Есть решение для теоремы ферма. «Доказана ли Великая теорема Ферма? Труды математика Фермера

В 17 веке во Франции жил юрист и по совместительству математик Пьер Ферма, который отдавал своему увлечению долгие часы досуга. Как-то зимним вечером, сидя у камина, он выдвинул одно прелюбопытнейшее утверждение из области теории чисел – именно оно в дальнейшем было названо Великой или Большой теоремой Ферма. Возможно, ажиотаж не был бы настолько весомым в математических кругах, не случись одно событие. Математик часто проводил вечера за штудированием любимой книги Диофанта Александрийского «Арифметика» (3 век), при этом записывал на ее полях важные мысли – этот раритет бережно сохранил для потомков его сын. Так вот, на широких полях этой книги рукой Ферма была оставлена такая надпись: «У меня есть довольно поразительное доказательство, но оно слишком большое, чтобы его можно было поместить на полях». Именно эта запись стала причиной ошеломительного ажиотажа вокруг теоремы. У математиков не вызывало сомнений, что великий ученый заявил о том, что доказал собственную теорему. Вы наверняка задаетесь вопросом: «Неужели он на самом деле ее доказал, или это была банальная ложь, а может есть другие версии, зачем эта запись, не дававшая умиротворенно спать математикам последующих поколений, оказалась на полях книги?».

Суть Великой теоремы

Довольно известная теорема Ферма проста по своей сути и заключается в том, что при условии, когда n больше двойки, положительного числа, уравнение Х n +Y n =Z n не будет иметь решений нулевого типа в рамках натуральных чисел. В этой с виду простой формуле была замаскирована невероятная сложность, и на ее доказательством бились целых три века. Есть одна странность – теорема опоздала с рождением на свет, так как ее частный случай при n=2 появился еще 2200 лет тому назад – это не менее знаменитая теорема Пифагора.

Необходимо отметить, что история, касающаяся всем известной теоремы Ферма, является очень поучительной и занимательной, причем не только для ученых-математиков. Что самое интересное, так это то, что наука являлась для ученого не работой, а простым хобби, которое в свою очередь, доставляла Фермеру огромное удовольствие. Также он постоянно поддерживал связь с ученым-математиком, а по совместительству, еще и другом, делился идеями, но как ни странно, собственные работы опубликовывать в свет не стремился.

Труды математика Фермера

Что касается самих работ Фермера, то их обнаружили именно в форме обычных писем. Местами не было целых страниц, и сохранились лишь обрывки переписок. Более интересен тот факт, что на протяжении трех веков ученые искали ту теорему, которая была обнаружена в трудах Фермера.

Но кто бы не решался ее доказать, попытки сводились к «нулю». Известный математик Декарт и вовсе обвинял ученого в хвастовстве, но все это сводилось лишь к самой обычной зависти. Помимо создания, Фермер еще и доказал собственную теорему. Правда решение было найдено для того случая, где n=4. Что касается случая для n=3, то его выявил математик Эйлер.

Как пытались доказать теорему Фермера

В самом начале 19 века данная теорема продолжила свое существование. Математики нашли много доказательств теорем, которые ограничивались натуральными числами в пределах двухсот.

А в 1909 году была поставлена на кон довольно крупная сумма, равная ста тысячам маркам немецкого происхождения – и все это только лишь за то, чтобы решить вопрос, связанный с этой теоремой. Сам фонд призовой категории был оставлен богатым любителем математики Паулем Вольфскелем, родом из Германии, кстати, именно он хотел «наложить на себя руки», но благодаря такой вовлеченности в теорему Фермера, захотел жить. Возникший ажиотаж породил тонны «доказательств», заполонивших германские университеты, а в кругу математиков родилось прозвище «фермист», которым полупрезрительно называли всякого амбициозного выскочку, не сумевшего привести явные доказательства.

Гипотеза японского математика Ютаки Танияма

Сдвигов в истории Великой теоремы до середины 20 столетия так и не наблюдалось, но одно занимательное событие все-таки произошло. В 1955 году математик из Японии Ютака Танияма, которому было 28 лет, явил миру утверждение из абсолютно другой математической области – его гипотеза в отличие от Ферма опередило свое время. Она гласит: «Каждой эллиптической кривой соответствует определенная модулярная форма». Вроде бы абсурд для каждого математика, подобно, что дерево состоит из определенного металла! Парадоксальную гипотезу, как и большинство прочих ошеломляющих и гениальных открытий, не приняли, так как еще попросту не доросли до нее. И Ютака Танияма покончил жизнь самоубийством, спустя три года – поступок необъяснимый, но, вероятно, честь для истинного гения-самурая была превыше всего.

Целое десятилетие о гипотезе не вспоминали, но в семидесятые она поднялась на пик популярности – ее подтверждали все, кто мог в ней разобраться, но, как и теорема Ферма, она оставалась недоказанной.

Как связаны гипотеза Таниямы и теорема Ферма

Спустя 15 лет в математике произошло ключевое событие, и оно объединило гипотезу прославленного японца и теорему Ферма. Герхард Грей заявил, что когда будет доказана гипотеза Танияма, тогда и найдутся доказательства теоремы Ферма. То есть последняя – это следствие гипотезы Танияма, и уже через полтора года профессором университета в Калифорнии Кеннетом Рибетом теорема Ферма была доказана.

Шло время, регресс заменялся прогрессом, а наука стремительно продвигалась вперед, особенно в области компьютерных технологий. Таким образом, значение n стало все больше повышаться.

В самом конце 20 века самые мощные компьютеры находились в лабораториях военного направления, было осуществлено программирование на вывод решения задачи всем известного Ферма. Как следствие всем попыткам было выявлено то, что данная теорема правильная для многих значений n, x, y. Но, к сожалению, окончательным доказательством это не стало, так как не было конкретики как таковой.

Джон Уайлс доказал великую Теорему Ферма

И вот, наконец, только в конце 1994 года, математик из Англии, Джон Уайлс нашел и продемонстрировал точное доказательство спорной теоремы Фермера. Тогда, после множества доработок, дискуссии по этому поводу пришли к своему логическому завершению.

Опровержение было размещено на более ста страницах одного журнала! Причем теорема была доказана на более современном аппарате высшей математики. И что удивительно, на тот момент, когда Фермер писал свой труд, такого аппарата в природе не существовало. Словом, человек был признан гением в этой области, с чем поспорить не мог никто. Несмотря на все что было, на сегодняшний день можно быть уверенными в том, что представленная теорема великого ученого Фермера оправдана и доказана, и споры и на эту тему не заведет ни одни математик со здравым смыслом, с чем согласны даже самые заядлые скептики всего человечества.

Полное имя человека, в честь которого была названа представленная теорема, звали Пьер де Фермер. Он внес свой вклад в самые разнообразные области математики. Но, к сожалению, большинство его трудов были опубликованы только после его смерти.

ФЕРМА ВЕЛИКАЯ ТЕОРЕМА - утверждение Пьера Ферма (французский юрист и по совместительству математик) о том, что диофантово уравнение X n + Y n = Z n , при показателе степени n>2, где n = целое число, не имеет решений в целых положительных числах. Авторский текст: "Невозможно разложить куб на два куба, или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же самым показателем."

"Ферма и его теорема", Амадео Модильяни, 1920

Пьер придумал эту теорему 29 марта 1636-го года. А ещё через каких-то 29 лет скончался. Но тут-то всё и началось. Ведь состоятельный немецкий любитель математики по фамилии Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма! Но ажиотаж вокруг теоремы был связан не только с этим, но и с профессиональным математическим азартом. Сам Ферма намекнул математическому сообществу, что знает доказательство - незадолго до смерти, в 1665-ом году он оставил на полях книги Диофанта Александрийского "Арифметика" следующую запись: "Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях."

Именно этот намёк (плюс, конечно, денежная премия) заставил математиков безуспешно тратить на поиск доказательства свои лучшие годы (по подсчётам американских учёных, только профессиональными математиками было потрачено на это 543 лет в общей сложности).

В какой-то момент (в 1901-ом) работа над теоремой Ферма приобрела сомнительную славу "работы, сродни поиску вечного двигателя" (появился даже уничижительный термин - "ферматисты"). И вдруг 23 июня 1993 года на математической конференции по теории чисел в Кембридже английский профессор математики из Принстонского университета (Нью-Джерси, США) Эндрю Уайлс объявил, что наконец-то доказал Ферма!

Доказательство, правда, было не только сложным, но и очевидно ошибочным, на что Уайлсу было указано его коллегами. Но профессор Уайлс всю жизнь мечтал доказать теорему, поэтому не удивительно что в мае 1994-го он представил на суд учёного сообщества новый, доработанный вариант доказательства. В нём не было стройности, красоты, и оно по-прежнему было весьма сложным - тот факт, что математики целый год (!) это доказательство анализировали, что бы понять, не является ли оно ошибочным, говорит сам за себя!

Но в итоге доказательство Уайлса было признано верным. А вот Пьеру Ферма его тот самый намёк в "Арифметике" математики не простили, и, фактически, стали считать его лжецом. Собственно, первым, кто рискнул усомниться в моральной чистоплотности Ферма был сам Эндрю Уайлс, который заметил, что "Ферма не мог располагать таким доказательством. Это доказательство ХХ века." Затем и среди других ученых укрепилось мнение, что Ферма "не мог доказать свою теорему другим путём, а доказать её тем путем, по которому пошёл Уайлс, Ферма не мог по объективным причинам."

На самом деле, Ферма конечно же мог доказать её, и чуть позже это доказательство будет аналитиками "Новой Аналитической Энциклопедии" воссоздано. Но - что же это за такие "объективные причины"?
Такая причина на самом деле только одна: в те годы, когда жил Ферма, не могла появиться гипотеза Таниямы, на которой и построил свой доказательство Эндрю Уайлс, ведь модулярные функции, которыми оперирует гипотеза Таниямы были открыты только в конце XIX века.

Как доказал теорему сам Уайлс? Вопрос непраздный - это важно для понимания того, каким образом свою теорему мог доказать сам Ферма. Уайлс построил своё доказательство на доказательстве гипотезы Таниямы, выдвинутой в 1955-ом 28-летним японским математиком Ютакой Таниямой.

Гипотеза звучит так: "каждой эллиптической кривой соответствует определенная модулярная форма". Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости), модулярные же функции, имеют четырехмерный вид. Т.е гипотеза Таниямы соединила совершенно разные понятия - простые плоские кривые и невообразимые четырёхмерные формы. Сам факт соединения разномерных фигур в гипотезе показался учёным абсурдным, именно поэтому в 1955-ом ей не придали значения.

Однако осенью 1984 года о "гипотезе Таниямы" вдруг снова вспомнили, и не просто вспомнили, но связали её возможное доказательство с доказательством теоремы Ферма! Это сделал математик из Саарбрюкена Герхард Фрей, который сообщил учёному сообществу, что "если бы кому-нибудь удалось доказать гипотезу Таниямы, то тем самым была бы доказана и Великая теорема Ферма".

