Искусственное притяжение. Искусственная гравитация в Sci-Fi Ищем истину

Проблемы с вестибулярным аппаратом - не единственное последствие длительного пребывания в условиях микрогравитации. Астронавты, которые проводят на МКС больше месяца, часто страдают от нарушения сна, замедления работы сердечно-сосудистой системы и метеоризма.

Недавно НАСА завершило эксперимент, в ходе которого ученые геном братьев-близнецов: один из них провел на МКС почти год, другой совершал лишь кратковременные полеты и большую часть времени находился на Земле. Долговременное пребывание в космосе привело к тому, что 7% ДНК первого астронавта изменились навсегда - речь идет о генах, связанных с иммунной системой, формированием костной ткани, кислородным голоданием и избыточным количеством углекислого газа в организме.

НАСА сравнила астронавтов-близнецов, чтобы увидеть, как тело человека меняется в космосе

В условиях микрогравитации человек будет вынужден бездействовать: речь идет не о пребывании астронавтов на МКС, а о полетах в глубокий космос. Чтобы выяснить, как такой режим повлияет на здоровье астронавтов, Европейское космическое агентство (ESA) на 21 день 14 добровольцев в наклоненную в сторону головы кровать. Эксперимент, который позволит на практике проверить новейшие методы борьбы с невесомостью - такие как улучшенные режимы физических упражнений и питания - намерены совместно провести НАСА и Роскосмос.

Но в случае, если люди решат отправить корабли к Марсу или Венере, понадобятся более экстремальные решения - искусственная гравитация.

Как гравитация может существовать в космосе

Прежде всего стоит понять, что гравитация существует везде - в некоторых местах она слабее, в других сильнее. И космическое пространство не является исключением.

МКС и спутники находятся под постоянным влиянием гравитации: если объект находится на орбите, он, говоря упрощенно, падает вокруг Земли. Подобный эффект возникает, если бросить мяч вперед - прежде чем упасть на землю, он немного пролетит в направлении броска. Если бросить мяч сильнее, он пролетит дальше. Если вы супермен, а мяч - ракетный двигатель, он не упадет на землю, а облетит вокруг нее и продолжит вращаться, постепенно выходя на орбиту.

Микрогравитация предполагает, что люди внутри корабля не находятся в воздухе - они падают с корабля, а тот, в свою очередь, падает вокруг Земли.

Благодаря тому, что гравитация является силой притяжения между двумя массами, мы остаемся на поверхности Земли, когда идем по ней, а не уплываем в небо. В этом случае вся масса Земли притягивает массу наших тел к своему центру.

Когда корабли выходят на орбиту, они свободно плавают в космическом пространстве. Они по-прежнему подвержены гравитационному притяжению Земли, но корабль и находящиеся в нем предметы или пассажиры подвержены гравитации одинаково. Существующие аппараты недостаточно массивны, чтобы создать заметное притяжение, поэтому люди и предметы в нем не стоят на полу, а «плавают» в воздухе.

Как создать искусственную гравитацию

Искусственной гравитации как таковой не существует, чтобы ее создать, человеку необходимо узнать всё об естественной гравитации. В научной фантастике существует концепция имитации гравитации: она позволяет экипажу космических кораблей ходить по палубе, а предметам стоять на ней.

В теории существует два способа создать имитацию гравитации, и ни один из них пока не был использован в реальной жизни. Первый - это использование центростремительной силы для моделирования силы тяжести. Корабль или станция при этом должны представлять собой колесоподобную конструкцию, состоящую из нескольких постоянно вращающихся сегментов.

Согласно этой концепции, центростремительное ускорение аппарата, толкающее модули к центру, создаст подобие гравитации или условия, аналогичные земным. Эта концепция была продемонстрирована в «Космической одиссее 2001 года» Стенли Кубрика и в фильме «Интерстеллар» Кристофера Нолана.

Концепция аппарата, создающего центростремительное ускорение для имитации гравитации

Автором этого проекта считается немецкий ученый-ракетчик и инженер Вернер фон Браун, который руководил разработкой ракеты «Сатурн-5», доставившей на Луну экипаж «Аполлон-11» и еще несколько пилотируемых аппаратов.

Будучи директором Центра космических полетов имени Маршалла НАСА, фон Браун популяризировал идею российского ученого Константина Циолковского о создании тороидальной космической станции на основе конструкции со ступицами, напоминающей велосипедное колесо. Если колесо вращается в пространстве, то инерция и центробежная сила могут создать своего рода искусственную гравитацию, которая тянет предметы к внешней окружности колеса. Это позволит людям и роботам ходить по полу, как на Земле, а не плавать в воздухе, как на МКС.

Однако у этого метода есть существенные недостатки: чем меньше космический корабль, тем быстрее он должен вращаться - это приведет к возникновению так называемой силы Корнолиса, при которой на точки, расположенные дальше от центра, сила тяжести будет влиять сильнее, чем на более близкие к нему. Другими словами, сила тяжести будет действовать на голову астронавтов сильнее, чем на ноги, что вряд ли им понравится.

Чтобы избежать этого эффекта, размер корабля должен в несколько раз превышать размер футбольного поля - вывод такого аппарата на орбиту будет стоить крайне дорого, учитывая, что стоимость одного килограмма груза при коммерческих запусках варьируется от $1,5 тыс. до $3 тыс.

Другой метод создания имитации гравитации более практичен, но также крайне дорог - речь идет о методе ускорения. Если корабль на определенном отрезке пути сначала будет разгоняться, а затем развернется и начнет тормозить, то возникнет эффект искусственной гравитации.

Для реализации этого метода потребуются колоссальные запасы топлива - дело в том, что двигатели должны работать почти непрерывно за исключением короткого перерыва в середине пути - во время разворота корабля.

Реальные примеры

Несмотря на высокую стоимость запуска аппаратов с имитацией гравитации, компании по всему миру пытаются построить такие корабли и станции.

Реализовать концепцию Фон Брауна пытается компания Gateway foundation - исследовательский фонд, который планирует построить вращающуюся станцию на орбите Земли. Предполагается, что по окружности колеса будут располагаться капсулы, которые смогут покупать государственные и частные аэрокосмические компании для проведения исследований. Некоторые капсулы будут проданы в качестве вилл самым богатым жителям Земли, а другие будут использоваться как отели для космических туристов.представило концепцию вращающегося космического корабля с надувными модулями Nautilus-X, который должен был снизить влияние микрогравитации на ученых, находящихся на его борту.

Предполагалось, что проект будет стоить всего $3,7 млрд - очень мало для подобных аппаратов, - а на его строительство потребуется 64 месяца. Однако Nautilus-X так и не вышел за рамки первоначальных чертежей и предложений.

Вывод

Пока самый вероятный способ получить имитацию гравитации, которая защитит корабль от последствий ускорения и даст постоянное притяжение без необходимости постоянно использовать двигатели - это обнаружить частицу с отрицательной массой. Все частицы и античастицы, которые ученые когда-либо обнаружили, имеют положительную массу. Известно, что отричательная масса и гравитационная масса равны друг другу, однако пока исследователям не удавалось продемонстрировать это знание на практике.

