Химические свойства карбоновых кислот и методы получения. Подготовка к егэ по химии

Восстановление хлорангидридов карбоновых кислот Карбоновые кислоты восстанавливаются с трудом (труднее, чем альдегиды). Значительно легче восстанавливаются хлорангидридыкислот: Взаимодействие производных карбоновых кислот (солей, эфиров, галогенангидридов) с металлоорганическими соединениями С...
(ОРГАНИЧЕСКАЯ ХИМИЯ)
  • (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • ПОЛУЧЕНИЕ СОЛЕЙ
    Получение средних солей Способы получения средних солей весьма многообразны. Рассмотрим некоторые наиболее важные из них. 1. Взаимодействием металла с неметаллом (кроме кислорода): 2. Реакцией соли с металлом: 3. Взаимодействием соли бескислородной кислоты с неметаллом: 4. Реакцией между основным...
  • Получение средних солей
    Способы получения средних солей весьма многообразны. Рассмотрим некоторые наиболее важные из них. 1. Взаимодействием металла с неметаллом (кроме кислорода): 2. Реакцией соли с металлом: 3. Взаимодействием соли бескислородной кислоты с неметаллом: 4. Реакцией между основным и кислотным оксидами (сюда...
    (ХИМИЯ. В 2 Ч. ЧАСТЬ 1. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ)
  • Электролиз водных растворов или расплавленных солей различных металлов
    Этим способом получают тонкие и чистые порошки различных металлов и сплавов. Например, порошки железа, меди, вольфрама с губчатой, пористой формой частиц получают электролитическим осаждением из растворов солей и металлов (рис. 5.17). Рис. 5.17. Схема процесса электролиза пористых и губчатых порошков...
    (Технологические процессы в машиностроении)
  • Этнический компонент: Сол Беллоу
    Человечество борется против организованного насилия за свою свободу, а личность против дегуманизации за свою душу. С. Беллоу Одна из характерных особенностей литературы США – ее полиэтнический характер. В XX в. он проявляется с несомненной рельефностью: несмотря на центробежные процессы,...
  • Сол Беллоу: одинокий интеллектуал в бездуховном мире
    Сол Беллоу (сокр. от Соломон Белоус, 1915–2005), по словам критика Уолтера Аллена, "один из самых щедрых талантов современной литературы". Он происходил из семьи еврейских эмигрантов, переехавших из Санкт-Петербурга сначала в Канаду, а затем в США. Детство писателя, будущего Нобелевского лауреата,...
    (История зарубежной литературы второй половины XX – начала XXI века)
  • ОПРЕДЕЛЕНИЕ

    Органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом, называют карбоновыми кислотами .

    Первые три члена гомологического ряда карбоновых кислот, включая пропионовую кислоту, — жидкости, имеющие резкий запах, хорошо растворимые в воде. Следующие гомологи, начиная с масляной кислоты, — также жидкости, обладающие резким неприятным запахом, но плохо растворимые в воде. Высшие кислоты, с числом атомов углерода 10 и более, представляют собой твердые вещества, без запаха, нерастворимые в воде. В целом, в ряду гомологов с увеличением молекулярной массы уменьшается растворимость в воде, уменьшается плотность и возрастает температура кипения (табл. 1).

    Таблица 1. Гомологический ряд карбоновых кислот.

    Получение карбоновых кислот

    Карбоновые кислоты получают окислением предельных углеводородов, спиртов, альдегидов. Например, уксусную кислоту - окислением этанола раствором перманганата калия в кислой среде при нагревании:

    Химические свойства карбоновых кислот

    Химические свойства карбоновых кислот обусловлены в первую очередь особенностями их строения. Так, растворимые в воде кислоты способны диссоциировать на ионы:

    R-COOH↔R-COO — + H + .

    Благодаря наличию в воде иона H + они имеют кислый вкус, способны менять окраску индикаторов и проводить электрический ток. В водном растворе эти кислоты - слабые электролиты.

    Карбоновые кислоты обладают химическими свойствами, характерными для растворов неорганических кислот, т.е. взаимодействуют с металлами (1), их оксидами (2), гидроксидами (3) и слабыми солями (4):

    2CH 3 -COOh + Zn → (CH 3 COO) 2 Zn + H 2 (1);

    2CH 3 -COOH + CuO→ (CH 3 COO) 2 Cu + H 2 O (2);

    R-COOH + KOH → R-COOK + H 2 O (3);

    2CH 3 -COOH + NaHCO 3 → CH 3 COONa + H 2 O + CO 2 (4).

    Специфическое свойство предельных, а также непредельных карбоновых кислот, проявляемое за счет функциональной группы, — взаимодействие со спиртами.