Что сделал Фрей? Он преобразовал уравнение Ферма в кубическое, затем обратил внимание на то, что эллиптическая кривая, полученная при помощи преобразованного в кубическое уравнения Ферма не может быть модулярной. Однако гипотеза Таниямы утверждала, что любая эллиптическая кривая может быть модулярной! Соответственно, эллиптическая кривая, построенная из уравнения Ферма не может существовать, значит не может быть целых решений и теоремы Ферма, значит она верна. Ну а в 1993-ем Эндрю Уайлс попросту доказал гипотезу Таниямы, а значит и теорему Ферма.

Однако, теорему Ферма можно доказать значительно проще, на основе той же самой многомерности, которой оперировали и Танияма, и Фрей.

Для начала, обратим внимание на условие, оговорённое самим Пьером Ферма - n>2. Для чего было нужно это условие? Да лишь для того, что при n=2 частным случаем теоремы Ферма становится обычная теорема Пифагора Х 2 +Y 2 =Z 2 , которое имеет бесчисленное множество целых решений - 3,4,5; 5,12,13; 7,24,25; 8,15,17; 12,16,20; 51,140,149 и так далее. Таким образом, теорема Пифагора является исключением из теоремы Ферма.

Но почему именно в случае с n=2 возникает подобное исключение? Всё становится на свои места, если увидеть взаимосвязь между степенью (n=2) и мерностью самой фигуры. Пифагоров треугольник - двухмерная фигура. Не удивительно, что Z (то есть гипотенуза), может быть выражена через катеты (X и Y), которые могут быть целыми числами. Размер угла (90) дает возможность рассматривать гипотенузу как вектор, а катеты - векторы, расположенные на осях и идущие из начала координат. Соответственно, можно выразить двумерный вектор, не лежащий ни на одной из осей, через векторы, на них лежащие.

Теперь, если перейти к третьему измерению, а значит к n=3, для того чтобы выразить трёхмерный вектор, будет недостаточно информации о двух векторах, а следовательно, выразить Z в уравнении Ферма можно будет как минимум через три слагаемых (три вектора, лежащих, соответственно, на трех осях системы координат).

Если n=4, значит, слагаемых должно быть уже 4, если n=5, то слагаемых должно быть 5 и так далее. В этом случае, целых решений будет хоть отбавляй. Например, 3 3 +4 3 +5 3 =6 3 и так далее (другие примеры для n=3, n=4 и так далее можете подобрать самостоятельно).

Что из всего этого следует? Из этого следует, что теорема Ферма действительно не имеет целых решений при n>2 - но лишь потому, что само по себе уравнение некорректно! С таким же успехом можно было бы пытаться выразить объём параллелепипеда через длины двух его рёбер - разумеется, это невозможно (целых решений никогда не будет найдено), но лишь потому, что для нахождения объёма параллелепипеда нужно знать длины всех трёх его рёбер.

Когда знаменитого математика Давида Гилберта спросили, какая задача сейчас для науки наиболее важна, он ответил "поймать муху на обратной стороне Луны". На резонный вопрос "А кому это надо?" он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить".

Другими словами, Ферма (юрист в первую очередь!) сыграл со всем математическим миром остроумную юридическую шутку, основанную на неверной постановке задачи. Он, фактически, предложил математикам найти ответ, почему муха на другой стороне Луны жить не может, а на полях "Арифметики" хотел написать лишь о том, что на Луне просто нет воздуха, т.е. целых решений его теоремы при n>2 быть не может лишь потому, что каждому значению n должно соответствовать определённое количество членов в левой части его уравнения.

Но была ли это просто шутка? Отнюдь. Гениальность Ферма заключается именно в том, что он фактически первый увидел взаимосвязь между степенью и мерностью математической фигуры - то есть, что абсолютно эквивалентно, количеством членов в левой части уравнения. Смысл его знаменитой теоремы был именно в том, чтобы не просто натолкнуть математический мир на идею этой взаимосвязи, но и инициировать доказательство существования этой взаимосвязи - интуитивно понятной, но математически пока не обоснованной.

Ферма как никто другой понимал, что установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их.

Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.

Математика времён Ферма состояла из островов знания в море незнания. На одном острове обитали геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучали риски и случайность. Язык геометрии сильно отличался от языка теории вероятностей, а алгебраическая терминология была чужда тем, кто говорил только о статистике. К сожалению, математика и наших времён состоит примерно из таких же островов.

Ферма первым понял, что все эти острова взаимосвязаны. И его знаменитая теорема - ВЕЛИКАЯ ТЕОРЕМА ФЕРМА - отличное тому подтверждение.

Вряд ли хоть один год в жизни нашей редакции проходил без того, чтобы она не получала добрый десяток доказательств теоремы Ферма. Теперь, после «победы» над ней, поток поутих, но не иссяк.

Конечно, не для того чтобы его высушить окончательно, публикуем мы эту статью. И не в своё оправдание - что, мол, вот почему мы отмалчивались, сами не доросли ещё до обсуждения столь сложных проблем.

Но если статья действительно покажется сложной, загляните сразу в её конец. Вы должны будете почувствовать, что страсти поутихли временно, наука не окончена, и вскорости новые доказательства новых теорем направятся в редакции.

Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой - в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

Заметим для начала, что она родилась гораздо позже своего естественного срока. Ведь первый частный случай теоремы Ферма - это уравнение Пифагора X 2 + Y 2 = Z 2 , связывающее длины сторон прямоугольного треугольника. Доказав эту формулу двадцать пять веков назад, Пифагор сразу задался вопросом: много ли в природе таких треугольников, у которых оба катета и гипотенуза имеют целую длину? Кажется, египтяне знали лишь один такой треугольник - со сторонами (3, 4, 5) . Но нетрудно найти и другие варианты: например (5, 12, 13) , (7, 24, 25) или (8, 15, 17) . Во всех этих случаях длина гипотенузы имеет вид (А 2 + В 2) , где А и В - взаимно простые числа разной чётности. При этом длины катетов равны (А 2 - В 2) и 2АВ.

Заметив эти соотношения, Пифагор без труда доказал, что любая тройка чисел (X = A 2 - B 2 , Y = 2AB , Z = A 2 + B 2) является решением уравнения X 2 + Y 2 = Z 2 и задаёт прямоугольник со взаимно простыми длинами сторон. Видно также, что число разных троек такого сорта бесконечно. Но все ли решения уравнения Пифагора имеют такой вид? Ни доказать, ни опровергнуть такую гипотезу Пифагор не смог и оставил эту проблему потомкам, не заостряя на ней внимание. Кому охота подчёркивать свои неудачи? Похоже, что после этого проблема целочисленных прямоугольных треугольников лежала в забвении семь столетий - до тех пор, пока в Александрии не появился новый математический гений по имени Диофант.

Мы мало знаем о нём, но ясно: он был совсем не похож на Пифагора. Тот чувствовал себя царём в геометрии и даже за её пределами - будь то в музыке, астрономии или политике. Первая арифметическая связь между длинами сторон благозвучной арфы, первая модель Вселенной из концентрических сфер, несущих планеты и звёзды, с Землёю в центре, наконец, первая республика учёных в италийском городе Кротоне - таковы личные достижения Пифагора. Что мог противопоставить таким успехам Диофант - скромный научный сотрудник великого Музея, давно переставшего быть гордостью городской толпы?

Только одно: лучшее понимание древнего мира чисел, законы которого едва успели ощутить Пифагор, Евклид и Архимед. Заметим, что Диофант ещё не владел позиционной системой записи больших чисел, но он знал, что такое отрицательные числа и, наверное, провёл немало часов, размышляя о том, почему произведение двух отрицательных чисел положительно. Мир целых чисел впервые открылся Диофанту как особая вселенная, отличная от мира звёзд, отрезков или многогранников. Главное занятие учёных в этом мире - решение уравнений, настоящий мастер находит все возможные решения и доказывает, что других решений нет. Так поступил Диофант с квадратным уравнением Пифагора, а потом задумался: имеет ли хоть одно решение сходное кубическое уравнение X 3 + Y 3 = Z 3 ?

Найти такое решение Диофанту не удалось, его попытка доказать, что решений нет, тоже не увенчалась успехом. Поэтому, оформляя итоги своих трудов в книге «Арифметика» (это был первый в мире учебник теории чисел), Диофант подробно разобрал уравнение Пифагора, но ни словом не заикнулся о возможных обобщениях этого уравнения. А мог бы: ведь именно Диофант впервые предложил обозначения для степеней целых чисел! Но увы: понятие «задачник» было чуждо эллинской науке и педагогике, а публиковать перечни нерешённых задач считалось неприличным занятием (только Сократ поступал иначе). Не можешь решить проблему - молчи! Диофант умолк, и это молчание затянулось на четырнадцать веков - вплоть до наступления Нового времени, когда возродился интерес к процессу человеческого мышления.

Кто только и о чём не фантазировал на рубеже XVI - XVII веков! Неутомимый вычислитель Кеплер пытался угадать связь между расстояниями от Солнца до планет. Пифагору это не удалось. Кеплер добился успеха после того, как научился интегрировать многочлены и другие несложные функции. Напротив, фантазёр Декарт не любил длинных расчётов, но именно он первый представил все точки плоскости или пространства, как наборы чисел. Эта дерзкая модель сводит любую геометрическую задачу о фигурах к некой алгебраической задаче об уравнениях - и наоборот. Например, целые решения уравнения Пифагора соответствуют целым точкам на поверхности конуса. Поверхность, соответствующая кубическому уравнению X 3 + Y 3 = Z 3 , выглядит сложнее, её геометрические свойства ничего не подсказали Пьеру Ферма, и тому пришлось прокладывать новые пути сквозь дебри целых чисел.

В 1636 году в руки молодого юриста из Тулузы попала книга Диофанта, только что переведённая на латынь с греческого оригинала, случайно уцелевшего в каком-то византийском архиве и привезённого в Италию кем-то из беглецов-ромеев в пору турецкого разорения. Читая изящное рассуждение об уравнении Пифагора, Ферма задумался: можно ли найти такое его решение, которое состоит из трёх чисел-квадратов? Малых чисел такого сорта нет: это легко проверить перебором. А как насчёт больших решений? Не имея компьютера, Ферма не мог поставить численный эксперимент. Но он заметил, что по каждому «большому» решению уравнения X 4 + Y 4 = Z 4 можно построить меньшее его решение. Значит, сумма четвёртых степеней двух целых чисел никогда не равна той же степени третьего числа! А как насчёт суммы двух кубов?

