько во всем мире. Но даже этому открытию полвека. А что касается газовых гидратов, которые называют «горючим льдом», то об этом давно всем известно. Япония в течение нескольких десятилетий пытается реализовать программу добычи этих газовых гидратов со дна впадин. Технически это легко реализуемо и можно драгой набрать сколько угодно гранул, но дело в том, что при подъеме их на поверхность они начинают сразу же распадаться на воду и метан, который уходит в атмосферу. Кстати говоря, метан является самым сильным агентом по сохранению парникового эффекта, он в этом смысле превосходит даже углекислый газ. Это прямой вред для экологии.

А что касается того, чтобы использовать газовые гидраты в качестве топлива, это техническая проблема, нужно сначала поднять его на поверхность, потом создавать условия, чтобы гидрат не распадался. Нужно обеспечить низкие температуры, около 4°C и давление в несколько сот атмосфер. Гидрат хранится в таком виде и при необходимости делится на воду и газ, после чего газ используется в качестве топлива. Только это оказывается экономически нецелесообразно, потому что поддерживать давление можно лишь за счет расходования топлива. В результате получается, что вы больше тратите, чем получаете. Китайцы, как и японцы, пытаются решить эту техническую задачу, потому что у них энергетический баланс отрицателен, они вынуждены завозить дополнительную энергию из других стран, в основном из России.

Эта тема не очень интересна и довольно объемна информационно. В той или иной мере этой тематикой занимаются у нас, в какой-то степени в США. Это не экзотика, вовсе не открытие и не новость. Да, китайцы поставили платформу, они вышли на уровень полупромышленного применения. Все хорошо, одно плохо - экономика этого технологического процесса отрицательна. Пока что денег туда уходит больше, чем возвращается. Поэтому считать газовые гидраты конкурентами обычных видов энергоносителей никак нельзя. Если бы это было возможно, японцы уже давно избавились бы от газовой зависимости и перестали быть главным импортером газа в мире.

Китай стал первой в мире страной, начавшей с морского шельфа добычу гидрата природного газа – который рассматривается в качестве нового энергетического источника и со временем сможет стать достойным конкурентом нефти и природному газу.

Не смотря на то, что себестоимость добычи нового топлива еще достаточно высока, можно не сомневаться, что мы наблюдаем очередной виток энергетической диверсификации, который, подобно сланцевым нефти и газу, скоро даст о себе знать.

Что такое газогидрат?

Это кристаллическое соединение, которое образуется из воды и газа при необходимой температуре и давлении. По виду похож на обычный лед. На ощупь – гладкий и холодный. Не имеет запаха. Горит желтовато-синим пламенем.

В одном кубическом метре газогидрата содержится намного больше энергии, чем в кубометре природного газа. Один кубометр «горючего льда» равен 164 кубометрам природного газа в газообразном состоянии.

На 1 литре газогидрата автомобиль может проехать около 500 километров, в то время как на 1 литре природного газа автомобиль проезжает лишь 3 километра.

Неисчерпаемое хранилище энергии

Результаты геологических исследований говорят о том, что мировые запасы газогидратов составляют от 12 до 20 тыс. гигатонн. Прогнозные запасы углеводородов в дальнейшем могут вырасти, поскольку исследованы далеко не все участки, потенциально богатые на «горючий лед».

Крупные запасы гидрата природного газа залегают на морских глубинах от 500 до 2500 метров. Много «горючего льда» находится также и в арктических недрах.

По оценкам геологов, запасы газогидрата превышают по своему объемы все известные на планете источники энергии. Еще нет полной картины того, сколько гидрата природного газа содержится в земных недрах, но даже по заниженным приблизительным оценкам можно уверенно говорить о том, что это самый большой энергетический резерв, на данный момент доступный человечеству.

Энергетический потенциал метангидрата больше, чем у нефти, угля, сланца и торфа вместе взятых. Если будут найдены приемлемые технологии для недорогой и экологически-безопасной добычи, этого топлива должно хватить на многие столетия.

По оценкам геологов, в арктических широтах Сибири и Северной Америки в месторождениях гидрата концентрация газа составляет от 60 до 80%, что намного больше, чем на морских месторождениях, где наполняемость газом, как правило, не превышает 20%. При этом морские залежи значительно крупнее арктических континентальных.