    Карбоновые кислоты взаимодействуют со спиртами при нагревании и в присутствии концентрированной серной кислоты. Например, если к уксусной кислоте прилить этиловый спирт и немного серной кислоты, то при нагревании появляется запах этилового эфира уксусной кислоты (этилацетата):

    CH 3 -COOH + C 2 H 5 OH ↔CH 3 -C(O)-O-C 2 H 5 + H 2 O.

    Специфическое свойство предельных карбоновых кислот, проявляемое за счет радикала, — реакция галогенирования (хлорирования).


    Применение карбоновых кислот

    Карбоновые кислоты служат исходным сырьем для получения кетонов, галогенангидридов, виниловых эфиров и других важных классов органических соединений.

    Муравьиная кислота широко применяется для получения сложных эфиров, используемых в парфюмерии, в кожевенном деле (дубление кож), текстильной промышленности (как протрава при крашении), в качестве растворителя и консерванта.

    Водный раствор (70-80%-ной) уксусной кислоты называется уксусной эссенцией, а 3-9%-ный водный раствор - столовым уксусом. Эссенция нередко используется для получения уксуса в домашних условиях путем разведения.

    Примеры решения задач

    ПРИМЕР 1

    Задание С помощью каких химических реакций можно осуществить следующие превращения:

    а) CH 4 → CH 3 Cl → CH 3 OH → HCHO → HCOOH → HCOOK.

    Напишите уравнения реакций, укажите условия их протекания.

    Ответ а) Хлорирование метана на свету приводит к получению хлорметана:

    CH 4 + Cl 2 →CH 3 Cl + HCl.

    Галогенпроизводные алканов подвергаются гидролизу в водной или щелочной среде с образованием спиртов:

    CH 3 Cl + NaOH→CH 3 OH + NaCl.

    В результате окисления первичных спиртов, например, дихроматом калия в кислой среде в присутствии катализатора (Cu, CuO, Pt, Ag) образуются альдегиды:

    CH 3 OH+ [O] →HCHO.

    Альдегиды легко окисляются до соответствующих карбоновых кислот, например, перманганатом калия:

    HCHO + [O] →HCOOH.

    Карбоновые кислоты, проявляют все свойства, присущие слабым минеральным кислотам, т.е. способны взаимодействовать с активными металлами с образованием солей:

    2HCOOH+ 2K→2HCOOK + H 2 .

    ПРИМЕР 2

    Задание Напишите уравнения реакций между следующими веществами: а) 2-метилпропановой кислотой и хлором; б) уксусной кислотой и пропанолом-2; в) акриловой кислотой и бромной водой; г) 2-метилбутановой кислотой и хлоридом фосфора (V). Укажите условия протекания реакций.
    Ответ а) в результате реакции взаимодействия между 2-метилпропановой кислотой и хлором происходит замещение атома водорода в углеводородном радикале, находящемся в a-положение; образуется 2-метил-2-хлорпропановая кислота

    H 3 C-C(CH 3)H-COOH + Cl 2 → H 3 C-C(CH 3)Cl-COOH + HCl (kat = P).

    б) в результате реакции взаимодействия между уксусной кислотой и пропанолом-2 происходит образование сложного эфира - изопропиловый эфир уксусной кислоты.

    CH 3 -COOH + CH 3 -C(OH)H-CH 3 → CH 3 -C(O)-O-C(CH 3)-CH 3 .

    в) в результате реакции взаимодействия между акриловой кислотой и бромной водой присоединение галогена по месту двойной связи в соответствии с правилом Марковникова; образуется 2,3-дибромпропановая кислота

    CH 2 =CH-COOH + Br 2 → CH 2 Br-CHBr-COOH

    г) в результате реакции взаимодействия между 2-метилбутановой кислотой и хлоридом фосфора (V) образуется соответствующий хлорангидрид

    CH 3 -CH 2 -C(CH 3)H-COOH + PCl 5 →CH 3 -CH 2 -C(CH 3)H-COOCl + POCl 3 + HCl.

    Карбоновые кислоты - органические вещества, молекулы которых содержат одну или несколько карбоксильных групп.

    Карбоксильная группа (сокращенно —COOH) - функциональная группа карбоновых кислот - состоит из карбонильной группы и связанной с ней гидроксильной группы.

    По числу карбоксильных групп карбоновые кислоты делятся на одноосновные, двухосновные и т.д.

    Общая формула одноосновных карбоновых кислот R—COOH. Пример двухосновной кислоты - щавелевая кислота HOOC—COOH.

    По типу радикала карбоновые кислоты делятся на предельные (например, уксусная кислота CH 3 COOH), непредельные [например, акриловая кислота CH 2 =CH—COOH , олеиновая CH 3 —(CH 2) 7 —CH=CH—(CH 2) 7 —COOH] и ароматические (например, бензойная C 6 H 5 —COOH).