Исследователи из эксперимента ALPHA в ЦЕРНе уже создали антиводород - стабильную форму нейтрального антивещества - и работает над его изоляцией от всех других частиц на очень низких скоростях. Если ученым удастся это сделать, вероятно, в ближайшее время искусственная гравитация станет реальнее, чем сейчас.

Длительные космические полеты, освоение других планет то, о чем ранее писали фантасты Айзек Азимов, Станислав Лем, Александр Беляев и др., станет вполне возможной реальностью благодаря знаниям . Так как при воссоздании земного уровня гравитации мы сможем избежать отрицательных последствий микрогравитации (невесомости) для человека (атрофия мышц, сенсорные, двигательные и вегетативные расстройства). То есть практически любой желающий человек сможет побывать в космосе независимо от физических особенностей тела. При этом пребывание на борту космического корабля станет более комфортным. Люди смогут использовать уже существующие, привычные для них приборы, средства (например, душ, туалет).

На Земле уровень гравитации определяется ускорением силы тяжести в среднем равняется 9,81 м/с 2 («перегрузка» 1 g), в то время как в космосе, в условиях невесомости приблизительно 10 -6 g. К.Э. Циолковский приводил аналогии между ощущением массы тела при погружении в воду или лежа в постели с состоянием невесомости в космосе.

«Земля - это колыбель разума, но нельзя вечно жить в колыбели».
«Мир должен быть еще проще».
Константин Циолковский

Интересно, что для гравитационной биологии - умение создавать различные гравитационные условия будет настоящим прорывом. Станет возможным изучить: как изменяется структура, функции на микро-, макроуровнях, закономерности при гравитационных воздействиях разной величины и направленности. Эти открытия, в свою очередь, помогут развить достаточно новое сейчас направление - гравитационную терапию. Рассматривается возможность и эффективность применения для лечения изменения силы тяжести (повышенная по сравнению с Земной). Повышение силы тяжести мы ощущаем, как будто тело чуть-чуть потяжелело. Сегодня ведутся исследования применения гравитационной терапии при гипертонической болезни, а также для восстановления костных тканей при переломах.

(искусственной гравитации) в большинстве случаев основываются на принципе эквивалентности сил инерции и гравитации. Принцип эквивалентности говорит о том, что мы ощущаем приблизительно одинаково ускорение движения не отличая причину, которая его вызвала: гравитация или же силы инерции. В первом варианте ускорение происходит за счет воздействия гравитационного поля, во втором благодаря ускорению движения неинерциальной системы отсчета (система, которая движется с ускорением), в которой находится человек. Например, подобное воздействие сил инерции испытывает человек в лифте (неинерциальная система отсчета) при резком подъёме вверх (с ускорением, появляется на несколько секунд ощущение как будто тело потяжелело) или торможении (ощущение, что пол уходит из-под ног). С точки зрения физики: при подъёме лифта вверх к ускорению свободного падения в неинерциальной системе приплюсовывается ускорение движения кабины. Когда восстанавливается равномерное движение - исчезает «прибавка» в весе, то есть возвращается привычное ощущение массы тела.

Сегодня, как и почти 50 лет назад, для создания искусственной силы тяжести применяются центрифуги (используется центробежное ускорение при вращении космических систем). Проще говоря во время вращения космической станции вокруг своей оси будет возникать центробежное ускорение, которое будет «выталкивать» человека от центра вращения в сторону и в результате космонавт или другие объекты смогут находится на «полу». Для лучшего понимания этого процесса и с какими трудностями сталкивается ученые давайте посмотрим на формулу по которой определяется центробежная сила при вращении центрифуги:

F=m*v 2 *r, где m ‒ масса, v ‒ линейная скорость, r ‒ расстояние от центра вращения.

Линейная скорость равняется: v=2π*rT , где Т - количество оборотов в секунду, π ≈3,14…

То есть чем быстрее будет вращаться космический корабль, и чем дальше от центра будет находится космонавт, тем сильнее будет созданная искусственная сила тяжести.

Внимательно посмотрев на рисунок можем заметить, что при небольшом радиусе сила тяжести для головы и для ног человека будет значительно отличатся, что в свою очередь затруднит передвижение.

При движении космонавта в направлении вращения возникает сила Кориолиса. При этом велика вероятность того, что человека будет постоянно укачивать. Обойти это возможно при частоте вращения корабля 2 оборота в минуту при этом образуется искусственная сила тяжести 1g (как на Земле). Но при этом радиус будет составлять 224 метра (приблизительно ¼ километра, это расстояние подобно высоте 95-этажного здания или в длину как две большие секвои). То есть теоретически построить орбитальную станцию или космический корабль таких размеров можно. Но практически это требует значительных затрат ресурсов, сил и времени, которые в условиях приближающихся глобальных катаклизмов (см. доклад ) человечней направить на реальную помощь нуждающимся.

В следствие невозможности воссоздать необходимое значение уровня гравитации для человека на орбитальной станции или космическом корабле, учёные решили изучить возможность «снижения поставленной планки», то есть создания силы тяжести меньше земной. Что говорит о том, что за полвека исследований не удалось получить удовлетворяющих результатов. Это неудивительно так как в экспериментах стремятся создать условия, при которых сила инерции или же другие оказывали бы влияние, аналогичное воздействию гравитации на Земле. То есть получается, что искусственная гравитация, по сути, гравитацией не является.

На сегодня в науке существуют лишь теории о том что такое гравитация, большинство из которых основываются на теории относительности. При этом не одна из них не является полной (не объясняет протекание, результаты любых экспериментов в любых условиях, да и ко всему порой не согласовывается с другими физическими теориями подтвержденными экспериментально). Нет четкого знания и понимания: что же такое гравитация, как гравитация связана с пространством и временем, из каких частиц состоит и какие их свойства. Ответы на эти и многие другие вопросы можно найти сопоставив информацию изложенную в книге «Эзоосмос» А.Новых и докладе ИСКОННАЯ ФИЗИКА АЛЛАТРА. предлагает совершенно новый подход, который основывается на базовых знаниях первичных основ физики фундаментальных частиц , закономерностей их взаимодействия. То есть на основе глубокого понимания сути процесса гравитации и как следствие возможности точного расчет для воссоздания любых значений гравитационных условий как в космосе, так и на Земле (гравитационная терапия), прогнозирования результатов мыслимых и немыслимых экспериментов, поставленных как человеком, так и природой.

ИСКОННАЯ ФИЗИКА АЛЛАТРА - это намного больше, чем просто физика. Она открывает возможным решения задач любой сложности. Но главное благодаря знанию процессов происходящих на уровне частиц и реальных действий каждый человек может осознать смысл своей жизни, разобраться как работает система и получить практический опыт соприкосновения с духовным миром. Осознать глобальность и первичность Духовного, выйти из рамочных/шаблонных ограничений сознания, за пределы системы, обрести Настоящую Свободу.