Месторождения газогидратов уже обнаружены у берегов США , Канады, Мексики, Японии, Южной Кореи, Индии, Китая, в Средиземном, Черном, Каспийском и Южно-Китайском морях. В шельфовой зоне возле Украины также присутствуют запасы метангидрата.

Геологи предполагают, что залежи гидрата природного газа расположены на значительно больших площадях, чем те, что известны уже сейчас.

Остается нерешенным вопрос, как снизить себестоимость добычи, и как использовать эти богатства, не нарушив экологическое равновесие в окружающей среде?

Гонка за «горючим льдом» началась

Многие развитые страны уже сейчас серьезно рассматривают гидрат природного газа как очень перспективное направление для энергетики ближайшего будущего.

Первая промышленная добыча метана из гидратов была налажена в Сибири. На Мессоякском газовом поле в России уже много лет природный газ получают из метангидрата. От месторождения проложен газопровод до Норильска.

Не смотря на лидерство в добыче углеводородов из сланцевых пород, США серьезно интересуются добычей газогидратов. Конгресс выделил первые 50 млн долларов на разработку программы включения нового топлива в энергетический баланс страны. По оценкам американских экспертов, потребность страны в энергии в ближайшие пять лет увеличится на 30%, поэтому любые новые варианты получения топлива будут очень кстати.

Активно осваивают новый вид топлива японцы. В Японии нет нефти и газа, весь объем приходится импортировать, но зато эта страна обладает большими запасами метана, который находится на морском дне. Японцы ставят перед собой цель выйти на уровень коммерческой, промышленной добычи газогидрата, получив новый, почти неисчерпаемый источник энергии. Чтобы как можно быстрее выйти на нужный результат, Япония одновременно отрабатывает технологии добычи как с морского дна, так и в арктических широтах.

Пробное бурение в канадской Арктике показало, что добытый лед заполнен газом на 80%. Полномасштабную разработку месторождения, которое находится в 70 километрах от японского побережья, планируется начать уже в 2018 году.

По оценке JOGMEC , с имеющимися запасами метангидратов на шельфе страны, Япония может покрыть свои потребности в природном газе на 100 лет вперед.

О своих успехах в вопросе выхода на промышленную добычу гидратов заявили и китайцы. Китаю первому удалось поднять «горючий лед» с морского дна. Месторождение расположено на дне Южно-Китайского моря в 285 километрах от Гонконга. С мая текущего года с месторождения ежедневно добывается 16 тысяч кубометров природного газа из гидратов.

Обладающая большими запасами энергетических ресурсов Канада также работает над освоением промышленной технологии добычи метангидрата, как самостоятельно, так и совместно с японцами.

Для добычи «горючего льда» нужны новые технологии

Ни одна страна в мире пока не смогла выйти на отлаженную промышленную технологию добычи нового топлива. Сложность добычи газогидрата состоит в том, что, по предположению исследователей, под слоем метанового льда находятся огромные газовые пузыри.

Разгерметизация такого пузыря и попадание большого объема метана в атмосферу может привести к экологической катастрофе большого масштаба. Поэтому идет поиск технологии, которая даст возможность добывать газ, не допуская его утечки в атмосферу.

Вопрос выхода технологий на коммерческий уровень – это лишь вопрос времени. Вначале нефть и газ из сланцевых пород из-за их высокой себестоимости также не могли конкурировать с традиционной добычей.

Но за два десятилетия американцы настолько продвинулись вперед, что стоимость добычи из сланцевых пород снизилась до уровня традиционной. Это дало возможность сланцевым углеводородам стать успешным конкурентом на мировом энергетическом рынке.

Появление газогидрата свидетельствует об одной важной тенденции – газ становится важнейшим энергетическим ресурсом. Прежде всего, потому, что его много. Запасы метангидрата превышают существующие объемы традиционного и сланцевого газа в 50 раз, этого хватит не на одно столетие активной эксплуатации.

Газ метан в перспективе заменит собой традиционные нефтепродукты, и уже сейчас пришло время создавать новые двигатели и оборудование, которые будут работать на метане. Успехи японских и китайских геологов могут сигнализировать о скором наступлении новой энергетической эпохи.

Сергей Савенко

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....