    Изомеры и гомологи

    Одноосновные предельные карбоновые кислоты R—COOH являются изомерами сложных эфиров (сокращенно R"—COOR"") с тем же числом атомов углерода. Общая формула и тех, и других C n H 2n O 2 .

    г HCOOH
    метановая (муравьиная)
    CH 3 COOH
    этановая (уксусная)
    HCOOCH 3
    метиловый эфир муравьиной кислоты
    CH 3 CH 2 COOH
    пропановая (пропионовая)
    HCOOCH 2 CH 3
    этиловый эфир муравьиной кислоты
    CH 3 COOCH 3
    метиловый эфир уксусной кислоты
    CH 3 (CH 2) 2 COOH
    бутановая (масляная)

    2-метилпропановая
    HCOOCH 2 CH 2 CH 3
    пропиловый эфир муравьиной кислоты
    CH 3 COOCH 2 CH 3
    этиловый эфир уксусной кислоты
    CH 3 CH 2 COOCH 3
    метиловый эфир пропионовой кислоты
    и з о м е р ы

    Алгоритм составления названий карбоновых кислот

    1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, включающая атом углерода карбоксильной группы.
    2. Пронумеруйте атомы углерода в главной цепи, начиная с атома углерода карбоксильной группы.
    3. Назовите соединение по алгоритму для углеводородов.
    4. В конце названия допишите суффикс "-ов", окончание "-ая" и слово "кислота".

    В молекулах карбоновых кислот p -электроны атомов кислорода гидроксильной группы взаимодействуют с электронами -связи карбонильной группы, в результате чего возрастает полярность связи O—H, упрочняется -связь в карбонильной группе, уменьшается частичный заряд (+) на атоме углерода и увеличивается частичный заряд (+) на атоме водорода.

    Последнее способствует образованию прочных водородных связей между молекулами карбоновых кислот.

    Физические свойства предельных одноосновных карбоновых кислот в значительной степени обусловлены наличием между молекулами прочных водородных связей (более прочных, чем между молекулами спиртов). Поэтому температуры кипения и растворимость в воде у кислот больше, чем у соответствующих спиртов.

    Химические свойства кислот

    Упрочнение -связи в карбонильной группе приводит к тому, что реакции присоединения для карбоновых кислот нехарактерны.

    1. Горение:

      CH 3 COOH + 2O 2 2CO 2 + 2H 2 O

    2. Кислотные свойства.
      Из-за высокой полярности связи O-H карбоновые кислоты в водном растворе заметно диссоциируют (точнее, обратимо с ней реагируют):

      HCOOH HCOO - + H + (точнее HCOOH + H 2 O HCOO - + H 3 O +)


      Все карбоновые кислоты - слабые электролиты. С увеличением числа атомов углерода сила кислот убывает (из-за снижения полярности связи O-H); напротив, введение атомов галогена в углеводородный радикал приводит к возрастанию силы кислоты. Так, в ряду

      HCOOH CH 3 COOH C 2 H 5 COOH


      сила кислот снижается, а в ряду

      Возрастает.

      Карбоновые кислоты проявляют все свойства, присущие слабым кислотам:

      Mg + 2CH 3 COOH (CH 3 COO) 2 Mg + H 2
      CaO + 2CH 3 COOH (CH 3 COO) 2 Ca + H 2 O
      NaOH + CH 3 COOH CH 3 COONa + H 2 O
      K 2 CO 3 + 2CH 3 COOH 2CH 3 COOK + H 2 O + CO 2

    3. Этерификация (реакция карбоновых кислот со спиртами, приводящая к образованию сложного эфира):

      В реакцию этерификации могут вступать и многоатомные спирты, например, глицерин. Сложные эфиры, образованные глицерином и высшими карбоновыми кислотами (жирными кислотами) - это жиры.

      Жиры представляют собой смеси триглицеридов. Предельные жирные кислоты (пальмитиновая C 15 H 31 COOH, стеариновая C 17 H 35 COOH) образуют твердые жиры животного происхождения, а непредельные (олеиновая C 17 H 33 COOH, линолевая C 17 H 31 COOH и др.) - жидкие жиры (масла) растительного происхождения.

    4. Замещение в углеводородном радикале:

      Замещение протекает в -положение.

      Особенность муравьиной кислоты HCOOH состоит в том, что это вещество - двуфункциональное соединение, оно одновременно является и карбоновой кислотой, и альдегидом:

      Поэтому муравьиная кислота кроме всего прочего реагирует и с аммиачным раствором оксида серебра (реакция серебряного зеркала; качественная реакция):

      HCOOH + Ag 2 O(аммиачный раствор) CO 2 + H 2 O + 2Ag

    Получение карбоновых кислот

    .
    O

    //
    Группа атомов -С называется карбоксильной группой или карбоксилом.
    \

    OH
    Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOН.

    Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты.

    Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота. В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

    Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота или уже знакомая нам янтарная кислота.

    Очевидно, что предельные карбоновые кислоты не содержат п -связей в углеводородном радикале.

    В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например в молекулах акриловой (пропеновой) СН2=СН-СООН или олеиновой СН3-(СН2)7-СН= СН-(СН2)7-СООН и других кислот.

    Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо.

    Номенклатура и изомерия

    Общие принципы образования названий карбоновых кислот, как и других органических соединений, мы уже рассматривали. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов, окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

    Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия (табл. 6).

    После первого знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

    Понятно, что состав этих кислот будет отражаться общей формулой С n Н 2n O2, или С n Н 2n +1 CООН, или RСООН.

    Физические свойства предельных одноосновных карбоновых кислот

    Низшие кислоты, т. е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жидкости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры кипения предельных одноосновных карбоно-вых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна 101 °С, уксусной - 118 °С, пропионовой - 141 °С.

    Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молекулярную массу (46), при обычных условиях является жидкостью с температурой кипения 100,8 °С. В то же время бутан (МR(С4Н10) = 58) в тех же условиях газообразен и имеет температуру кипения -0,5 °С. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями. Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

    Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов - карбоксил (подумайте, чем вызвана полярность этой функциональной группы) и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи.

    Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

    Зная состав и строение молекул карбоновых кислот, нам будет нетрудно понять и объяснить химические свойства этих веществ.

    Химические свойства

    Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильно полярную связь между атомами водорода и кислорода . Эти свойства вам хорошо известны. Рассмотрим их еще раз на примере растворимых в воде органических кислот.

    1. Диссоциация с образованием катионов водорода и анионов кислотного остатка. Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды.

    Равновесие диссоциации карбоновых кислот смещено влево, подавляющее большинство их - слабые электролиты. Тем не менее кислый вкус, например, муравьиной и уксусной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

    Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

    2. Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водорода. Так, железо восстанавливает водород из уксусной кислоты:

    2СН3-СООН + Fe -> (CHgCOO)2Fe + Н2

    3. Взаимодействие с основными оксидами с образованием соли и воды:

    2R-СООН + СаО -> (R-СОО)2Са + Н20

    4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

    R-СООН + NaOH -> R-COONa + Н20 3R-СООН + Са(ОН)2 -> (R-СОО)2Са + 2Н20

    5. Взаимодействие с солями более слабых кислот, с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия.

    6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров - уже известная вам реакция эте-рификации (одна из наиболее важных реакций, характерных для карбоновых кислот). Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

    Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотни-мающих средств и удалении эфира из реакционной смеси.

    В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт. Очевидно, что реагировать с карбоновыми кислотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

    Dсе карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

    7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты; например, реакция присоединения водорода - гидрирование. При гидрировании олеиновой кислоты образуется предельная стеариновая кислота.

    Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду.

    8. Реакции замещения (с галогенами) - в нее способны вступать предельные карбоновые кислоты; например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:


    При галогенировании карбоновых кислот, содержащих более одного атома углерода в углеводородном остатке, возможно образование продуктов с различным положением галогена в молекуле. При протекании реакции по свободнорадикальному механизму могут замещаться любые атомы водорода в углеводородном остатке. Если же реакцию проводить в присутствии небольших количеств красного фосфора , то она идет селективно - водород замещается лишь в а -положении (у ближайшего к функциональной группе атома углерода) в молекуле кислоты. Причины такой селективности вы узнаете при изучении химии в высшем учебном заведении.

    Карбоновые кислоты образуют различные функциональные производные при замещении гидроксильной группы. При гидролизе этих производных из них вновь образуется карбоновая кислота.

    Хлорангидрид карбоновой кислоты можно получить действием на кислоту хлорида фосфора(ІІІ) или тионилхлорида (SОСl 2). Ангидриды карбоновых кислот получают взаимодействием хлор-ангидридов с солями карбоновых кислот. Сложные эфиры образуются в результате этерификации карбоновых кислот спиртами. Этерификация катализируется неорганическими кислотами.

    Эту реакцию инициирует протонирование карбоксильной группы - взаимодействие катиона водорода (протона) с неподеленной электронной парой атома кислорода. Протонирование карбоксильной группы влечет за собой увеличение положительного заряда на атоме углерода в ней:


    Способы получения

    Карбоновые кислоты могут быть получены окислением первичных спиртов и альдегидов.

    Ароматические карбоновые кислоты образуются при окислении гомологов бензола .

    Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Как уже говорилось выше, реакции этерификации и гидролиза, катарилизируемые кислотой, обратимы. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль. При гидролизе нитрилов сначала образуются амиды, которые затем превращаются в кислоты. Карбоновые кислоты образуются при взаимодействии магний-органических соединений с оксидом углерода(IV).