«Как говорится, когда имеешь в руках универсальные ключи (знания об основах элементарных частиц), то можешь открыть любую дверь (микро- и макромира)».

«В таких условиях возможен качественно новый переход цивилизации в русло духовного саморазвития, масштабного научного познания мира и себя».

«Всё что угнетает человека в этом мире, начиная от навязчивых мыслей, агрессивных эмоций и заканчивая шаблонными желаниями эгоиста-потребителя это результат выбора человека в пользу септонного поля ‒ материальной разумной системы, которая шаблонно эксплуатирует человечество. Но если человек следует выбору своего духовного начала, то он приобретает бессмертие. И в этом нет религии, а есть знание физики, её исконных основ».

Елена Федорова

Б.В. Раушенбах, соратник Королева, рассказал о том, как у того возникла идея создания искусственной тяжести на космическом корабле: в конце зимы 1963 года главного конструктора, расчищавшего дорожку от снега у своего домика на Останкинской улице, можно сказать, осенило. Не дождавшись понедельника, он позвонил по телефону Раушенбаху, который жил неподалеку, и вскоре они вместе стали «расчищать дорогу» в космос для длительных полетов.
Идея, как чаще всего бывает, оказалась простой; она и должна быть простой, иначе на практике может ничего не получиться.

Для полноты картины. Март 1966, американцы на «Джемини-11»:

В 11:29 «Джемини-11» был отстыкован от «Аджены». Началось самое интересное: как поведут себя два объекта, связанные тросом? Сначала Конрад пытался ввести связку в гравитационную стабилизацию – чтобы ракета висела внизу, корабль вверху и трос был натянут.
Однако отойти на 30 м, не возбудив сильных колебаний, не удалось. В 11:55 перешли ко второй части эксперимента – «искусственная тяжесть». Конрад ввел связку во вращение; трос сначала натянулся по кривой линии, но через 20 мин выпрямился и вращение стало вполне правильным. Конрад довел его скорость до 38 °/мин, а после ужина до 55 °/мин, создав тяжесть на уровне 0,00078g. «На ощупь» это не чувствовалось, но вещи потихоньку осели на дно капсулы. В 14:42 после трех часов вращения штырь был отстрелен, и «Джемини» ушел от ракеты.

Даже человек, не интересующийся космосом, хоть раз видел фильм о космических путешествиях или читал о таких вещах в книгах. Практически во всех подобных произведениях люди ходят по кораблю, нормально спят, не испытывают проблем с приемом пищи. Это означает, что на этих - выдуманных - кораблях имеется искусственная гравитация. Большинство зрителей воспринимает это как нечто совершенно естественное, а ведь это совсем не так.

Искусственная гравитация

Так называют изменение (в любую сторону) привычной для нас гравитации путем применения различных способов. И делается это не только в фантастических произведениях, но и во вполне реальных земных ситуациях, чаще всего, для экспериментов.

В теории создание искусственной гравитации выглядит не так сложно. К примеру, воссоздать ее можно при помощи инерции, точнее, Потребность в этой силе возникла не вчера - произошло это сразу, как только человек начал мечтать о длительных космических перелетах. Создание искусственной гравитации в космосе даст возможность избежать множества проблем, возникающих при продолжительном нахождении в невесомости. У космонавтов слабеют мускулы, кости становятся менее прочными. Путешествуя в таких условиях месяцы, можно получить атрофию некоторых мышц.

Таким образом, на сегодняшний день создание искусственной гравитации - задача первостепенной важности, без этого умения просто невозможно.

Матчасть

Даже те, кто знают физику лишь на уровне школьной программы, понимают, что гравитация - один из фундаментальных законов нашего мира: все тела взаимодействуют друг с другом, испытывая взаимное притяжение/отталкивание. Чем больше тело, тем выше его сила притяжения.

Земля для нашей реальности - объект очень массивный. Именно поэтому все без исключения тела вокруг к ней притягиваются.

Для нас это означает которое принято измерять в g, равное 9.8 метра за квадратную секунду. Это значит, что если бы под ногами у нас не было опоры, мы бы падали со скоростью, ежесекундно увеличивающейся на 9.8 метра.

Таким образом, только благодаря гравитации мы способны стоять, падать, нормально есть и пить, понимать, где находится верх, где низ. Если притяжение исчезнет - мы окажемся в невесомости.

Особенно хорошо знакомы с этим феноменом космонавты, оказывающиеся в космосе в состоянии парения - свободного падения.

Теоретически ученые знают, как создать искусственную гравитацию. Существует несколько методик.

Большая масса

Самый логичный вариант - сделать настолько большим, чтобы на нем возникала искусственная гравитация. На корабле можно будет чувствовать себя комфортно, поскольку не будет потеряна ориентация в пространстве.

К сожалению, этот способ при современном развитии технологий нереален. Чтобы соорудить такой объект, требуется слишком много ресурсов. Кроме того, для его подъема потребуется невероятное количество энергии.

Ускорение

Казалось бы, если требуется достичь g, равного земному, нужно всего лишь придать кораблю плоскую (платформообразную) форму, и заставить его двигаться по перпендикуляру к плоскости с нужным ускорением. Таким путем будет получена искусственная гравитация, причем - идеальная.

Однако в реальности все гораздо сложнее.

В первую очередь стоит учесть топливный вопрос. Для того чтобы станция постоянно ускорялась, необходимо иметь бесперебойный источник питания. Даже если внезапно появится двигатель, не выбрасывающий материю, закон сохранения энергии останется в силе.

Вторая проблема заключается в самой идее постоянного ускорения. Согласно нашим знаниям и физическим законам, невозможно ускоряться до бесконечности.

Кроме того, такой транспорт не подходит для исследовательских миссий, поскольку он должен постоянно ускоряться - лететь. Он не сможет остановиться для изучения планеты, он даже медленно пролететь вокруг нее не сможет - надо ускоряться.

Таким образом, становится ясно, что и такая искусственная гравитация нам пока недоступна.

Карусель

Каждый знает, как вращение карусели воздействует на тело. Поэтому устройство искусственной гравитации по этому принципу кажется наиболее реальным.

Все, что находится в диаметре карусели, стремится выпасть из нее со скоростью, примерно равной скорости вращения. Выходит, что на тела действует сила, направленная вдоль радиуса вращающегося объекта. Это очень похоже на гравитацию.

Итак, требуется корабль, имеющий цилиндрическую форму. При этом он должен вращаться вокруг своей оси. Между прочим, искусственная гравитация на космическом корабле, созданная по этому принципу, достаточно часто демонстрируется в научно-фантастических фильмах.

Бочкообразный корабль, вращаясь вокруг продольной оси, создает центробежную силу, направление которой соответствует радиусу объекта. Чтобы вычислить получаемое ускорение, требуется разделить силу на массу.

В этой формуле результат расчетов - ускорение, первая переменная - узловая скорость (измеряется в количестве радиан в секунду), вторая - радиус.