Вдохновлённый успехом для степени 4, Ферма попытался модифицировать «метод спуска» для степени 3 - и это ему удалось. Оказалось, что невозможно составить два малых куба из тех единичных кубиков, на которые рассыпался большой куб с целой длиной ребра. Торжествующий Ферма сделал краткую запись на полях книги Диофанта и послал в Париж письмо с подробным сообщением о своём открытии. Но ответа он не получил - хотя обычно столичные математики быстро реагировали на очередной успех их одинокого коллеги-соперника в Тулузе. В чём тут дело?

Очень просто: к середине XVII века арифметика вышла из моды. Большие успехи итальянских алгебраистов XVI века (когда были решены уравнения-многочлены степеней 3 и 4) не стали началом общенаучной революции, ибо они не позволили решить новые яркие задачи в сопредельных областях науки. Вот если бы Кеплеру удалось угадать орбиты планет с помощью чистой арифметики… Но увы - для этого потребовался математический анализ. Значит, его и надо развивать - вплоть до полного торжества математических методов в естествознании! Но анализ вырастает из геометрии, арифметика же остаётся полем забав для досужих юристов и прочих любителей вечной науки о числах и фигурах.

Итак, арифметические успехи Ферма оказались несвоевременны и остались неоценёнными. Он не был этим огорчён: для славы математика довольно впервые открывшихся ему фактов дифференциального исчисления, аналитической геометрии и теории вероятностей. Все эти открытия Ферма сразу вошли в золотой фонд новой европейской науки, меж тем как теория чисел отошла на задний план ещё на сто лет - пока её не возродил Эйлер.

Этот «король математиков» XVIII века был чемпионом во всех применениях анализа, но не пренебрегал и арифметикой, поскольку новые методы анализа приводили к неожиданным фактам о числах. Кто бы мог подумать, что бесконечная сумма обратных квадратов (1 + 1/4 + 1/9 + 1/16+…) равна π 2 /6? Кто из эллинов мог предвидеть, что похожие ряды позволят доказать иррациональность числа π?

Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось, но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень - 5.

Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители - дело тонкое. Даже Эйлер не разобрался в нём до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд - учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: всё, чего коснулись его руки и разум, не будет забыто новой учёной молодёжью.

Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 - и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.

Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый учёный ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось, оттого в XIX веке научно-технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.

Гаусс по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог всё, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, Гаусс переводит эту задачу на язык алгебры - и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9-угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.

Конечно, такой успех не даётся даром: приходится изобретать новые понятия, отражающие суть дела. Ньютон ввёл три таких понятия: флюксию (производную), флюенту (интеграл) и степенной ряд. Их хватило для создания математического анализа и первой научной модели физического мира, включающей механику и астрономию. Гаусс тоже ввёл три новых понятия: векторное пространство, поле и кольцо. Из них выросла новая алгебра, подчинившая себе греческую арифметику и созданную Ньютоном теорию числовых функций. Оставалось ещё подчинить алгебре логику, созданную Аристотелем: тогда можно будет с помощью расчётов доказывать выводимость или невыводимость любых научных утверждений из данного набора аксиом! Например, выводится ли теорема Ферма из аксиом арифметики, или постулат Евклида о параллельных прямых - из прочих аксиом планиметрии?

Эту дерзкую мечту Гаусс не успел осуществить - хотя продвинулся он далеко и угадал возможность существования экзотических (некоммутативных) алгебр. Построить первую неевклидову геометрию сумел только дерзкий россиянин Николай Лобачевский, а первую некоммутативную алгебру (Теорию Групп) - француз Эварист Галуа. И лишь много позже смерти Гаусса - в 1872 году - юный немец Феликс Кляйн догадался, что разнообразие возможных геометрий можно привести во взаимно-однозначное соответствие с разнообразием возможных алгебр. Попросту говоря, всякая геометрия определяется своей группой симметрий - тогда как общая алгебра изучает все возможные группы и их свойства.

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился ещё при жизни Гаусса. Сам он пренебрёг теоремой Ферма из принципа: не царское это дело - решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооружённые его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порождённых корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) - так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен ещё Евклиду, но только Гаусс дал его строгое доказательство. А как обстоит дело с целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее её природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей всё новых жертв в форме новых сложных теорий. Не удивительно, что к началу ХХ века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но её соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры - Пуанкаре и Гильберт - демонстративно сторонились этой темы.

В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трёх важнейших проблем, стоящих перед математикой ХХ века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намёк был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тогда в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями - значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою группу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путём действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А ещё на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y 2 = AX 3 + BX 2 + CX и потому пересекаются с любой прямой в трёх точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение - превратить её в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой, может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…

Так рассуждал Пуанкаре, соблазняя математическую молодёжь Европы, но в начале ХХ века эти соблазны не привели к ярким теоремам или гипотезам. Иначе получилось с призывом Гильберта: изучать общие решения диофантовых уравнений с целыми коэффициентами! В 1922 году молодой американец Льюис Морделл связал множество решений такого уравнения (это - векторное пространство определённой размерности) с геометрическим родом той комплексной кривой, которая задаётся этим уравнением. Морделл пришёл к выводу, что если степень уравнения достаточно велика (больше двух), то размерность пространства решений выражается через род кривой, и потому эта размерность КОНЕЧНА. Напротив - в степени 2 уравнение Пифагора имеет БЕСКОНЕЧНОМЕРНОЕ семейство решений!

Конечно, Морделл видел связь своей гипотезы с теоремой Ферма. Если станет известно, что для каждой степени n > 2 пространство целых решений уравнения Ферма конечномерно, это поможет доказать, что таких решений вовсе нет! Но никаких путей к доказательству своей гипотезы Морделл не видел - и хотя он прожил долгую жизнь, но не дождался превращения этой гипотезы в теорему Фальтингса. Это случилось в 1983 году - в совсем иную эпоху, после великих успехов алгебраической топологии многообразий.

Пуанкаре создал эту науку как бы нечаянно: ему захотелось узнать, какие бывают трёхмерные многообразия. Ведь разобрался же Риман в строении всех замкнутых поверхностей и получил очень простой ответ! Если в трёхмерном или многомерном случае такого ответа нет - нужно придумать систему алгебраических инвариантов многообразия, определяющую его геометрическое строение. Лучше всего, если такие инварианты будут элементами каких-нибудь групп - коммутативных или некоммутативных.

Как ни странно, этот дерзкий план Пуанкаре удался: он был выполнен с 1950 по 1970 год благодаря усилиям очень многих геометров и алгебраистов. До 1950 года шло тихое накопление разных методов классификации многообразий, а после этой даты как будто накопилась критическая масса людей и идей и грянул взрыв, сравнимый с изобретением математического анализа в XVII веке. Но аналитическая революция растянулась на полтора столетия, охватив творческие биографии четырёх поколений математиков - от Ньютона и Лейбница до Фурье и Коши. Напротив, топологическая революция ХХ века уложилась в двадцать лет - благодаря большому числу её участников. При этом сложилось многочисленное поколение самоуверенных молодых математиков, вдруг оставшихся без работы на исторической родине.

В семидесятые годы они устремились в сопредельные области математики и теоретической физики. Многие создали свои научные школы в десятках университетов Европы и Америки. Между этими центрами поныне циркулирует множество учеников разного возраста и национальности, с разными способностями и склонностями, и каждый хочет прославиться каким-нибудь открытием. Именно в этом столпотворении были, наконец, доказаны гипотеза Морделла и теорема Ферма.

Однако первая ласточка, не ведая о своей судьбе, выросла в Японии в голодные и безработные послевоенные годы. Звали ласточку Ютака Танияма. В 1955 году этому герою исполнилось 28 лет, и он решил (вместе с друзьями Горо Шимура и Такаудзи Тамагава) возродить в Японии математические исследования. С чего начать? Конечно, с преодоления изоляции от зарубежных коллег! Так в 1955 году три молодых японца устроили в Токио первую международную конференцию по алгебре и теории чисел. Сделать это в перевоспитанной американцами Японии было, видимо, легче, чем в замороженной Сталиным России…

Среди почётных гостей были два богатыря из Франции: Андре Вейль и Жан-Пьер Серр. Тут японцам крупно повезло: Вейль был признанным главой французских алгебраистов и членом группы Бурбаки, а молодой Серр играл сходную роль среди топологов. В жарких дискуссиях с ними головы японской молодёжи трещали, мозги плавились, но в итоге кристаллизовались такие идеи и планы, которые вряд ли могли родиться в иной обстановке.

Однажды Танияма пристал к Вейлю с неким вопросом насчёт эллиптических кривых и модулярных функций. Сначала француз ничего не понял: Танияма был не мастер изъясняться по-английски. Потом суть дела прояснилась, но придать своим надеждам точную формулировку Танияма так и не сумел. Всё, что Вейль мог ответить молодому японцу, - это что если ему очень повезёт по части вдохновения, то из его невнятных гипотез вырастет что-то дельное. Но пока надежда на это слаба!

Очевидно, Вейль не заметил небесного огня во взоре Танияма. А огонь-то был: похоже, что на миг в японца вселилась неукротимая мысль покойного Пуанкаре! Танияма пришёл к убеждению, что каждая эллиптическая кривая порождается модулярными функциями - точнее, она «униформизуется модулярной формой». Увы, эта точная формулировка родилась много позже - в разговорах Танияма с его другом Шимура. А потом Танияма покончил с собой в приступе депрессии… Его гипотеза осталась без хозяина: непонятно было, как её доказать или где её проверить, и оттого её долгое время никто не принимал всерьёз. Первый отклик пришёл лишь через тридцать лет - почти как в эпоху Ферма!

Лёд тронулся в 1983 году, когда двадцатисемилетний немец Герд Фальтингс объявил всему миру: гипотеза Морделла доказана! Математики насторожились, но Фальтингс был истинный немец: в его длинном и сложном доказательстве не нашлось пробелов. Просто пришло время, накопились факты и понятия - и вот один талантливый алгебраист, опираясь на результаты десяти других алгебраистов, сумел решить проблему, которая шестьдесят лет простояла в ожидании хозяина. В математике ХХ века это не редкость. Стоит вспомнить вековую континуум-проблему в теории множеств, две гипотезы Бернсайда в теории групп или гипотезу Пуанкаре в топологии. Наконец и в теории чисел пришла пора собирать урожай давних посевов… Какая вершина станет следующей в ряду покорённых математиками? Неужели рухнут проблема Эйлера, гипотеза Римана или теорема Ферма? Хорошо бы!

И вот через два года после откровения Фальтингса в Германии объявился ещё один вдохновенный математик. Звали его Герхард Фрей, и утверждал он нечто странное: будто теорема Ферма ВЫВОДИТСЯ из гипотезы Танияма! К сожалению, стилем изложения своих мыслей Фрей больше напоминал невезучего Танияма, чем своего чёткого соотечественника Фальтингса. В Германии Фрея никто не понял, и он поехал за океан - в славный городок Принстон, где после Эйнштейна привыкли и не к таким визитёрам. Недаром там свил своё гнездо Барри Мазур - разносторонний тополог, один из героев недавнего штурма гладких многообразий. И вырос рядом с Мазуром ученик - Кен Рибет, равно искушённый в тонкостях топологии и алгебры, но ещё ничем себя не прославивший.