    Отдельные представители карбоновых кислот и их значение

    Муравьиная (метановая) кислота НСООН - жидкость с резким запахом и температурой кипения 100,8 °С, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она также используется при крашении тканей и бумаги.

    Уксусная (этановая) кислота СН3СООН - бесцветная жидкость с характерным резким запахом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5%-ный раствор) и уксусной эссенции (70-80%-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, - гербициды.

    Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ей. Она продукт окисления этанола и образуется из него при хранении вина на воздухе.

    Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая С15Н31СООН и стеариновая С17Н35СООН кислоты. В отличие от низших кислот эти вещества твердые, плохо растворимые в воде.

    Однако их соли - стеараты и пальмитаты - хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

    Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота С17Н33СООН, или (СН2)7СООН. Это маслоподоб-ная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

    Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота НООС-СООН, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

    1. Непредельная элаидиновая кислота С17Н33СООН является транс-изомером олеиновой кислоты. Составьте структурную формулу этого вещества.

    2. Составьте уравнение реакции гидрирования олеиновой кислоты. Назовите продукт этой реакции.

    3. Составьте уравнение реакции горения стеариновой кислоты. Какой объем кислорода и воздуха (н. у.) потребуется для сжигания 568 г стеариновой кислоты?

    4. Смесь твердых жирных кислот - пальмитиновой и стеариновой - называют стеарином (именно из него изготавливают стеариновые свечи). Какой объем воздуха (н. у.) потребуется для сжигания двухсотграммовой стеариновой свечи, если стеарин содержит равные массы пальмитиновой и стеариновой кислот? Какой объем углекислого газа (н. у.) и масса воды образуются при этом?

    5. Решите предыдущую задачу при условии, что свеча содержит равные количества (одинаковое число молей) стеариновой и пальмитиновой кислот.

    6. Для удаления пятен ржавчины их обрабатывают раствором уксусной кислоты. Составьте молекулярные и ионные уравнения происходящих при этом реакций, учитывая, что ржавчина содержит оксид и гидроксид железа(III) - Fе2O3 и Fе(ОН)3. Почему такие пятна не удаляются водой? Почему они исчезают при обработке раствором кислоты?

    7. Добавляемую в бездрожжевое тесто пищевую (питьевую) соду МаНС03 предварительно «гасят» уксусной кислотой. Проделайте дома эту реакцию и составьте ее уравнение, зная, что угольная кислота слабее уксусной. Объясните образование пены.

    8. Зная, что хлор более электроотрицателен, чем углерод , расположите следующие кислоты: уксусную, пропионо-вую, хлоруксусную, дихлоруксусную и трихлоруксусную кислоты в порядке усиления кислотных свойств. Обоснуйте свой результат.

    9. Чем можно объяснить, что муравьиная кислота вступает в реакцию «серебряного зеркала»? Составьте уравнение этой реакции. Какой газ может выделяться при этом?

    10. При взаимодействии 3 г предельной одноосновной карбо-новой кислоты с избытком магния выделилось 560 мл (н. у.) водорода. Определите формулу кислоты.

    11. Приведите уравнения реакции, с помощью которых можно описать химические свойства уксусной кислоты. Назовите продукты этих реакций.

    12. Предложите несложный лабораторный способ, с помощью которого можно распознать пропановую и акриловую кислоты.

    13. Составьте уравнение реакции получения метилформиата - сложного эфира метанола и муравьиной кислоты. В каких условиях следует проводить эту реакцию?

    14. Составьте структурные формулы веществ, имеющих состав С3Н602. К каким классам веществ их можно отнести? Приведите уравнения реакций, характерных для каждого из них.

    15. Вещество А - изомер уксусной кислоты - не растворяется в воде, однако может подвергаться гидролизу. Какова структурная формула вещества А? Назовите продукты его гидролиза.

    16. Составьте структурные формулы следующих веществ:

    а) метилацетат;
    б) щавелевая кислота;
    в) муравьиная кислота;
    г) дихлоруксусная кислота;
    д) ацетат магния;
    е) этилацетат;
    ж) этилформиат;
    з) акриловая кислота.

    17*. Образец предельной одноосновной органической кислоты массой 3,7 г нейтрализовали водным раствором гидрокарбоната натрия. При пропускании выделившегося газа через известковую воду было получено 5,0 г осадка. Какая кислота была взята и каков объем выделившегося газа?

    Карбоновые кислоты в природе

    Карбоновые кислоты очень часто встречается в природе. Они содержится в фруктах и растениях. Они присутствуют в хвое, поте, моче и соке крапивы. Вы знаете, оказывается, что основная масса кислот образуют сложные эфиры, которые обладают запахами. Так запах молочной кислоты, которая содержится в поте человека, привлекает комаров, они ее чувствуют на довольно-таки значительном расстоянии. Поэтому, сколько бы вы не пытались отогнать назойливого комара, он все равно хорошо чувствует свою жертву. Кроме человеческого пота, молочная кислота содержится в соленых огурцах и квашеной капусте.