Согласно этому, для получения привычной нам g, необходимо грамотно сочетать и радиус космического транспорта.

Подобная проблема освещена в таких фильмах, как «Интерсолах», «Вавилон 5», «2001 год: Космическая одиссея» и подобных им. Во всех этих случаях искусственная гравитация приближена к земному ускорению свободного падения.

Как бы ни была хороша идея, реализовать ее достаточно сложно.

Проблемы метода «карусель»

Самая очевидная проблема освещена в «Космической одиссее». Радиус «космического перевозчика» составляет порядка 8 метров. Для того чтобы получить ускорение в 9.8, вращение должно происходить со скоростью, примерно, 10.5 оборота ежеминутно.

При указанных величинах проявляется «эффект Кориолиса», который заключается в том, что на различном удалении от пола действует разная сила. Она напрямую зависит от угловой скорости.

Выходит, искусственная гравитация в космосе создана будет, однако слишком быстрое вращение корпуса приведет к проблемам с внутренним ухом. Это, в свою очередь, вызывает нарушения равновесия, проблемы с вестибулярным аппаратом и прочие - аналогичные - трудности.

Возникновение этой преграды говорит о том, что подобная модель крайне неудачная.

Можно попробовать пойти от обратного, как поступили в романе «Мир-Кольцо». Тут корабль выполнен в форме кольца, радиус которого приближен к радиусу нашей орбиты (порядка 150 млн км). При таком размере скорости его вращения вполне достаточно, чтобы игнорировать эффект Кориолиса.

Можно предположить, что проблема решена, однако это совсем не так. Дело в том, что полный оборот этой конструкции вокруг своей оси занимает 9 дней. Это дает возможность предположить, что нагрузки окажутся слишком велики. Для того чтобы конструкция их выдержала, необходим очень крепкий материал, которым на сегодняшний день мы не располагаем. Кроме того, проблемой является количество материала и непосредственно процесс постройки.

В играх подобной тематики, как и в фильме «Вавилон 5», эти проблемы каким-то образом решены: вполне достаточна скорость вращения, эффект Кориолиса не существенен, гипотетически создать такой корабль возможно.

Однако даже такие миры имеют недостаток. Зовут его - момент импульса.

Корабль, вращаясь вокруг оси, превращается в огромный гироскоп. Как известно, заставить гироскоп отклониться от оси крайне сложно благодаря Важно, чтобы его количество не покидало систему. Это означает, что задать направление этому объекту будет очень сложно. Однако такую проблему решить можно.

Решение проблемы

Искусственная гравитация на космической станции становится доступной, когда на помощь приходит «цилиндр О’Нила». Для создания этой конструкции необходимы одинаковые цилиндрические корабли, которые соединяют вдоль оси. Вращаться они должны в разные стороны. Результатом такой сборки является нулевой момент импульса, поэтому не должно возникнуть трудностей с приданием кораблю необходимого направления.

Если возможно сделать корабль радиусом порядка 500 метров, то он будет работать именно так, как и должен. При этом искусственная гравитация в космосе будет вполне комфортной и пригодной для длительных перелетов на кораблях или исследовательских станциях.

Space Engineers

Как создать искусственную гравитацию, известно создателям игры. Впрочем, в этом фантастическом мире гравитация - это не взаимное притяжение тел, но линейная сила, призванная ускорить предметы в заданном направлении. Притяжение тут не абсолютно, оно изменяется при перенаправлении источника.

Искусственная гравитация на космической станции создается путем использования специального генератора. Она равномерна и равнонаправленна в зоне действия генератора. Так, в реальном мире, попав под корабль, в котором установлен генератор, вы бы были притянуты к корпусу. Однако в игре герой будет падать до тех пор, пока не покинет периметр действия устройства.

На сегодняшний день искусственная гравитация в космосе, созданная таким устройством, для человечества недоступна. Однако даже убеленные сединами разработчики не перестают мечтать о ней.

Сферический генератор

Это более реалистичный вариант оборудования. При его установке гравитация имеет направление к генератору. Это дает возможность создать станцию, гравитация которой будет равна планетарной.

Центрифуга

Сегодня искусственная гравитация на Земле встречается в различных устройствах. Основаны они, большей частью, на инерции, поскольку эта сила ощущается нами аналогично гравитационному воздействию - организм не различает, какая причина вызывает ускорение. Как пример: человек, поднимающийся в лифте, испытывает на себе воздействие инерции. Глазами физика: подъем лифта добавляет к ускорению свободного падения ускорение кабины. При возвращении кабины к размеренному движению «прибавка» в весе исчезает, возвращая привычные ощущения.

Ученых давно интересует искусственная гравитация. Центрифуга используется для этих целей чаще всего. Этот метод подходит не только для космических кораблей, но и для наземных станций, в которых требуется изучать воздействие гравитации на человеческий организм.

Изучить на Земле, применять в…

Хотя изучение гравитации началось из космоса, это очень земная наука. Даже на сегодняшний день достижения в этой сфере нашли свое применение, например, в медицине. Зная, возможно ли создать искусственную гравитацию на планете, можно использовать ее для лечения проблем с двигательным аппаратом или нервной системы. Более того, изучением этой силы занимаются прежде всего на Земле. Это дает возможность космонавтам проводить эксперименты, оставаясь под пристальным вниманием врачей. Другое дело искусственная гравитация в космосе, там нет людей, способных помочь космонавтам при возникновении непредвиденной ситуации.

Имея в виду полную невесомость, нельзя брать в расчет спутник, находящийся на околоземной орбите. На эти объекты, пусть и в малой степени, воздействует земное притяжение. Силу тяжести, образующуюся в таких случаях, называют микрогравитацией. Реальную гравитацию испытывают только в аппарате, летящем с постоянной скоростью в открытом космосе. Впрочем, человеческий организм эту разницу не ощущает.

Испытать на себе невесомость можно при затяжном прыжке (до того, как купол раскроется) или во время параболического снижения самолета. Такие эксперименты часто ставят в США, но в самолете это ощущение длится только 40 секунд - это слишком мало для полноценного изучения.

В СССР еще в 1973 году знали, можно ли создать искусственную гравитацию. И не просто создавали ее, но и в некотором роде изменяли. Яркий пример искусственного уменьшения силы тяжести - сухое погружение, иммерсия. Для достижения необходимого эффекта требуется положить плотную пленку на поверхность воды. Человек размещается поверх нее. Под тяжестью тела организм погружается под воду, наверху остается лишь голова. Эта модель демонстрирует безопорность с пониженной гравитацией, которая характерна для океана.

Нет необходимости отправляться в космос, чтобы ощутить на себе воздействие противоположной невесомости силы - гипергравитации. При взлете и посадке космического корабля, в центрифуге перегрузку можно не только ощутить, но и изучить.

Лечение гравитацией

Гравитационная физика изучает в том числе и воздействие невесомости на организм человека, стремясь минимизировать последствия. Однако большое количество достижений этой науки способно пригодиться и обычным жителям планеты.