Впервые услыхав речи Фрея, Рибет решил, что это чушь и околонаучная фантастика (вероятно, так же реагировал Вейль на откровения Танияма). Но забыть эту «фантастику» Рибет не смог и временами возвращался к ней мысленно. Через полгода Рибет поверил, что в фантазиях Фрея есть нечто дельное, а через год он решил, что сам почти умеет доказать странную гипотезу Фрея. Но оставались некоторые «дырки», и Рибет решил исповедаться своему шефу Мазуру. Тот внимательно выслушал ученика и спокойно ответил: «Да у тебя же всё сделано! Вот здесь нужно применить преобразование Ф, тут - воспользоваться леммами В и К, и всё примет безупречный вид!» Так Рибет совершил прыжок из безвестности в бессмертие, использовав катапульту в лице Фрея и Мазура. По справедливости, всем им - вместе с покойным Танияма - следовало бы считаться доказателями великой теоремы Ферма.

Да вот беда: они выводили своё утверждение из гипотезы Танияма, которая сама не доказана! А вдруг она неверна? Математики давно знают, что «из лжи следует всё, что угодно», если догадка Танияма ошибочна, то грош цена безупречным рассуждениям Рибета! Нужно срочно доказывать (или опровергать) гипотезу Танияма - иначе кто-нибудь вроде Фальтингса докажет теорему Ферма иным путём. Он и выйдет в герои!

Вряд ли мы когда-нибудь узнаем, сколько юных или матёрых алгебраистов накинулось на теорему Ферма после успеха Фальтингса или после победы Рибета в 1986 году. Все они старались работать в тайне, чтобы в случае неудачи не быть причисленными к сообществу «чайников»-ферматистов. Известно, что самый удачливый из всех - Эндрю Уайлз из Кембриджа - ощутил вкус победы только в начале 1993 года. Это не столько обрадовало, сколько напугало Уайлза: что если в его доказательстве гипотезы Танияма обнаружится ошибка или пробел? Тогда погибла его научная репутация! Надо же аккуратно записать доказательство (но это будут многие десятки страниц!) и отложить его на полгода-год, чтобы потом перечитать хладнокровно и придирчиво… Но если за это время кто-нибудь опубликует своё доказательство? Ох, беда…

Всё же Уайлз придумал двойной способ быстрой проверки своего доказательства. Во-первых, нужно довериться одному из надёжных друзей-коллег и рассказать ему весь ход рассуждений. Со стороны все ошибки видней! Во-вторых, надо прочитать спецкурс на эту тему смышлёным студентам и аспирантам: уж эти умники не пропустят ни одной ошибки лектора! Только надо не сообщать им конечную цель курса до последнего момента - иначе об этом узнает весь мир! И конечно, искать такую аудиторию надо подальше от Кембриджа - лучше даже не в Англии, а в Америке… Что может быть лучше далёкого Принстона?

Туда и направился Уайлз весной 1993 года. Его терпеливый друг Никлас Кац, выслушав долгий доклад Уайлза, обнаружил в нём ряд пробелов, но все они оказались легко исправимы. Зато принстонские аспиранты вскоре разбежались со спецкурса Уайлза, не желая следовать за прихотливой мыслью лектора, который ведёт их неведомо куда. После такой (не особенно глубокой) проверки своей работы Уайлз решил, что пора явить великое чудо свету.

В июне 1993 года в Кембридже проходила очередная конференция, посвящённая «теории Ивасава» - популярному разделу теории чисел. Уайлз решил рассказать на ней своё доказательство гипотезы Танияма, не объявляя главный результат до самого конца. Доклад шёл долго, но успешно, постепенно начали стекаться журналисты, которые что-то почуяли. Наконец, грянул гром: теорема Ферма доказана! Общее ликование не было омрачено какими-либо сомнениями: кажется, всё чисто… Но через два месяца Кац, прочтя окончательный текст Уайлза, заметил в нём ещё одну брешь. Некий переход в рассуждениях опирался на «систему Эйлера» - но то, что построил Уайлз, такой системой не являлось!

Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и чёткой задаче - без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе - и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?

Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать своё поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать своё доказательство - с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был всё-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?

Неожиданно пришла простая мысль: «система Эйлера» не работает там, где применима теория Ивасава. Почему бы не применить эту теорию напрямую - благо, самому Уайлзу она близка и привычна? И почему он не испробовал этот подход с самого начала, а увлёкся чужим видением проблемы? Вспомнить эти детали Уайлз уже не мог - да и ни к чему это стало. Он провёл необходимое рассуждение в рамках теории Ивасава, и всё получилось за полчаса! Так - с опозданием в один год - была закрыта последняя брешь в доказательстве гипотезы Танияма. Итоговый текст был отдан на растерзание группе рецензентов известнейшего математического журнала, годом позже они заявили, что теперь ошибок нет. Таким образом, в 1995 году последняя гипотеза Ферма скончалась на трёхсотшестидесятом году своей жизни, превратившись в доказанную теорему, которая неизбежно войдёт в учебники теории чисел.

Подводя итог трёхвековой возне вокруг теоремы Ферма, приходится сделать странный вывод: этой геройской эпопеи могло и не быть! Действительно, теорема Пифагора выражает простую и важную связь между наглядными природным объектами - длинами отрезков. Но нельзя сказать то же самое о теореме Ферма. Она выглядит скорее как культурная надстройка на научном субстрате - вроде достижения Северного полюса Земли или полёта на Луну. Вспомним, что оба эти подвига были воспеты литераторами задолго до их свершения - ещё в античную эпоху, после появления «Начал» Евклида, но до появления «Арифметики» Диофанта. Значит, тогда возникла общественная потребность в интеллектуальных подвигах этого сорта - хотя бы воображаемых! Прежде эллинам хватало поэм Гомера, как за сто лет до Ферма французам хватало религиозных увлечений. Но вот религиозные страсти схлынули - и рядом с ними встала наука.

В России такие процессы начались полтораста лет назад, когда Тургенев поставил Евгения Базарова в один ряд с Евгением Онегиным. Правда, литератор Тургенев плохо понимал мотивы действий учёного Базарова и не решился их воспеть, но это вскоре сделали учёный Иван Сеченов и просвещённый журналист Жюль Верн. Стихийная научно-техническая революция нуждается в культурной оболочке, чтобы проникнуть в умы большинства людей, и вот появляется сперва научная фантастика, а за нею научно-популярная литература (включая журнал «Знание - сила»).

При этом конкретная научная тема совсем не важна для широкой публики и не очень важна даже для героев-исполнителей. Так, услыхав о достижении Северного полюса Пири и Куком, Амундсен мгновенно изменил цель своей уже подготовленной экспедиции - и вскоре достиг Южного полюса, опередив Скотта на один месяц. Позднее успешный полёт Юрия Гагарина вокруг Земли вынудил президента Кеннеди сменить прежнюю цель американской космической программы на более дорогую, но гораздо более впечатляющую: высадку людей на Луне.

Ещё раньше проницательный Гильберт на наивный вопрос студентов: «Решение какой научной задачи было бы сейчас наиболее полезно»? - ответил шуткой: «Поймать муху на обратной стороне Луны!» На недоумённый вопрос: «А зачем это нужно?» - последовал чёткий ответ: «ЭТО никому не нужно! Но подумайте о тех научных методах и технических средствах, которые нам придётся развить для решения такой проблемы - и какое множество иных красивых задач мы решим попутно!»

Именно так получилось с теоремой Ферма. Эйлер вполне мог её не заметить.

В таком случае кумиром математиков стала бы какая-нибудь другая задача - возможно, также из теории чисел. Например, проблема Эратосфена: конечно или бесконечно множество простых чисел-близнецов (таких, как 11 и 13, 17 и 19 и так далее)? Или проблема Эйлера: всякое ли чётное число является суммой двух простых чисел? Или: есть ли алгебраическое соотношение между числами π и e? Эти три проблемы до сих пор не решены, хотя в ХХ веке математики заметно приблизились к пониманию их сути. Но этот век породил и много новых, не менее интересных задач, особенно на стыках математики с физикой и другими ветвями естествознания.

Ещё в 1900 году Гильберт выделил одну из них: создать полную систему аксиом математической физики! Сто лет спустя эта проблема далека от решения - хотя бы потому, что арсенал математических средств физики неуклонно растёт, и не все они имеют строгое обоснование. Но после 1970 года теоретическая физика разделилась на две ветви. Одна (классическая) со времён Ньютона занимается моделированием и прогнозированием УСТОЙЧИВЫХ процессов, другая (новорождённая) пытается формализовать взаимодействие НЕУСТОЙЧИВЫХ процессов и пути управления ими. Ясно, что эти две ветви физики надо аксиоматизировать порознь.

С первой из них, вероятно, удастся справиться лет за двадцать или пятьдесят…

А чего не хватает второй ветви физики - той, которая ведает всяческой эволюцией (включая диковинные фракталы и странные аттракторы, экологию биоценозов и теорию пассионарности Гумилёва)? Это мы вряд ли скоро поймём. Но поклонение учёных новому кумиру уже стало массовым явлением. Вероятно, здесь развернётся эпопея, сравнимая с трёхвековой биографией теоремы Ферма. Так на стыках разных наук рождаются всё новые кумиры - подобные религиозным, но более сложные и динамичные…

Видимо, не может человек оставаться человеком, не свергая время от времени прежних кумиров и не сотворяя новых - в муках и с радостью! Пьеру Ферма повезло оказаться в роковой момент вблизи от горячей точки рождения нового кумира - и он сумел оставить на новорождённом отпечаток своей личности. Можно позавидовать такой судьбе, и не грех ей подражать.

Сергей Смирнов
«Знание-сила»

ИСТОРИЯ ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Грандиозное событие

Как-то в новогоднем выпуске рассылки о том, как произносить тосты, я вскользь упомянул, что в конце ХХ века произошло одно грандиозное событие, которого многие не заметили - была, наконец-то доказана так называемая Великая теорема Ферма. По этому поводу среди полученных писем я обнаружил два отклика от девушек (одна из них, насколько помню - девятиклассница Вика из Зеленограда), которых удивил данный факт.

А меня удивило то, насколько живо девочки интересуются проблемами современной математики. Поэтому, думаю, что не только девочкам, но и мальчикам всех возрастов - от старшеклассников до пенсионеров, тоже будет интересно узнать историю Великой теоремы.