    А самки обезьян, чтобы привлечь к себе самца, выделяет уксусную и пропионовую кислоту. Чувствительный, собачий нос способен услышать запах масляной кислоты, которая имеет концентрацию 10–18 г/см3.

    Многие виды растений способны выделять выделяют уксусную и масляную кислоту. А некоторые сорные растения этим пользуются и выделяя вещества, устраняют своих конкурентов, подавляя их рост, а иногда и вызывая их гибель.

    Кислотой пользовались и индейцы. Чтобы уничтожить врага, они смачивали стрелы смертельным ядом, который оказался производным от уксусной кислоты.

    И тут возникает закономерный вопрос, представляют ли кислоты опасность для здоровья человека? Ведь широко распространенная в природе щавелевая кислота, которая содержится в щавеле, апельсинах, смородине и малине, почему-то не нашла применения в пищевой промышленности. Оказывается, щавелевая кислота в двести раз сильнее уксусной кислоты, и способна даже разъедать посуду, а ее соли, накапливаясь в организме человека, образовывать камни.

    Кислоты нашли широкое применение во всех сферах человеческой жизни. Их применяют в медицине, косметологии, пищевой промышленности, сельском хозяйстве и используют для бытовых нужд.

    В медицинских целях используются такие органические кислоты, как молочная, винная, аскорбиновая. Наверное, каждый из вас употреблял для укрепления организма витамин С – это как раз и есть аскорбиновая кислота. Она не только помогает укрепить иммунитет, но и обладает способностью выводить из организма канцерогены и токсины. Молочную кислоту используют для прижигания, так как она обладает высокой гигроскопичностью. А вот винная кислота действует, как легкое слабительное, как противоядие при отравлениях щелочами и как компонент, необходимый для приготовления плазмы при переливании крови.

    А вот поклонникам косметических процедур, следует знать, что содержащиеся в цитрусовых фруктах, фруктовые кислоты, благоприятно влияют на кожу, так, как проникая вглубь, они способны ускорять процесс обновления кожи. Кроме этого, запах цитрусовых имеет тонизирующее влияние на нервную систему.

    Замечали ли вы, что такие ягоды, как клюква и брусника долго хранятся и остаются свежими. А знаете почему? Оказывается, в них содержится бензойная кислота, которая является прекрасным консервантом.

    А вот в сельском хозяйстве широкое применение нашла янтарная кислота, так как с ее помощью можно повысить урожайность культурных растений. Также она способна стимулировать рост растений и ускорять их развитие.

    В табл. 19.10 указаны некоторые органические соединения, относящиеся к карбоновым кислотам. Характерный признак карбоновых кислот - наличие в них карбоксильной

    Таблица 19.10. Карбоновые кислоты

    (см. скан)

    функциональной группы. Карбоксильная группа состоит из карбонильной группы, связанной с гидроксильной группой. Органические кислоты с одной карбоксильной группой называются монокарбоновыми кислотами. Их систематические названия имеют суффикс -ов(ая). Органические кислоты с двумя карбоксильными группами называются дикарбоновыми кислотами. Их систематические названия имеют суффикс -диов(ая).

    Насыщенные алифатические монокарбоновые кислоты образуют гомологический ряд, который характеризуется общей формулой . Ненасыщенные алифатические дикарбоновые кислоты могут существовать в форме различных геометрических изомеров (см. разд. 17.2).

    Физические свойства

    Низшие члены гомологического ряда насыщенных монокарбоновых кислот при нормальных условиях представляют собой жидкости, обладающие характерным острым запахом. Например, этановая (уксусная) кислота имеет характерный «уксусный» запах. Безводная уксусная кислота при комнатной температуре представляет собой жидкость. Она замерзает при превращаясь в льдистое вещество, которое называется ледяной уксусной кислотой.

    Все дикарбоновые кислоты, указанные в табл. 19.10, при комнатной температуре представляют собой белые кристаллические вещества. Низшие члены рядов монокарбоновых и дикарбоновых кислот растворимы в воде. Растворимость карбоновых Кислот уменьшается по мере возрастания их относительной молекулярной массы.

    В жидком состоянии и в неводных растворах молекулы монокарбоновых кислот димеризуются в результате образования между ними водородных связей:

    Водородная связь в карбоновых кислотах сильнее, чем в спиртах. Это объясняется высокой полярностью карбоксильной группы, обусловленной оттягиванием электронов от атома водорода по направлению к карбонильному атому кислорода:

    Вследствие этого карбоновые кислоты имеют сравнительно высокие температуры кипения (табл. 19.11).