Большие надежды медики возлагают на исследования поведения мышечных ферментов при миопатии. Это тяжелое заболевание, ведущее к ранней смерти.

При активных физических занятиях в кровь здорового человека поступает большой объем фермента креатинофосфокиназы. Причина этого явления неясна, возможно, нагрузка воздействует на мембрану клеток таким образом, что она «дырявится». Больные миопатией получают тот же эффект без нагрузок. Наблюдения за космонавтами показывают, что в невесомости поступление активного фермента в кровь значительно снижается. Такое открытие позволяет предположить, что применение иммерсии позволит снизить негативное воздействие приводящих к миопатии факторов. В данный момент проводятся опыты на животных.

Лечение некоторых болезней уже сегодня проводится с использованием данных, полученных при изучении гравитации, в том числе искусственной. К примеру, проводится лечение ДЦП, инсультов, Паркинсона путем применения нагрузочных костюмов. Практически закончены исследования положительного воздействия опоры - пневматического башмака.

Полетим ли на Марс?

Последние достижения космонавтов дают надежду на реальность проекта. Имеется опыт медицинской поддержки человека при длительном нахождении вдали от Земли. Много пользы принесли и исследовательские полеты к Луне, сила гравитации на которой в 6 раз меньше нашей родной. Теперь космонавты и ученые ставят перед собой новую цель - Марс.

Прежде чем вставать в очередь за билетом на Красную планету, следует знать, что ожидает организм уже на первом этапе работы - в пути. В среднем дорога к пустынной планете займет полтора года - около 500 суток. Рассчитывать в пути придется только на свои собственные силы, помощи ждать просто неоткуда.

Подтачивать силы будут множество факторов: стресс, радиация, отсутствие магнитного поля. Самое главное же испытание для организма - изменение гравитации. В путешествии человек «ознакомится» с несколькими уровнями гравитации. В первую очередь это перегрузки при взлете. Затем - невесомость во время полета. После этого - гипогравитация в месте назначения, т. к. сила тяжести на Марсе менее 40% земной.

Как справляются с отрицательным воздействием невесомости в длительном перелете? Есть надежда, что разработки в области создания искусственной гравитации помогут решить этот вопрос в недалеком будущем. Опыты на крысах, путешествующих на «Космос-936» показывают, что этот прием не решает всех проблем.

Опыт ОС показал, что гораздо больше пользы для организма способно принести применение тренажерных комплексов, способных определить необходимую нагрузку для каждого космонавта индивидуально.

Пока считается, что на Марс полетят не только исследователи, но и туристы, желающие основать колонию на Красной планете. Для них, во всяком случае первое время, ощущения от нахождения в невесомости перевесят все доводы медиков о вреде длительного нахождения в таких условиях. Однако через несколько недель помощь потребуется и им, поэтому так важно суметь найти способ создать на космическом корабле искусственную гравитацию.

Итоги

Какие выводы можно сделать о создании искусственной гравитации в космосе?

Среди всех рассматриваемых в данный момент вариантов наиболее реалистично выглядит вращающаяся конструкция. Однако при нынешнем понимании физических законов это невозможно, поскольку корабль - это не полый цилиндр. Внутри него имеются перекрытия, мешающие воплощению идей.

Кроме того, радиус корабля должен быть настолько большим, чтобы эффект Кориолиса не оказывал существенного влияния.

Чтобы управлять чем-то подобным, требуется упомянутый выше цилиндр О’Нила, который даст возможность управлять кораблем. В этом случае повышаются шансы применения подобной конструкции для межпланетных перелетов с обеспечением команды комфортным уровнем гравитации.

До того как человечеству удастся претворить свои мечты в жизнь, хотелось бы видеть в фантастических произведениях чуточку большей реалистичности и еще большего знания законов физики.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Цели и задачи исследования

Целью моей научно исследовательской работы является рассмотрение такого фундаментального взаимодействия как гравитация, его явлений и проблема космических поселений с искусственным притяжением, рассмотрение особенностей использования различного вида двигателей для создания искусственной гравитации, развитие представлений о жизни в космосе в условия искусственной гравитации и решение проблем, возникающих при создании этого проекта, интеграция патентов передовых технологий к решению проблем искусственной гравитации.

Актуальность исследования.

Космические поселения представляют собой вид космических станций, на которых человек смог бы проживать в течение длительного периода времени или даже всю жизнь. Для создания подобных поселений нужно продумать все необходимые условия для оптимальной жизнедеятельности — систему жизнеобеспечения, искусственную силу тяжести, защиту от космических воздействий и т.д. И хотя реализовать все условия довольно сложно, ряд писателей-фантастов и инженеров уже создали несколько проектов, по которым, возможно, в будущем будут созданы удивительные космические поселения.

Значимость и новизна исследования.

Искусственная гравитация является перспективным направлением для исследований, ведь она обеспечит долговременное пребывание в космосе и возможность дальних космических перелетов. Постройка космических поселений может дать средства для дальнейших исследований; если запустить программу космического туризма, что будет являться весьма дорогим удовольствием, космические корпорации получат дополнительный поток финансирования, и исследования можно будет проводить по всем направлениям, не ограничиваясь возможностями.

Гравитация. Гравитационные явления. Гравитация.

Гравитация - один из четырех типов фундаментальных взаимодействий, или иными словами - такая сила притяжения, направленная к центру массы любого объекта и к центру масс скопления объектов; чем больше масса, тем выше гравитация. При удалении от объекта сила притяжения к нему стремится к нулю, но в идеальных условиях совсем не исчезает никогда. То есть, если представить себе абсолютный вакуум без единой лишней частицы любого происхождения, то в этом пространстве любые объекты, обладающие хоть бесконечно малой массой, при отсутствии любых других внешних сил будут притягиваться друг к другу на любом бесконечно далеком расстоянии.

При малых скоростях гравитация описывается механикой Ньютона. А при скоростях сопоставимых со скоростью света гравитационные явления описываются СТО

А. Эйнштейна.

В рамках механики Ньютона гравитация описывается законом всемирного тяготения, который гласит, что два точечных (или сферических) тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел, обратно пропорциональной квадрату расстояния между ними и действующей вдоль прямой соединяющей эти тела.

В приближении больших скоростей гравитация объясняется СТО, которая имеет два постулата:

    Принцип относительности Эйнштейна, говорящий о том, что природные явления одинаково протекают во всех инерциальных системах отсчета.

    Принцип постоянства скорости света, говорящий о том, что скорость света в вакууме постоянна (противоречит закону сложения скоростей).

Для описания гравитации разработано особое расширение теории относительности, в котором допускается кривизна пространства-времени. Тем не менее, динамика даже в рамках СТО может включать гравитационное взаимодействие, пока потенциал гравитационного поля намного меньше. Следует также заметить, что СТО перестаёт работать в масштабах всей Вселенной, требуя замены на ОТО.

Гравитационные явления.

Самым ярким гравитационным явлением считается притяжение. Также существует иное явление, связанное с гравитацией - невесомость.