Доказательство теоремы Ферма - великое событие. А т.к. со словом "великий" не принято шутить, то знать историю теоремы, мне кажется, каждый уважающий себя оратор (а все мы, когда говорим - ораторы) просто обязан.

Если так получилось, что вы не любите математику так, как люблю ее я, то некоторые углубления в детали просматривайте беглым взором. Понимая, что не всем читателям нашей рассылки интересно блуждать в математических дебрях, я постарался не приводить никаких формул (кроме самого уравнения теоремы Ферма и пары гипотез) и максимально упростить освещение некоторых специфических вопросов.

Как Ферма заварил кашу

Французский юрист и по совместительству великий математик XVII века Пьер Ферма (1601-1665) выдвинул одно любопытное утверждение из области теории чисел, которое впоследствии получило название Великой (или Большой) теоремы Ферма. Это одна из самых известных и феноменальных математических теорем. Наверно, ажиотаж вокруг нее был бы не так силен, если бы в книге Диофанта Александрийского (III век н. э.) "Арифметика", которую Ферма частенько штудировал, делая пометки на ее широких полях, и которую любезно сохранил для потомков его сын Сэмюэл, не была обнаружена примерно следующая запись великого математика:

"Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях".

Она-то, эта запись, и явилась причиной последующей грандиозной суматохи вокруг теоремы.

Итак, знаменитый ученый заявил, что доказал свою теорему. Давайте же зададимся вопросом: действительно ли он ее доказал или банально соврал? Или есть другие версии, объясняющие появление той записи на полях, не дававшей спокойно спать многим математикам следующих поколений?

История Великой теоремы увлекательна, как приключение во времени. В 1636 году Ферма заявил, что уравнение вида x n +y n =z n не имеет решений в целых числах при показателе степени n>2. Это собственно и есть Большая теорема Ферма. В этой, казалось бы, простой с виду математической формуле Вселенная замаскировала невероятную сложность. Американский математик шотландского происхождения Эрик Темпл Белл в своей книге "Последняя проблема" (1961) даже предположил, что, возможно, человечество прекратит свое существование раньше, чем сможет доказать Великую теорему Ферма.

Несколько странным является то, что почему-то теорема опоздала с появлением на свет, поскольку ситуация назрела давно, ведь ее частный случай при n=2 - другая знаменитая математическая формула - теорема Пифагора, возникла на двадцать два столетия раньше. В отличие от теоремы Ферма, теорема Пифагора имеет бесконечное множество целочисленных решений, например, такие пифагоровы треугольники: (3,4,5), (5,12,13), (7,24,25), (8,15,17) … (27,36,45) … (112,384,400) … (4232, 7935, 8993) …

Синдром Великой теоремы

Кто только не пытался доказать теорему Ферма. Любой оперившийся студент считал своим долгом приложиться к Великой теореме, но доказать ее всё никак никому не удавалось. Сначала не удавалось сто лет. Потом еще сто. И еще. Среди математиков стал развиваться массовый синдром: "Как же так? Ферма доказал, а я что, не смогу, что ли?" - и некоторые из них на этой почве свихнулись в полном смысле этого слова.

Сколько бы теорему не проверяли - она всегда оказывалась верна. Я знал одного энергичного программиста, который был одержим идеей опровергнуть Великую теорему, пытаясь найти хотя бы одно ее решение (контрпример) методом перебора целых чисел с использованием быстродействующего компьютера (в то время чаще именовавшегося ЭВМ). Он верил в успех своего предприятия и любил приговаривать: "Еще немного - и грянет сенсация!". Думаю, что в разных местах нашей планеты имелось немалое количество такого сорта смелых искателей. Ни одного решения он, конечно же, не нашел. И никакие компьютеры, хоть даже со сказочным быстродействием, никогда не смогли бы проверить теорему, ведь все переменные этого уравнения (в том числе и показатели степени) могут возрастать до бесконечности.

Теорема требует доказательства

Математики знают, что если теорема не доказана, из нее может следовать всё что угодно (как истина, так и ложь), как это было с некоторыми другими гипотезами. Например, в одном из своих писем Пьер Ферма высказал предположение, что числа вида 2 n +1 (т.н. числа Ферма) обязательно простые (т.е. не имеют целочисленных делителей и делятся без остатка только на себя и на единицу), если n - степень двойки (1, 2, 4, 8, 16, 32, 64 и т.д.). Эта гипотеза Ферма прожила более ста лет - до тех пор, пока в 1732 году Леонард Эйлер не показал, что

2 32 +1 = 4 294 967 297 = 6 700 417 · 641

Затем еще почти через 150 лет (1880) Фортюне Ландри разложил на множители следующее число Ферма:

2 64 +1 = 18 446 744 073 709 551 617 = 274 177 · 67 280 421 310 721

Как они без помощи компьютеров смогли найти делители этих больших чисел - одному богу известно. В свою очередь Эйлер выдвинул гипотезу, что уравнение x 4 +y 4 +z 4 =u 4 не имеет решений в целых числах. Однако примерно через 250 лет, в 1988 году Науму Элькису из Гарварда удалось обнаружить (уже с помощью компьютерной программы), что

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4

Поэтому Большая теорема Ферма требовала доказательства, иначе она была просто гипотезой, и вполне могло быть, что где-то там в бескрайних числовых полях затеряно решение уравнения Великой теоремы.

Самый виртуозный и плодотворный математик XVIII века Леонард Эйлер, архив записей которого человечество разгребало почти целый век, доказал теорему Ферма для степеней 3 и 4 (вернее, он повторил утерянные доказательства самого Пьера Ферма); его последователь в теории чисел, Лежандр (а также независимо от него Дирихле) - для степени 5; Ламе - для степени 7. Но в общем виде теорема оставалась недоказанной.

1 марта 1847 года на заседании Парижской академии наук сразу два выдающихся математика - Габриэль Ламе и Огюстен Коши - заявили, что подошли к завершению доказательства Великой теоремы и устроили гонку, публикуя свои доказательства по частям. Однако поединок между ними был прерван, потому что в их доказательствах была обнаружена одна и та же ошибка, на которую указал немецкий математик Эрнст Куммер.

В начале XX века (1908) состоятельный немецкий предприниматель, меценат и ученый Пауль Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма. Уже в первый год после опубликования завещания Вольфскеля Геттингентской академией наук, она была завалена тысячами доказательств от любителей математики, и поток этот не прекращался в течение десятилетий, но все они, как вы догадываетесь, содержали в себе ошибки. Говорят, что в академии были заготовлены бланки примерно такого содержания:

Уважаемый __________________________!
В Вашем доказательстве теоремы Ферма на ____ странице в ____ строчке сверху
в формуле:__________________________ обнаружена следующая ошибка:,

Которые рассылались незадачливым соискателям премии.

В то время в кругу математиков появилось полупрезрительное прозвище - фермист . Так называли всякого самоуверенного выскочку, которому не хватало знаний, но зато с лихвой хватало амбиций для того, чтобы второпях попробовать силенки в доказательстве Великой теоремы, а затем, не заметив собственных ошибок, гордо хлопнув себя в грудь, громко заявить: "Я первый доказал теорему Ферма!". Каждый фермист, будь он хоть даже десятитысячным по счету, считал себя первым - это и было смешным. Простой внешний вид Великой теоремы так сильно напоминал фермистам легкую добычу, что их абсолютно не смущало, что даже Эйлер с Гауссом не смогли справиться с ней.

(Фермисты, как ни странно, существуют и ныне. Один из них хоть и не считал, что доказал теорему, как классический фермист, но до недавних пор предпринимал попытки - отказался верить мне, когда я сообщил ему, что теорема Ферма уже доказана).

Наиболее сильные математики, может быть, в тиши своих кабинетов тоже пробовали осторожно подходить к этой неподъемной штанге, но не говорили об этом вслух, дабы не прослыть фермистами и, таким образом, не навредить своему высокому авторитету.

К тому времени появилось доказательство теоремы для показателя степени n<100. Потом для n<619. Надо ли говорить о том, что все доказательства невероятно сложны. Но в общем виде теорема оставалась недоказанной.

Странная гипотеза

До середины ХХ века никаких серьезных продвижений в истории Великой теоремы не наблюдалось. Но вскоре в математической жизни произошло одно интересное событие. В 1955 году 28-летний японский математик Ютака Танияма выдвинул утверждение из совершенно другой области математики, получившее название "гипотезы Таниямы" (она же "гипотеза Таниямы-Шимуры-Вейла"), которое, в отличие от запоздалой теоремы Ферма, опередило свое время.

Гипотеза Таниямы гласит: "каждой эллиптической кривой соответствует определенная модулярная форма". Данное утверждение для математиков той поры звучало примерно так же абсурдно, как для нас звучит утверждение: "каждому дереву соответствует определенный металл". Нетрудно угадать, как может отнестись к подобному утверждению нормальный человек - он попросту не воспримет его всерьез, что и произошло: математики дружно проигнорировали гипотезу.

Небольшое пояснение. Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости). Модулярные же функции, открытые в XIX веке, имеют четырехмерный вид, поэтому мы их даже представить себе не можем своими трехмерными мозгами, но можем описать математически; кроме того, модулярные формы удивительны тем, что обладают предельно возможной симметрией - их можно транслировать (сдвигать) в любом направлении, отражать зеркально, менять местами фрагменты, поворачивать бесконечно многими способами - и при этом их вид не изменяется. Как видим, эллиптические кривые и модулярные формы имеют мало общего. Гипотеза же Таниямы утверждает, что описательные уравнения двух соответствующих друг другу этих абсолютно разных математических объектов можно разложить в один и тот же математический ряд.

Гипотеза Таниямы была слишком парадоксальна: она соединила совершенно разные понятия - довольно простые плоские кривые и невообразимые четырехмерные формы. Такое никому не приходило в голову. Когда на международном математическом симпозиуме в Токио в сентябре 1955 года Танияма продемонстрировал несколько соответствий эллиптических кривых модулярным формам, то все увидели в этом не более, чем забавные совпадения. На скромный вопрос Таниямы: возможно ли для каждой эллиптической кривой найти соответствующую модулярную функцию, маститый француз Андре Вейл, который в то время был одним из лучших в мире специалистов в теории чисел, дал вполне дипломатичный ответ, что, дескать, если пытливого Танияму не покинет энтузиазм, то, может быть, ему повезет, и его невероятная гипотеза подтвердится, но это, должно быть, случится не скоро. В общем, как и многие другие выдающиеся открытия, сначала гипотеза Таниямы осталась без внимания, потому что до нее еще не доросли - ее почти никто не понял. Один лишь коллега Таниямы, Горо Шимура, хорошо зная своего высокоодаренного друга, интуитивно чувствовал, что его гипотеза верна.