    Таблица 19.11. Температуры кипения уксусной кислоты и спиртов с близкими значениями относительной молекулярной массы

    Лабораторные методы получения

    Монокарбоновые кислоты можно получать из первичных спиртов и альдегидов окислением с помощью подкисленного раствора бихромата калия, взятого в избыточном количестве:

    Монокарбоновые кислоты и их соли можно получать гидролизом нитрилов либо амидов:

    Получение карбоновых кислот по реакции с реактивами Гриньяра и диоксидом углерода описано в разд. 19.1.

    Бензойную кислоту можно получить окислением метильной боковой цепи метилбензола (см. разд. 18.2).

    Кроме того, бензойную кислоту можно получить из бензальдегида с помощью реакции Каннищаро. В этой реакции бензальдегид обрабатывают 40-60%-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстановление приводит к образованию бензойной кислоты и соответственно фенил-метанола:

    Окисление

    Реакция Канниццаро характерна для альдегидов, не имеющих -атомов водорода. Так называются атомы водорода, присоединенные к атому углерода, соседнему с альдегидной группой:

    Поскольку метаналь не имеет -атомов водорода, он может вступать в реакцию Канниццаро. Альдегиды, содержащие по крайней мере один -атом водорода, в присутствии раствора гидроксида натрия подвергаются кислотнокатализируемой альдольной конденсации (см. выше).

    Химические свойства

    Хотя карбоксильная группа содержит карбонильную группу, карбоновые кислоты не вступают в некоторые реакции, характерные для альдегидов и кетонов. Например, они не вступают в реакции присоединения или конденсации. Это объясняется тем, что атом

    углерода в карбоксильной группе имеет меньший положительный заряд, чем в альдегидной или кетогруппе.

    Кислотность. Оттягивание электронной плотности от карбоксильного атома водорода ослабляет связь О-Н. Вследствие этого карбоксильная группа способна отщеплять (терять) протон. Поэтому монокарбоновые кислоты ведут себя как одноосновные кислоты. В водных растворах этих кислот устанавливается следующее равновесие:

    Карбоксилат-ион может рассматриваться как гибрид двух резонансных структур:

    Иначе его можно представлять себе как

    Делокализация электрона между атомами карбоксилатной группы стабилизирует карбоксилат-ион. Поэтому карбоновые кислоты обладают намного большей кислотностью, чем спирты. Тем не менее из-за ковалентного характера молекул карбоновых кислот указанное выше равновесие сильно сдвинуто влево. Таким образом, карбоновые кислоты - это слабые кислоты. Например, этановая (уксусная) кислота характеризуется константой кислотности

    Заместители, присутствующие в молекуле карбоновой кислоты, сильно влияют на ее кислотность вследствие оказываемого ими индуктивного эффекта. Такие заместители, как хлор, оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индуктивный эффект Оттягивание электронной плотности от карбоксильного атома водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эффект, Они ослабляют карбоновую кислоту:

    Влияние заместителей на кислотность карбоновых кислот наглядно проявляется в значениях для ряда кислот, указанных в табл. 19.12.

    Таблица 19.12. Значения карбоновых кислот

    Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они вступают в реакции с реакционноспособными металлами, основаниями, щелочами, карбонатами и гидрокарбонатами, образуя соответствующие соли (табл. 19.13). Реакции, указанные в этой таблице, характерны и для растворимых и нерастворимых карбоновых кислот.

    Подобно другим солям слабых кислот, карбоксилатные соли (соли карбоновых кислот) реагируют с минеральными кислотами, взятыми в избыточном количестве, образуя исходные карбоновые кислоты. Например, при добавлении раствора гидроксида натрия к взвеси нерастворимой бензойной кислоты в воде происходит растворение кислоты вследствие образования бензоата натрия. Если затем к полученному раствору добавить серную кислоту, происходит осаждение бензойной кислоты:

    Таблица 19.13. Образование солей из карбоновых кислот

    Этерификация. При нагревании смеси карбоновой кислоты со спиртом в присутствии концентрированной минеральной кислоты происходит образование сложного эфира. Такой процесс, называемый этерификацией, требует расщепления молекул спирта. При этом существуют две возможности.

    1. Алкоксиводородное расщепление. В данном случае спиртовый атом кислорода (из гидроксильной группы) попадает в молекулу образующегося эфира:

    2. Алкилгидроксилъное расщепление. При расщеплении такого типа спиртовый атом кислорода попадает в молекулу воды:

    Какой из этих случаев реализуется конкретно, можно определить экспериментально, проводя этерификацию с использованием спирта, содержащего изотоп 180 (см. разд. 1.3), т.е. с использованием изотопной метки. Определение относительной молекулярной массы образующегося эфира с помощью масс-спектрометрии показывает, присутствует ли в нем изотопная метка-кислород-18. Таким способом обнаружено, что этерификация с участием первичных спиртов приводит к образованию меченых сложных эфиров:

    Это показывает, что молекула метанола в ходе рассматриваемой реакции подвергается метокси-водородному расщеплению.