Благодаря гравитационным силам мы ходим по земле, и наша планета существует, как и вся Вселенная. Но что случится если мы покинем планету? Мы будем испытывать одно из ярких гравитационных явлений - невесомость. Невесомость - такое состояние тела, при котором на него не действуют никакие силы кроме гравитационных, либо эти силы скомпенсированы.

Астронавты, пребывающие на МКС, находятся в состоянии невесомости, что негативно сказывается на их здоровье. При переходе из условий земной гравитации к условиям невесомости (в первую очередь, при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации. При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер. Первое и самое очевидное последствие невесомости — стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате ухудшаются все физические характеристики организма. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его. Также есть основания полагать, что ограничение подвижности нарушает фосфорный обмен в костях, что приводит к снижению их прочности.

Для того чтобы избавиться от негативных эффектов невесомости необходимо создать искусственное тяготение в космосе.

Искусственная гравитация и космические поселения. Ранние исследования XX в.

Циолковский предложил теорию эфирных поселений, которые представляли собой тор, который медленно вращается вокруг своей оси. Но в то время такие идеи были утопией и все его проекты остались на эскизах.

Первый проработанный проект был предложен австрийским ученым Германом Нордрунгом в 1928 году. Это также была станция в форме тора, включающая в себя жилые модули, электрогенератор и астрономический обсерваторный модуль.

Следующий проект был предложен Вернером фон Брауном, ведущим специалистом американской космической программы, он также представлял собой торообразную станцию, где люди бы жили и работали в помещениях, соединённых в один большой коридор. Проект Вернера был одним из приоритетных направлений НАСА до появления проекта Skylab в 60-х.

Skylab - первая и единственная национальная орбитальная станция США, предназначалась для технологических, астрофизических, медико-биологических исследований, а также для наблюдения Земли. Запущена 14 мая 1973 года, приняла три экспедиции на кораблях «Аполлон» с мая 1973 по февраль 1974 года, сошла с орбиты и разрушилась 11 июля 1979 года.

Далее в 1965 году Американским космическим обществом было выдвинуто предположение, что идеальной формой для космических поселений будет тор, так как все модули расположены вместе, то сила тяжести будет иметь максимальную величину. Проблема искусственной гравитации представлялась во многом решеной.

Следующим проект выдвинул Джерард О’Нилл, он предполагал создание колоний, для которых предлагается использовать два гигантских размеров цилиндра, заключённых в раму и вращающихся в разные стороны. Эти цилиндры вращаются вокруг собственной оси со скоростью около 0,53 оборота в минуту, за счёт чего в колонии создаётся привычная для человека сила тяжести.

В 1975 г. Паркер выдвинул проект создания колонии диаметром 100 м и длиной в 1 км, удалённой на расстояние около 400 000 км от Земли и Луны и рассчитанного на 10 000 человек. Вращение вокруг продольной оси со скоростью 1 оборота за 21 секунду создаст в нём близкую к земной гравитацию.

В 1977 г. научным сотрудником Исследовательского центра Эймса (НАСА) Ричардом Джонсоном и профессором Чарльзом Холброу из Университета Колгейта вышла работа «Космические поселения», в которой рассматривались перспективные исследования поселений в форме тора.

В 1994 году под руководством д-ра Родни Гэлловэя при участии научных сотрудников и лаборантов Лаборатории Филлипса и Лаборатории Сандия, а также других исследовательских центров ВВС США и Космического исследовательского центра Аризонского университета, было составлено объёмное руководство для проектирования космических поселений в форме тора.

Современные исследования.

Одним из современных проектов в области космических поселений является Стэндфордский тор, который является прямым потомком идей Вернера фон Брауна.

Стэнфордский тор был предложен НАСА в течение лета 1975 года студентами Стэнфордского университета с целью осмыслить проект будущих космических колоний. Позже Джерард О’Нил представил свой «Остров Один» или «Сферу Бернала», как альтернативу тору. «Стэнфордский тор», только в более детальной версии, представляющей собой концепцию кольцевидной вращающейся космической станции, был представлен Вернером фон Брауном, а также австрийским инженером словенского происхождения Германом Поточником.

Он представляет собой тор диаметром около 1,8 километра (для проживания 10 тысяч человек, как описывалось в работе 1975 года) и вращается вокруг своей оси (оборот в минуту), создавая на кольце искусственную гравитацию в 0,9 — 1 g за счёт центробежной силы.

Солнечный свет поступает внутрь через систему зеркал. Кольцо соединяется со ступицей через «спицы» -коридоры для движения людей и грузов до оси и обратно. Ступица — ось вращения станции — лучше всего подходит для стыковочного узла приёма космических кораблей, так как искусственная гравитация тут ничтожна: здесь находится неподвижный модуль, пристыкованный к оси станции.

Внутреннее пространство тора является жилым, оно достаточно большое для создания искусственной экосистемы, природного окружения и внутри подобно длинной узкой ледниковой долине, чьи концы, в конечном счете, изгибаются вверх, чтобы сформировать круг. Население живёт здесь в условиях, подобных густонаселенному пригороду, причем, внутри кольца имеются отделения для занятия сельским хозяйством, и жилая часть. (Приложение 1)

Космические поселения и искусственная гравитация в культуре. Elysium

Миры-кольца, какими они представлены, например, в фантастическом боевике «Элизиум» или видеоигре «Halo», являются, пожалуй, одними из самых интересных идей для космических станций будущего. В «Элизиуме» станция находится близко к Земле и, если игнорировать ее размеры, обладает определенной долей реалистичности. Однако самая большая проблема здесь заключается в ее «открытости», что уже только по виду — чистая фантастика.

«Возможно, самым спорным вопросом по поводу станции «Элизиум» является ее открытость для космической среды».

«В фильме показано, как космический корабль просто садится на лужайку после того, как прилетает из открытого космоса. Здесь нет никаких стыковочных шлюзов и тому подобного. А ведь такая станция должна быть полностью изолирована от внешней среды. В противном случае атмосфера здесь долго не задержится. Возможно, открытые участки станции можно будет защитить каким-то невидимым полем, которое позволит солнечному свету проникать внутрь и поддерживать жизнь в высаженных здесь растениях и деревьях. Но пока это всего лишь фантастика. Таких технологий нет».

Самая идея станции в форме колец замечательная, но пока нереализуемая.

Star Wars

Практически каждый любитель научно-фантастических фильмов знает, что такое «Звезда смерти». Это такая большая серая и круглая космическая станция из киноэпопеи «Звездные войны», внешне очень напоминающая Луну. Это межгалактический уничтожитель планет, который по сути сам является искусственной планетой, состоящей из стали и населенной штурмовиками.

Можем ли мы в реальности построить такую искусственную планету и бороздить на ней просторы галактики? В теории — да. Только на это потребуется невероятное количество человеческих и финансовых ресурсов.