Через три года (1958) Ютака Танияма покончил жизнь самоубийством (сильны, однако, в Японии самурайские традиции). С точки зрения здравого смысла - никак не понимаемый поступок, особенно, если учесть, что совсем скоро он собирался жениться. Свою предсмертную записку лидер молодых японских математиков начал так: "Еще вчера я не помышлял о самоубийстве. Последнее время мне часто приходилось слышать от других, что я устал умственно и физически. Вообще-то я и сейчас не понимаю, зачем это делаю…" и так далее на трех листах. Жаль, конечно, что так сложилась судьба интересного человека, но все гении немного странные - на то они и гении (на ум почему-то пришли слова Артура Шопенгауэра: "в обычной жизни от гения столько же толку, как от телескопа в театре"). Гипотеза осиротела. Никто не знал, как ее доказать.

Лет десять про гипотезу Таниямы почти не вспоминали. Но в начале 70-х годов она стала популярной - ее регулярно проверяли все, кто смог в ней разобраться - и она всегда подтверждалась (как, собственно, и теорема Ферма), но, как и прежде, никто не мог ее доказать.

Удивительная связь двух гипотез

Прошло еще примерно 15 лет. В 1984 году произошло одно ключевое событие в жизни математики, которое объединило экстравагантную японскую гипотезу с Великой теоремой Ферма. Немец Герхард Фрей выдвинул любопытное утверждение, похожее на теорему: "Если будет доказана гипотеза Таниямы, то, следовательно, будет доказана и Великая теорема Ферма". Другими словами, теорема Ферма является следствием гипотезы Таниямы. (Фрей методом хитроумных математических преобразований свел уравнение Ферма к виду уравнения эллиптической кривой (той самой, которая фигурирует и в гипотезе Таниямы), более-менее обосновал свое предположение, но доказать его не смог). И вот буквально через полтора года (1986) профессор калифорнийского университета Кеннет Рибет четко доказал теорему Фрея.

Что же теперь получилось? Теперь оказалось, что, так как теорема Ферма уже точно является следствием гипотезы Таниямы, нужно всего-навсего доказать последнюю, чтобы сорвать лавры покорителя легендарной теоремы Ферма. Но гипотеза оказалась непростой. К тому же у математиков за столетия появилась аллергия на теорему Ферма, и многие из них решили, что справиться с гипотезой Таниямы также будет практически невозможно.

Смерть гипотезы Ферма. Рождение теоремы

Прошло еще 8 лет. Одному прогрессивному английскому профессору математики из Принстонского университета (Нью-Джерси, США), Эндрю Уайлсу, показалось, что он нашел доказательство гипотезы Таниямы. Если гений не лысый, то, как правило, взъерошенный. Уайлс - взъерошенный, следовательно, похож на гения. Войти в Историю, конечно, заманчиво и очень хотелось, но Уайлс, как настоящий ученый, не обольщался, понимая, что тысячам фермистов до него тоже мерещились призрачные доказательства. Поэтому, прежде, чем представить свое доказательство миру, он тщательно проверял его сам, но осознавая, что может иметь субъективную предвзятость, привлекал к проверкам также и других, например, под видом обычных математических заданий он иногда подкидывал смышленым аспирантам различные фрагменты своего доказательства. Позже Уайлс признался, что никто, кроме его жены не знал, что он работает над доказательством Великой теоремы.

И вот после долгих проверок и тягостных раздумий, Уайлс наконец-то набрался храбрости, а может, как ему самому казалось, наглости и 23 июня 1993 года на математической конференции по теории чисел в Кембридже объявил о своем великом достижении.

Это, конечно, была сенсация. Никто не ожидал такой прыти от малоизвестного математика. Тут же появилась пресса. Всех терзал жгучий интерес. Стройные формулы, как штрихи прекрасной картины, предстали перед любопытными взорами собравшихся. Настоящие математики, они ведь такие - смотрят на всякие уравнения и видят в них не цифры, константы и переменные, а слышат музыку, подобно Моцарту, смотрящему на нотный стан. Точно так же, как мы, читая книгу, смотрим на буквы, но вроде бы как их и не замечаем, а сразу воспринимаем смысл текста.

Презентация доказательства, казалось, прошла успешно - ошибок в нем не нашли - никто не услышал ни одной фальшивой ноты (хотя большинство математиков просто уставилось на него, как первоклассники на интеграл и ничего не поняли). Все решили, что произошло-таки масштабное событие: доказана гипотеза Таниямы, а следовательно и Великая теорема Ферма. Но примерно через два месяца, за несколько дней до того, как рукопись доказательства Уайлса должна была пойти в тираж, в ней было обнаружено несоответствие (Кац, коллега Уайлса, заметил, что один фрагмент рассуждений опирался на "систему Эйлера", но то, что соорудил Уайлс, такой системой не являлось), хотя в целом приемы Уайлса были признаны интересными, изящными и новаторскими.

Уайлс проанализировал ситуацию и решил, что проиграл. Можно себе представить, как он всем своим существом прочувствовал, что значит "от великого до смешного один шаг". "Хотел войти в Историю, а вместо этого вошел в состав команды клоунов и комедиантов - самонадеянных фермистов" - примерно такие мысли изматывали его в тот тягостный период жизни. Для него, серьезного ученого-математика, это была трагедия, и он забросил свое доказательство в долгий ящик.

Но вот через год с небольшим, в сентябре 1994 года, во время размышления над тем узким местом доказательства вместе со своим коллегой Тейлором из Оксфорда, последнего неожиданно осенила мысль, что "систему Эйлера" можно поменять на теорию Ивасава (раздел теории чисел). Тогда они попробовали воспользоваться теорией Ивасава, обойдясь без "системы Эйлера", и у них всё сошлось. Исправленный вариант доказательства был отдан на проверку и через год было объявлено, что в нем всё абсолютно четко, без единой ошибки. Летом 1995 года в одном из первенствующих математических журналов - "Анналы математики" - было опубликовано полное доказательство гипотезы Таниямы (следовательно, Великой (Большой) теоремы Ферма), которое заняло весь номер - свыше ста листов. Доказательство так сложно, что понять его целиком могли всего лишь несколько десятков человек во всем мире.

Таким образом, в конце ХХ века весь мир признал, что на 360 году своей жизни Великая теорема Ферма, которая на самом деле всё это время являлась гипотезой, стала-таки доказанной теоремой. Эндрю Уайлс доказал Великую (Большую) теорему Ферма и вошел в Историю.

Подумаешь, доказали какую-то теорему...

Счастье первооткрывателя всегда достается кому-то одному - это именно он последним ударом молота раскалывает твердый орешек знания. Но нельзя игнорировать множество предыдущих ударов, которые не одно столетие формировали трещину в Великой теореме: Эйлера и Гаусса (королей математики своих времен), Эвариста Галуа (успевшего за свою короткую 21-летнюю жизнь основать теории групп и полей, работы которого были признаны гениальными лишь после его смерти), Анри Пуанкаре (учредителя не только причудливых модулярных форм, но и конвенционализма - философского течения), Давида Гилберта (одного из сильнейших математиков ХХ века), Ютаку Танияму, Горо Шимуру, Морделла, Фальтингса, Эрнста Куммера, Барри Мазура, Герхарда Фрея, Кена Риббета, Ричарда Тейлора и других настоящих ученых (не побоюсь этих слов).

Доказательство Великой теоремы Ферма можно поставить в один ряд с такими достижениями ХХ века, как изобретение компьютера, ядерной бомбы и полет в космос. Хоть о нем и не так широко известно, потому что оно не вторгается в зону наших сиюминутных интересов, как например, телевизор или электрическая лампочка, но оно явилось вспышкой сверхновой звезды, которая, как и все непреложные истины, всегда будет светить человечеству.

Вы можете сказать: "подумаешь, доказали какую-то теорему, кому это надо? ". Справедливый вопрос. Тут в точности сгодится ответ Давида Гилберта. Когда на вопрос: "какая задача сейчас для науки наиболее важна?", он ответил: "поймать муху на обратной стороне Луны", его резонно спросили: "а кому это надо? ", он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить". Подумайте, сколько задач за 360 лет смогло решить человечество, прежде, чем доказать теорему Ферма. В поисках ее доказательства была открыта чуть ли не половина современной математики. Надо также учесть, что математика - авангард науки (и, кстати, единственная из наук, которая строится без единой ошибки), и любые научные достижения и изобретения начинаются именно здесь. Как заметил Леонардо да Винчи, "наукой можно признать лишь то учение, которое подтверждается математически".

* * *

А теперь давайте вернемся в начало нашей истории, вспомним запись Пьера Ферма на полях учебника Диофанта и еще раз зададимся вопросом: действительно ли Ферма доказал свою теорему? Этого мы, конечно, не можем знать наверняка, и как в любом деле тут возникают разные версии:

Версия 1: Ферма доказал свою теорему. (На вопрос: "имел ли Ферма точно такое же доказательство своей теоремы?", Эндрю Уайлс заметил: "Ферма не мог располагать таким доказательством. Это доказательство ХХ века". Мы с вами понимаем, что в XVII веке математика, конечно же, была не та, что в конце ХХ века - в ту эпоху д, Артаньяна, царица наук еще не обладала теми открытиями (модулярные формы, теоремы Таниямы, Фрея и др.), которые только и позволили доказать Великую теорему Ферма. Конечно, можно предположить: чем черт не шутит - а вдруг Ферма догадался иным путем? Эта версия хоть и вероятна, но по оценкам большинства математиков, практически невозможна);
Версия 2: Пьеру Ферма показалось, что он доказал свою теорему, но в его доказательстве были ошибки. (То есть, сам Ферма был также и первым фермистом);
Версия 3: Ферма свою теорему не доказал, а на полях просто соврал.

Если верна одна из двух последних версий, что наиболее вероятно, то тогда можно сделать простой вывод: великие люди, они хоть и великие, но тоже могут ошибаться или иногда не прочь приврать (в основном этот вывод будет полезен для тех, кто склонен безраздельно доверять своим кумирам и прочим властителям дум). Поэтому, читая произведения авторитетных сынов человечества или слушая их пафосные выступления, вы имеете полное право сомневаться в их утверждениях. (Прошу заметить, что сомневаться - не значит отвергать ).



Переиздание материалов статьи возможно только с обязательными ссылками на сайт (в интернете - гиперссылка) и на автора

НОВОСТИ НАУКИ И ТЕХНИКИ

УДК 51:37;517.958

А.В. Коновко, к.т.н.

Академия государственной противопожарной службы МЧС России ВЕЛИКАЯ ТЕОРЕМА ФЕРМА ДОКАЗАНА. ИЛИ НЕТ?

В течение нескольких столетий доказать, что уравнение xn+yn=zn при n>2 неразрешимо в рациональных, а значит, и целых числах не удавалось. Родилась эта задача под авторством французского юриста Пьера Ферма, который параллельно профессионально занимался математикой. Её решение признаётся за американским учителем математики Эндрю Уайлсом. Это признание длилось с 1993 по 1995 г.