    Галогенирование. Карбоновые кислоты реагируют с пентахлоридом фосфора и оксид-дихлоридом серы, образуя хлорангидриды соответствующих кислот. Например

    И бензоилхлорид, и оксид-трихлорид фосфора представляют собой жидкости, которые необходимо отделить друг от друга. Поэтому для хлорирования карбоновых кислот удобнее использовать оксид-дихлорид серы: это позволяет легко удалить газообразные хлороводород и диоксид серы из жидкого хлорангидрида карбоновой кислоты:

    При продувании хлора через кипящую уксусную кислоту в присутствии таких катализаторов, как красный фосфор либо иод, и под действием солнечного света

    образуется монохлороэтановая (монохлороуксусная) кислота:

    Дальнейшее хлорирование приводит к образованию дизамешенного и тризамещенного продуктов:

    Восстановление. При взаимодействии с лития в сухом диэтиловом эфире карбоновые кислоты могут восстанавливаться до соответствующих спиртов. Сначала образуется алкоксидное промежуточное соединение, гидролиз которого приводит к образованию спирта:

    Карбоновые кислоты не восстанавливаются многими обычными восстановителями. Эти кислоты не могут восстанавливаться сразу до соответствующих альдегидов.

    Окисление. За исключением метановой (муравьиной) и этановой (уксусной) кислот, остальные карбоновые кислоты окисляются с трудом. Муравьиная кислота и ее соли (формиаты) окисляются перманганатом калия. Муравьиная кислота способна восстанавливать реактив Фелинга и при нагревании в смеси с водно-аммиачным раствором нитрата серебра образует «серебряное зеркало». При окислении муравьиной кислоты образуются диоксид углерода и вода:

    Этандиовая (щавелевая) кислота тоже окисляется перманганатом калия, образуя диоксид углерода и воду:

    Дегидратация. Перегонка карбоновой кислоты с каким-либо обезвоживателем, например оксидом приводит к отщеплению молекулы воды от двух молекул кислоты и образованию ангидрида карбоновой кислоты:

    Муравьиная и щавелевая кислоты оказываются исключениями и в этом случае. Дегидратация муравьиной кислоты или ее калиевой либо натриевой соли с помощью концентрированной серной кислоты приводит к образованию моноксида углерода и

    Дегидратация метаноата (формиата) натрия концентрированной серной кислотой представляет собой обычный лабораторный способ получения моноксида углерода. Дегидратация щавелевой кислоты горячей концентрированной серной кислотой приводит к образованию смеси моноксида углерода и диоксида углерода:

    Карбоксилаты

    Натриевые и калиевые соли карбоновых кислот представляют собой кристаллические вещества белого цвета. Они легко растворяются в воде, образуя сильные электролиты.

    Электролиз натриевых или калиевых карбоксилатных солей, растворенных в водно-метанольной смеси, приводит к образованию алканов и диоксида углерода на аноде и водорода на катоде.

    На аноде:

    На катоде:

    Такой метод получения алканов называется электрохимическим синтезом Кольбе.

    Образование алканов происходит и при нагревании смеси карбоксилатов натрия или калия с гидроксидом натрия либо натронной известью. (Натронная известь - это смесь гидроксида натрия с гидроксидом кальция.) Такой способ используется, например, для получения метана в лабораторных условиях:

    Ароматические карбоксилаты натрия или калия в аналогичных условиях образуют арены:

    При нагревании смеси карбоксилатов натрия с хлорангидридами образуются ангидриды соответствующих карбоновых кислот:

    Карбоксилаты кальция тоже представляют собой кристаллические вещества белого цвета и, как правило, растворимы в воде. При их нагревании происходит образование

    ние с низким выходом соответствующих кетонов:

    При нагревании смеси карбоксилатов кальция с формиатом кальция образуется альдегид:

    Аммониевые соли карбоновых кислот тоже представляют собой белые кристаллические вещества, растворимые в воде. При сильном нагревании они образуют соответствующие амиды:

    Последние материалы раздела:

    Бактерии- древние организмы
    Бактерии- древние организмы

    Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...

    Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т
    Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т

    МОУ «ООШ с. Озёрки Духовницкого района Саратовской области » Киреевой Татьяны Константиновны 2009 – 2010 год Введение. «Грамотное письмо – не...

    Презентация: Монако Презентация на тему
    Презентация: Монако Презентация на тему

    Религия: Католицизм: Официальная религия - католичество. Однако конституция Монако гарантирует свободу вероисповедания. В Монако есть 5...