Вопрос строительства «Звезды смерти» поднимался даже американским Белым домом, после того как общество отправило соответствующую петицию для рассмотрения. Официальный ответ властей гласил, что только на сталь для строительства потребуется 852 000 000 000 000 000 долларов.

Но даже если вопрос финансов не был бы приоритетным, то у человечества нет технологий чтобы воссоздать «Звезду смерти», так как необходимо огромное количество энергии для ее движения.

(Приложение 2)

Проблемы в реализации проекта космических поселений.

Космические поселения являются перспективным направление в космической отросли будущего, но как всегда есть трудности, которые необходимо преодолеть для выполнения этой задачи.

    Начальные капитальные затраты;

    Внутренние системы жизнеобеспечения;

    Создание искусственной силы тяжести;

    Защиту от враждебных внешних условий:

    1. от радиации;

      обеспечение тепла;

      от инородных объектов;

Решение проблем искусственной гравитации и космических поселений.

    Начальные капитальные затраты - данную проблему можно решить сообща, если люди отложат свои личные амбиции и будут работать во благо великой цели. Ведь только от нас зависит будущее человечества.

    Внутренние системы жизнеобеспечения - уже сейчас на МКС присутствуют системы для повторного использования воды, но этого мало, при условии достаточности места на орбитальной станции можно найти место для оранжереи в которой будут произрастать растения, выделяющие максимум кислорода, также имеет место быть создание гидропонических лабораторий для выращивание ГМО, которые смогут снабжать продовольствием все население станции.

    Создание искусственной силы тяжести не такая уж сложная задача, как доставка огромного количество топлива необходимого для вращения станции.

      1. Есть несколько путей решения проблемы.

          1. Если нужно сравнить эффективность различных типов двигателей, инженеры обычно говорят об удельном импульсе. Удельный импульс определяется как изменение импульса на единицу массы израсходованного топлива. Таким образом, чем эффективнее двигатель, тем меньше топлива требуется для вывода ракеты в космос. Импульс, в свою очередь, есть результат действия силы в течение определенного времени. Химические ракеты, хотя и обладают очень большой тягой, работают всего несколько минут, а потому характеризуются очень низким удельным импульсом. Ионные двигатели, способные работать годами, могут иметь высокий удельный импульс при очень низкой тяге.

Использовать стандартный подход и применить к решению проблемы реактивные двигатели. Расчеты показывают, что при использовании любого известного реактивного двигателя потребуются огромные количества топлива, чтобы содержать станцию хотя бы год.

    Удельный импульс I (ЖРД) = 4,6

    Удельный импульс I (РДТТ) = 2,65

    Удельный импульс I (ЭРД) = 10

    Удельный импульс I (Плазменный двигатель) = 290

Таков расход топлива за 1 год, следовательно, использовать реактивные двигатели неразумно.

          1. Моя идея заключается в следующем.

Рассмотрим элементарный случай.

Пусть у нас есть карусель, которая неподвижна. Тогда, если мы закрепим n число однополярных электромагнитов по краю карусели так, чтобы сила их взаимодействия была максимальной, получим следующее: если мы включим электромагнит №1 так что он будет действовать на электромагнит №2 с силой в x раз больше чем, второй действует на первый, то согласно III закону Ньютона сила действия электромагнита №1 на №2 со стороны №2 будет компенсирована силой реакции опоры карусели, что выведет карусель из состояния покоя. Теперь выключим №1, поднимем силу №2 до №1 и включим №3 с силой равной №2 на предыдущим этапе и если продолжать данную процедуру, то добьемся вращения карусели. Применив данный способ к космической станции мы получим решение проблемы искусственной гравитации.

(Приложение 3).

    Защита от враждебных условий среды

    1. Защита от радиации патент № 2406661

патентообладатель Ребеко Алексей Геннадьевич

Изобретение относится к методам и средствам защиты экипажа и оборудования от ионизирующего излучения (заряженных частиц высокой энергии) при космических полетах. Согласно изобретению вокруг космического аппарата создают защитное статическое электрическое или магнитное поле, которое локализуют в пространстве между двумя вложенными друг в друга замкнутыми несоприкасающимися поверхностями. Защищаемое пространство космического аппарата ограничено внутренней поверхностью, а внешняя поверхность изолирует аппарат и защищаемое пространство от межпланетной плазмы. Форма поверхностей может быть произвольной. При использовании электрического защитного поля на указанных поверхностях создают заряды одной величины и противоположного знака. В таком конденсаторе электрическое поле сосредоточено в пространстве между поверхностями-обкладками. В случае магнитного поля по поверхностям пропускают токи противоположного направления, а соотношение силы токов подбирают так, чтобы минимизировать значение остаточного поля снаружи. Желательная форма поверхностей в этом случае - тороидальная, для обеспечения сплошной защиты. Под действием силы Лоренца заряженные частицы будут двигаться по отклоняющим криволинейным траекториям или замкнутым орбитам между поверхностями. Возможно одновременное применение электрического и магнитного поля между поверхностями. При этом в пространство между поверхностями может быть помещен подходящий материал для поглощения заряженных частиц: например, жидкий водород, вода или полиэтилен. Технический результат изобретения направлен на создание надежной, сплошной (геометрически непрерывной) защиты от космической радиации, на упрощение конструкции средств защиты и снижение энергозатрат на поддержание защитного поля.

    1. Обеспечение тепла патент №2148540

патентообладательОткрытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева"

Система терморегулирования космического аппарата и орбитальной станции, содержащая замкнутые контуры охлаждения и обогрева, связанные через, по крайней мере, один промежуточный жидкостно-жидкостный теплообменник, системы управления и измерения, клапанно-распределительную и дренажно-заправочную арматуру, при этом контур обогрева содержит побудитель циркуляции, газожидкостные и змеевиковые теплообменники и термоплаты, а в контуре охлаждения последовательно установлены, по крайней мере, один побудитель циркуляции, регулятор расхода жидкости, один выход которого подключен через первый обратный клапан ко входу смесителя потоков теплоносителя, а другой через второй обратный клапан - ко входу радиационного теплообменника, выход которого подключен ко второму входу смесителя потоков, выход смесителя потоков связан соединительным трубопроводом с теплоприёмной полостью промежуточного жидкостно-жидкостного теплообменника, выход из которой подключен к побудителю циркуляции, на соединительном трубопроводе установлены датчики температуры, электрически связанные через систему управления с регулятором расхода жидкости, отличающаяся тем, что в контур охлаждения дополнительно введены два электронасосных агрегата, причем вход первого электронасосного агрегата через фильтр подключен к выходу теплоносителя из теплоприемной полости промежуточного жидкостно-жидкостного теплообменника, а его выход подключен ко второму обратному клапану и параллельно, через фильтр ко входу второго электронасосного агрегата, выход которого подключен к первому обратному клапану, при этом каждый электронасосный агрегат снабжен датчиком перепада давления, а на трубопроводе, соединяющем выход смесителя потоков с теплоприемной полостью жидкостно-жидкостного теплообменника, установлен дополнительный датчик температуры, электрически связанный через систему управления с первым электронасосным агрегатом.