THE GREAT FERMA"S THEOREM IS PROVED. OR NO?

The dramatic history of Fermat"s last theorem proving is considered. It took almost four hundred years. Pierre Fermat wrote little. He wrote in compressed style. Besides he did not publish his researches. The statement that equation xn+yn=zn is unsolvable on sets of rational numbers and integers if n>2 was attended by Fermat"s commentary that he has found indeed remarkable proving to this statement. The descendants were not reached by this proving. Later this statement was called Fermat"s last theorem. The world best mathematicians broke lance over this theorem without result. In the seventies the French mathematician member of Paris Academy of Sciences Andre Veil laid down new approaches to the solution. In 23 of June, in 1993, at theory of numbers conference in Cambridge, the mathematician of Princeton University Andrew Whiles announced that the Fermat"s last theorem proving is gotten. However it was early to triumph.

В 1621 году французским литератором и любителем математики Клодом Гаспаром Баше де Мезириаком был издан греческий трактат "Арифметики" Диофанта с латинским переводом и комментариями. Роскошная, с необыкновенно широкими полями "Арифметика", попала в руки двадцатилетнему Ферма и на долгие годы стала его настольной книгой. На ее полях он оставил 48 замечаний, содержащих открытые им факты о свойствах чисел. Здесь же, на полях "Арифметики" была сформулирована великая теорема Ферма: "Невозможно разложить куб на два куба или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же показателем; я нашел этому поистине чудесное доказательство, которое из-за недостатка места не может поместиться на этих полях". Кстати, на латыни -это выглядит таким образом: «Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas ejusdem nominis fas est dividere; cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet».

Великий французский математик Пьер Ферма (1601-1665) развил метод определения площадей и объемов, создал новый метод касательных и экстремумов. Наряду с Декартом он стал создателем аналитической геометрии, вместе с Паскалем стоял у истоков теории вероятностей, в области метода бесконечно малых дал общее правило дифференцирования и доказал в общем виде правило интегрирования степенной функции... Но, главное, с этим именем связана одна из самых загадочных и драматичных историй, когда-либо потрясавших математику - история доказательства великой теоремы Ферма. Сейчас эту теорему выражают в виде простого утверждения: уравнение xn + yn = zn при n>2 неразрешимо в рациональных, а значит, и целых числах. Кстати, для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик Ал-Ходжанди, но его доказательство не сохранилось.

Уроженец юга Франции, Пьер Ферма получил юридическое образование и с 1631 состоял советником парламента города Тулузы (т.е. высшего суда). После рабочего дня в стенах парламента, он принимался за математику и тут же погружался в совершенно другой мир. Деньги, престиж, общественное признание - все это не имело для него никакого значения. Наука никогда не становилась для него заработком, не превращалась в ремесло, всегда оставаясь лишь захватывающей игрой ума, понятной лишь единицам. С ними он и вел свою переписку.

Ферма никогда не писал научных работ в нашем привычном понимании. А в его переписке с друзьями всегда присутствует некоторый вызов, даже своеобразная провокация, а отнюдь не академическое изложение проблемы и ее решения. Потому многие из его писем впоследствии так и стали именоваться: вызовом.

Быть может, именно поэтому он так и не осуществил своего намерения написать специальное сочинение по теории чисел. А между тем это была его любимейшая область математики. Именно ей Ферма посвятил самые вдохновенные строки своих писем. "Арифметика, - писал он, - имеет свою собственную область, теорию целых чисел. Эта теория была лишь слегка затронута Евклидом и не была достаточно разработана его последователями (если только она не содержалась в тех работах Диофанта, которых нас лишило разрушительное действие времени). Арифметики, следовательно, должны ее развить и возобновить".

Отчего же сам Ферма не боялся разрушительного действия времени? Писал он мало и всегда очень сжато. Но, самое главное, он не публиковал свои работы. При его жизни они циркулировали лишь в рукописях. Не удивительно поэтому, что результаты Ферма по теории чисел дошли до нас в разрозненном виде. Но, вероятно, прав был Булгаков: великие рукописи не горят! Работы Ферма остались. Они остались в его письмах к друзьям: лионскому учителю математики Жаку де Билли, сотруднику монетного двора Бернар Френикель де Бесси, Марсенни, Декарту, Блез Паскалю... Осталась "Арифметика" Диофанта с его замечаниями на полях, которые после смерти Ферма, вошли вместе с комментариями Баше в новое издание Диофанта, выпущенное старшим сыном Самюэлем в 1670 году. Не сохранилось только самого доказательства.

За два года до смерти Ферма отправил своему другу Каркави письмо-завещание, которое вошло в историю математики под названием «Сводка новых результатов в науке о числах». В этом письме Ферма доказал свое знаменитое утверждение для случая п = 4. Но тогда его интересовало, скорее всего, не само утверждение, а открытый им метод доказательств, названный самим Ферма бесконечным или неопределенным спуском.

Рукописи не горят. Но, если бы не самоотверженность Самюэля, собравшего после смерти отца все его математические наброски и небольшие трактаты, а затем издавшего их в 1679 году под названием «Разные математические сочинения», ученым математикам многое бы пришлось открывать и переоткрывать заново. Но и после их издания проблемы, поставленные великим математиком, пролежали без движения более семидесяти лет. И это не удивительно. В том виде, в каком они появились в печати, теоретико-числовые результаты П. Ферма предстали перед специалистами в виде серьезных, далеко не всегда понятных современникам проблем, почти без доказательств, и указаний на внутренние логические связи между ними. Возможно, в отсутствии стройной, продуманной теории и кроется ответ на вопрос, отчего сам Ферма так и не собрался издать книгу по теории чисел. Через семьдесят лет этими работами заинтересовался Л. Эйлер, и это было воистину их вторым рождением...

Математика дорого заплатила за своеобразную манеру Ферма излагать свои результаты, как будто специально опуская их доказательства. Но, если уж Ферма утверждал, что доказал ту или иную теорему, то впоследствии эту теорему обязательно доказывали. Однако с великой теоремой получилась заминка.

Загадка всегда будоражит воображение. Целые континенты покорила загадочная улыбка Джоконды; теория относительности, как ключ к загадке пространственно-временных связей стала самой популярной физической теорией века. И можно смело утверждать, что не было другой такой математической проблемы, которая была бы столь популярна, как вели__93

Научные и образовательные проблемы гражданской защиты

кая теорема Ферма. Попытки доказать ее привели к созданию обширного раздела математики - теории алгебраических чисел, но (увы!) сама теорема оставалась недоказанной. В 1908 году немецкий математик Вольфскель завещал 100000 марок тому, кто докажет теорему Ферма. Это была огромная по тем временам сумма! В один момент можно было стать не только знаменитым, но и сказочно разбогатеть! Не удивительно поэтому, что гимназисты даже далекой от Германии России наперебой бросились доказывать великую теорему. Что уж говорить о профессиональных математиках! Но...тщетно! После Первой мировой войны деньги обесценились, и поток писем с псевдодоказательствами начал иссякать, хотя совсем, конечно, так и не прекратился. Рассказывают, что известный немецкий математик Эдмунд Ландау заготовлял печатные формуляры для рассылки авторам доказательств теоремы Ферма: "На стр. ... , в строке... имеется ошибка". (Находить ошибку поручалось доценту.) Курьезов и анекдотов, связанных с доказательством этой теоремы, набралось столько, что из них можно было бы составить книгу. Последним анекдотом выглядит детектив А. Марининой «Стечение обстоятельств», экранизированный и прошедший по телеэкранам страны в январе 2000 года. В нем недоказанную всеми своими великими предшественниками теорему доказывает наш с вами соотечественник и претендует за это на Нобелевскую премию. Как известно, изобретатель динамита проигнорировал в своем завещании математиков, так что автор доказательства мог претендовать разве что на Филдсовскую золотую медаль - высшую международную награду, утвержденную самими математиками в 1936 году.

В классической работе выдающегося отечественного математика А.Я. Хинчина, посвященной великой теореме Ферма, даются сведения по истории этой проблемы и уделяется внимание методу, которым мог пользоваться Ферма при доказательстве своей теоремы. Приводятся доказательство для случая п = 4 и краткий обзор других важнейших результатов.

Но к моменту написания детектива, а тем более, к моменту его экранизации общее доказательство теоремы было уже найдено. 23 июня 1993 года на конференции по теории чисел в Кембридже математик из Принстона Эндрю Уайлс анонсировал, что доказательство великой теоремы Ферма получено. Но совсем не так, как «обещал» сам Ферма. Тот путь, по которому пошел Эндрю Уайлс, основывался отнюдь не на методах элементарной математики. Он занимался так называемой теорией эллиптических кривых.

Чтобы получить представление об эллиптических кривых, необходимо рассмотреть плоскую кривую, заданную уравнением третьей степени

У(х,у) = а30Х + а21х2у+ ... + а1х+ а2у + а0 = 0. (1)

Все такие кривые разбиваются на два класса. К первому классу относятся те кривые, у которых имеются точки заострения (как, например, полукубическая парабола у2 = а2-Х с точкой заострения (0; 0)), точки самопересечения (как Декартов лист х3+у3-3аху = 0, в точке (0; 0)), а также кривые, для которых многочлен Дх,у) представляется в виде

f(x^y)=:fl(x^y)■:f2(x,y),

где ^(х,у) и ^(х,у) - многочлены меньших степеней. Кривые этого класса называются вырожденными кривыми третьей степени. Второй класс кривых образуют невырожденные кривые; мы будем называть их эллиптическими. К таковым может быть отнесен, например, Локон Аньези (х2 + а2)у - а3 = 0). Если коэффициенты многочлена (1) - рациональные числа, то эллиптическая кривая может быть преобразована к так называемой канонической форме

у2= х3 + ах +Ь. (2)

В 1955 году японскому математику Ю. Танияме (1927-1958) в рамках теории эллиптических кривых удалось сформулировать гипотезу, которая открыла путь для доказательства теоремы Ферма. Но об этом не подозревал тогда ни сам Танияма, ни его коллеги. Почти двадцать лет эта гипотеза не привлекала к себе серьезного внимания и стала популярной лишь в середине 70-х годов. В соответствии с гипотезой Таниямы всякая эллиптическая

кривая с рациональными коэффициентами является модулярной. Однако пока что формулировка гипотезы мало говорит дотошному читателю. Потому потребуются некоторые определения.

С каждой эллиптической кривой можно связать важную числовую характеристику - ее дискриминант. Для кривой, заданной в канонической форме (2), дискриминант А определяется формулой

А = -(4а + 27b2).

Пусть Е - некоторая эллиптическая кривая, заданная уравнением (2), где а и b - целые числа.

Для простого числа р рассмотрим сравнение

y2 = х3 + ах + b(mod p), (3)

где а и b - остатки от деления целых чисел а и b на р, и обозначим через np число решений этого сравнения. Числа пр очень полезны при исследовании вопроса о разрешимости уравнений вида (2) в целых числах: если какое-то пр равно нулю, то уравнение (2) не имеет целочисленных решений. Однако вычислить числа пр удается лишь в редчайших случаях. (В то же время известно, что р-п| < 2Vp (теоремаХассе)).

Рассмотрим те простые числа р, которые делят дискриминант А эллиптической кривой (2). Можно доказать, что для таких р многочлен х3 + ах + b можно записать одним из двух способов:

х3 + ах + b = (х + а)2 (х + ß)(mod Р)

х3 + ах + b = (х + у)3 (mod p),

где а, ß, у - некоторые остатки от деления на р. Если для всех простых р, делящих дискриминант кривой, реализуется первая из двух указанных возможностей, то эллиптическая кривая называется полустабильной.

Простые числа, делящие дискриминант, можно объединить в так называемый кондуктор эллиптической кривой. Если Е - полустабильная кривая, то ее кондуктор N задается формулой

где для всех простых чисел p > 5, делящих А, показатель еР равен 1. Показатели 82 и 83 вычисляются с помощью специального алгоритма.

По существу - это всё, что необходимо для понимания сути доказательства. Однако в гипотезе Таниямы присутствует непростое и в нашем случае ключевое понятие модулярности. Поэтому забудем на время об эллиптических кривых и рассмотрим аналитическую функцию f (т.е. ту функцию, которая может быть представлена степенным рядом) комплексного аргумента z, заданного в верхней полуплоскости.

Обозначим через Н верхнюю комплексную полуплоскость. Пусть N - натуральное и к - целое числа. Модулярной параболической формой веса к уровня N называется аналитическая функцияf(z), заданная в верхней полуплоскости и удовлетворяющая соотношению

f = (cz + d)kf (z) (5)

для любых целых чисел а, b, с, d таких, что аё - bc = 1 и с делится на N. Кроме того, предполагается, что

lim f (r + it) = 0,

где r - рациональное число, и что

Пространство модулярных параболических форм веса k уровня N обозначается через Sk(N). Можно показать, что оно имеет конечную размерность.

В дальнейшем нас будут особо интересовать модулярные параболические формы веса 2. Для малых N размерность пространства S2(N) представлена в табл. 1. В частности,

Размерности пространства S2(N)

Таблица 1

N<10 11 12 13 14 15 16 17 18 19 20 21 22

0 1 0 0 1 1 0 1 0 1 1 1 2

Из условия (5) следует, что % + 1) = для каждой формы f е S2(N). Стало быть, f является периодической функцией. Такую функцию можно представить в виде

Назовем модулярную параболическую форму А^) в S2(N) собственной, если ее коэффициенты - целые числа, удовлетворяющие соотношениям:

а г ■ а = а г+1 ■ р ■ с Г_1 для простого р, не делящего число N; (8)

(ap) для простого р, делящего число N;

атп = ат ап, если (т,п) = 1.

Сформулируем теперь определение, играющее ключевую роль в доказательстве теоремы Ферма. Эллиптическая кривая с рациональными коэффициентами и кондуктором N называется модулярной, если найдется такая собственная форма

f (z) = ^anq" g S2(N),

что ар = р - пр для почти всех простых чисел р. Здесь пр - число решений сравнения (3).

Трудно поверить в существование хотя бы одной такой кривой. Представить, что найдется функция А(г), удовлетворяющая перечисленным жестким ограничениям (5) и (8), которая разлагалась бы в ряд (7), коэффициенты которой были бы связаны с практически невычислимыми числами Пр, довольно сложно. Но смелая гипотеза Таниямы отнюдь не ставила под сомнение факт их существования, а накопленный временем эмпирический материал блестяще подтвердил ее справедливость. После двух десятилетий почти полного забвения гипотеза Таниямы получила в работах французского математика, члена Парижской Академии наук Андре Вейля как бы второе дыхание.

Родившийся в 1906 году А. Вейль стал со временем одним из основателей группы математиков, выступавших под псевдонимом Н. Бурбаки. С 1958 года А. Вейль становится профессором Принстонского института перспективных исследований. И к этому же периоду относится возникновение его интереса к абстрактной алгебраической геометрии. В семидесятые годы он обращается к эллиптическим функциям и гипотезе Таниямы. Монография, посвященная эллиптическим функциям, была переведена у нас, в России . В своем увлечении он не одинок. В 1985 году немецкий математик Герхард Фрей предположил, что если теорема Ферма неверна, то есть если найдется такая тройка целых чисел а, Ь, с, что а" + Ьп = = с" (п > 3), то эллиптическая кривая

у2 = х (х - а")-(х - сп)

не может быть модулярной, что противоречит гипотезе Таниямы. Самому Фрею не удалось доказать это утверждение, однако вскоре доказательство было получено американским математиком Кеннетом Рибетом. Другими словами, Рибет показал, что теорема Ферма является следствием гипотезы Таниямы.

Он сформулировал и доказал следующую теорему:

Теорема 1 (Рибет). Пусть Е - эллиптическая кривая с рациональными коэффициентами, имеющая дискриминант

и кондуктор

Предположим, что Е является модулярной, и пусть

/ (г) = q + 2 аАп е ^ (N)

есть соответствующая собственная форма уровня N. Фиксируем простое число £, и

р:еР =1;- " 8 р

Тогда существует такая параболическая форма

/(г) = 2 dnqn е N)

с целыми коэффициентами, что разности ап - dn делятся на I для всех 1 < п<ад.

Ясно, что если эта теорема доказана для некоторого показателя, то тем самым она доказана и для всех показателей, кратных п. Так как всякое целое число п > 2 делится или на 4, или на нечетное простое число, то можно поэтому ограничиться случаем, когда показатель равен либо 4, либо нечетному простому числу. Для п = 4 элементарное доказательство теоремы Ферма было получено сначала самим Ферма, а потом Эйлером. Таким образом, достаточно изучить уравнение

а1 + Ь1 =с1, (12)

в котором показатель I есть нечетное простое число.

Теперь теорему Ферма можно получить простыми вычислениями (2).

Теорема 2. Из гипотезы Таниямы для полустабильных эллиптических кривых следует последняя теорема Ферма.

Доказательство. Предположим, что теорема Ферма неверна, и пусть есть соответствующий контрпример (как и выше, здесь I - нечетное простое число). Применим теорему 1 к эллиптической кривой

у2 = х (х - ае) (х - с1).

Несложные вычисления показывают, что кондуктор этой кривой задается формулой

Сравнивая формулы (11) и (13), мы видим, что N = 2. Следовательно, по теореме 1 найдется параболическая форма

лежащая в пространстве 82(2). Но в силу соотношения (6) это пространство нулевое. Поэтому dn = 0 для всех п. В то же время а^ = 1. Стало быть, разность аг - dl = 1 не делится на I и мы приходим к противоречию. Таким образом, теорема доказана.

Эта теорема давала ключ к доказательству великой теоремы Ферма. И все же сама гипотеза оставалась все ещё недоказанной.

Анонсировав 23 июня 1993 года доказательство гипотезы Таниямы для полустабильных эллиптический кривых, к которым относятся и кривые вида (8), Эндрю Уайлс поторопился. Математикам было рано праздновать победу.

Быстро закончилось теплое лето, осталась позади дождливая осень, наступила зима. Уайлс писал и переписывал набело окончательный вариант своего доказательства, но дотошные коллеги находили в его работе все новые и новые неточности. И вот, в начале декабря 1993 года, за несколько дней до того, как рукопись Уайлса должна была пойти в печать, в его доказательстве были вновь обнаружены серьезные пробелы. И тогда Уайлс понял, что за день-два он уже не сможет ничего исправить. Здесь требовалась серьезная доработка. Публикацию работы пришлось отложить. Уайлс обратился за помощью к Тейлору. «Работа над ошибками» заняла больше года. Окончательный вариант доказательства гипотезы Таниямы, написанный Уайлсом в сотрудничестве с Тейлором, вышел в свет лишь летом 1995 года.

В отличие от героя А. Марининой Уайлс не претендовал на Нобелевскую премию, но, все же... какой-то наградой его должны были отметить. Вот только какой? Уайлсу в то время уже перевалило на пятый десяток, а золотые медали Филдса вручаются строго до сорока лет, пока еще не пройден пик творческой активности. И тогда для Уайлса решили учредить специальную награду - серебряный знак Филдсовского комитета. Этот знак и был вручен ему на очередном конгрессе по математике в Берлине.

Из всех проблем, способных с большей или меньшей вероятностью занять место великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей упаковки шаров. Проблему плотнейшей упаковки шаров можно сформулировать как задачу о том, как наиболее экономно сложить из апельсинов пирамиду. Молодым математикам такая задача досталась в наследство от Иоганна Кеплера. Проблема родилась в 1611 году, когда Кеплер написал небольшое сочинение «О шестиугольных снежинках». Интерес Кеплера к расположению и самоорганизации частиц вещества и привел его к обсуждению другого вопроса - о плотней-шей упаковке частиц, при которой они занимают наименьший объем. Если предположить, что частицы имеют форму шаров, то ясно, что как бы они ни располагались в пространстве, между ними неизбежно останутся зазоры, и вопрос состоит в том, чтобы объем зазоров свести к минимуму. В работе , например, утверждается (но не доказывается), что такой формой является тетраэдр, оси координат внутри которого определяют базисный угол ортогональности в 109о28", а не 90о. Эта проблема имеет огромное значение для физики элементарных частиц, кристаллографии и др. разделов естествознания.

Литература

1. Вейль А. Эллиптические функции по Эйзенштейну и Кронекеру. - М., 1978.

2. Соловьев Ю.П. Гипотеза Таниямы и последняя теорема Ферма // Соросовский образовательный журнал. - № 2. - 1998. - С. 78-95.

3. Сингх С. Великая теорема Ферма. История загадки, которая занимала лучшие умы мира на протяжении 358 лет / Пер. с англ. Ю.А. Данилова. М.: МЦНМО. 2000. - 260 с.

4. Мирмович Э.Г., Усачёва Т.В. Алгебра кватернионов и трёхмерные вращения // Настоящий журнал № 1(1), 2008. - С. 75-80.

Последние материалы раздела:

Бактерии- древние организмы
Бактерии- древние организмы

Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...

Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т
Реферат «Формирование орфографической зоркости у младших школьников При проведении объяснительного диктанта объяснение орфограмм, т

МОУ «ООШ с. Озёрки Духовницкого района Саратовской области » Киреевой Татьяны Константиновны 2009 – 2010 год Введение. «Грамотное письмо – не...

Презентация: Монако Презентация на тему
Презентация: Монако Презентация на тему

Религия: Католицизм: Официальная религия - католичество. Однако конституция Монако гарантирует свободу вероисповедания. В Монако есть 5...