    1. Защита от инородных объектов

Существует множество способов защиты от инородных тел.

    Использовать нестандартные двигатели, такие как электромагнитный ускоритель с изменяемым удельным импульсом;

    Обернуть астероид отражающим пластиковымсолнечным парусом , используя покрытую алюминием пленку типа PET;

    «Покрасить» или посыпать объект диоксидом титана (белый цвет) или сажей (черный), с тем, чтобы вызвать эффект Ярковского и изменить его траекторию;

    Ученый-планетолог Юджин Шумейкер в 1996 году предложил выпускать облако пара на пути объекта для его осторожного замедления. Ник Забо в 1990 году нарисовал похожий замысел, «аэродинамическое торможение кометы» : комета или ледовая конструкция нацеливается на астероид, после чего ядерные взрывы испаряют лед и формируется временная атмосфера на пути астероида;

    Прикрепить к астероиду тяжелый балласт, чтобы с помощью смещения центра тяжести изменить его траекторию;

    Использовать лазерную абляцию ;

    Использовать ударно-волновой излучатель ;

    Ещё один «бесконтактный» метод был недавно предложен учеными Ц. Бомбардели и Дж. Пелез из Технического университета Мадрида. В нём предлагается использовать ионную пушку с низкой дивергенцией, направленную на астероид с находящегося рядом корабля. Кинетическая энергия, передающаяся через доходящие до поверхности астероида ионы, как и в случае с гравитационным буксиром создаст слабую, но постоянную силу, способную отклонить астероид, и при этом будет использоваться более легкий корабль.

    Подрыв ядерного устройства над, на или под поверхностью астероида является потенциальным вариантом отражения угрозы. Оптимальная высота взрыва зависит от состава и размера объекта. В случае угрозы со стороны груды обломков, чтобы избежать их рассеивания, предлагается произвести радиационную имплозию, то есть подрыв над поверхностью. При взрыве высвободившаяся энергия в виде нейтронов и мягких рентгеновских излучений (которые не проникают сквозь вещество) превращается в тепло при достижении поверхности объекта. Тепло превращает вещество объекта в выброс, и он сойдет с траектории, следуя третьему закону Ньютона, выброс направится в одну сторону, а объект — в противоположную.

    Электромагнитная катапульта — это автоматическая система, располагающаяся на астероиде, выпускающая вещество, из которого он состоит, в космос. Тем самым он медленно сдвигается и теряет массу. Электромагнитная катапульта должна работать в качестве системы с низким удельным импульсом: использовать много топлива, но мало энергии.

Смысл заключается в том, что если использовать вещество астероида в качестве топлива, то количество топлива не так важно, как количество энергии, которая, вероятнее всего, будет ограничена.

Ещё один возможный способ — расположить электромагнитную катапульту на Луне, нацелив её на околоземный объект, с тем, чтобы воспользоваться орбитальной скоростью естественного спутника и его неограниченным запасом «каменных пуль».

Вывод.

Проанализировав представленную информацию становится понятно, что искусственная гравитация — это вполне реальное явление, которое будет иметь широкое применение в космической отросли, как только мы преодолеем все трудности, связанные с этим проектом.

Космические поселения я вижу в том виде, который предложил фон Браун: торообразные миры с оптимальным использованием пространства и с применением передовых технологий для обеспечения продолжительной жизнедеятельности, а именно:

    • Вращение станции будет происходить по принципу, который я описал в разделе Создание искусственной гравитации. Но ввиду того, что помимо вращения будет совершаться движение в пространстве, целесообразно установить на стацию корректировочные двигатели.

    Использование передовых технологий для обеспечения нужд станции:

    • Гидропоника

      • Растения не нужно поливать много. Воды израсходуется намного меньше, чем при выращивании на грунте в огороде. Несмотря на это, при правильном подборе минеральных веществ и компонентов растения не будут пересыхать или гнить. Это происходит за счет получения достаточного количества кислорода.

        Большим плюсом является то, что такой метод позволяет оградить растения от множеств болезней и вредителей. Сами растения не будут впитывать в себя вредные вещества из грунта.

        Следовательно, будет максимальная урожайность, что полностью покроет нужды обитателей станции.

    • Регенерация воды

      • Конденсация влаги из воздуха.

        Очистка использованной воды.

        Переработка урины и твердых отходов.

    За энергообеспечение будет отвечать кластер ядерных реакторов, которые будут экранированы согласно патенту № 2406661 адаптированному на вытеснение радиоактивных частиц за пределы станции.

Задача по созданию космических поселений трудна, но выполнима. Я надеюсь, что в ближайшем будущем, ввиду быстрого развития науки и техники, все необходимы предпосылки для создания и развития космических поселений на основе искусственной гравитации будут выполнены. Мой посильный вклад в это нужное дело будет оценен. Будущее человечества лежит в освоении космоса и перехода на новый, более перспективный, экологически чистый виток спирали развития человечества.

Приложения

Приложение 1. Стэнфордский тор

Приложение 2. Звезда смерти, Эллизиум.

Приложение 3. Схема вращательного движения.

Равнодействующая сил в первом приближении (только взаимодействие магнитов). В итоге станция совершает вращательное движение. Что нам и требуется.

Список литературы

АЛЯКРИНСКИЙ. Человек живёт в космосе. Невесомость: плюс или минус?

Баррер, М. Ракетные двигатели.

Добровольский, М. Жидкостные ракетные двигатели. Основы проектирования.

Дорофеев, А. Основы теории тепловых ракетных двигателей.

Матвеев. Механика и теория относительности: Учебник для студентов вузов.

Мякишев. Молекулярная физика и термодинамика.

Мякишев. Физика. Механика.

Мякишев. Физика. Электродинамика.

Рассел, Д. Гидропоника.

Санько. Астрономический словарь.

Сивухин. Общий курс физики.

Фейнман. Фейнмановские лекции по гравитации.

Циолковский. Труды по ракетной технике.

Шилейко. В океане энергии.

Голубев И.Р. и Новиков Ю.В. Окружающая среда и ее охрана

Захлебный А.Н. Книга для чтения по охране природы

Зверев И. Охрана природы и экологическое воспитание школьников.

Иванов А.Ф. Физический эксперимент с экологическим содержанием.

Киселев С.В. Демонстрация парникового эффекта.

Интернет-ресурсы:

https://ru.wikipedia.org/wiki/Заглавная_страница

http://www.roscosmos.ru

http://allpatents.ru

Последние материалы раздела:

Бактерии- древние организмы
Бактерии- древние организмы

Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...

Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т
Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т

МОУ «ООШ с. Озёрки Духовницкого района Саратовской области » Киреевой Татьяны Константиновны 2009 – 2010 год Введение. «Грамотное письмо – не...

Презентация: Монако Презентация на тему
Презентация: Монако Презентация на тему

Религия: Католицизм: Официальная религия - католичество. Однако конституция Монако гарантирует свободу вероисповедания. В Монако есть 5...