Если 2 параллельные. Параллельные прямые, признаки и условия параллельности прямых

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

ГЛАВА III.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

§ 38. ЗАВИСИМОСТЬ МЕЖДУ УГЛАМИ,
ОБРАЗОВАННЫМИ ДВУМЯ ПАРАЛЛЕЛЬНЫМИ ПРЯМЫМИ И СЕКУЩЕЙ.

Мы знаем, что две прямые параллельны, если при пересечении их третьей прямой равны соответственные углы, или внутренние, или внешние накрест лежащие углы, или сумма внутренних, или сумма внешних односторонних углов равна 2d . Докажем, что верны и обратные теоремы, а именно:

Если две параллельные прямые пересечены третьей, то:

1) соответственные углы равны;
2) внутренние накрест лежащие углы равны;
3) внешние накрест лежащие углы равны;
4) сумма внутренних односторонних углов равна
2
d ;
5) сумма внешних односторонних углов равна
2
d .

Докажем, например, что если две параллельные прямые пересечены третьей прямой, то соответственные углы равны.

Пусть прямые АВ и СD параллельны, а МN - их секущая (черт. 202).Докажем, что соответственные углы 1 и 2 равны между собой.

Допустим, что / 1 и / 2 не равны. Тогда при точке О можно построить / МОК, соответственный и равный / 2 (черт. 203).

Но если / МОК = / 2, то прямая ОК будет параллельна СD (§ 35).

Получили, что через точку О проведены две прямые АВ и ОК, параллельные прямой СD. Но этого быть не может (§ 37).

Мы пришли к противоречию, потому что допустили, что / 1 и / 2 не равны. Следовательно, наше допущение является неправильным и / 1 должен быть равен / 2, т. е. соответственные углы равны.

Установим соотношения между остальными углами. Пусть прямые АВ и СD параллельны, а МN - их секущая (черт. 204).

Мы только что доказали, что в этом случае соответственные углы равны. Положим, что какие-нибудь два из них имеют по 119°. Вычислим величину каждого из остальных шести углов. На основании свойств смежных и вертикальных углов мы получим, что четыре угла из восьми будут иметь по 119°, а остальные - по 61°.

Оказалось, что как внутренние, так и внешние накрест лежащие углы попарно равны, а сумма внутренних или внешних односторонних углов равна 180° (или 2d ).

То же самое будет иметь место и при любом другом значении равных соответственных углов.

Следствие 1. Если каждая из двух прямых АВ и СD параллельна одной и той же третьей прямой МN, то первые две прямые параллельны между собой (черт. 205).

В самом деле, проведя секущую ЕF (черт. 206), получим:
а) / 1 = / 3, так как АВ || МN; б) / 2 = / 3, так как СО || МN.

Значит, / 1 = / 2, а это углы соответственные при прямых АВ и СD и секущей ЕF, следовательно, прямые АВ и СD параллельны.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (черт. 207).

В самом деле, если ЕF _|_ АВ, то / 1 = d ; если АВ || СD, то / 1 = / 2.

Следовательно, / 2 = d т. е. ЕF _|_ СD .

1) Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

2) Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

3)Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

3. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

4 Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

5. Если две прямые параллельны третьей прямой, то они параллельны.

Свойства параллельных прямых

1) Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

2) Если две параллельные прямые пересечены секущей, то соответственные углы равны.

3) Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.

7. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.

8.Решением системы двух уравнений с двумя неизвестными называют такую пару чисел х и у , которые при подстановке в эту систему обращают каждое её уравнение в верное числовое равенство.

9.Решить систему уравнений – значит найти все её решения или установить, что их нет.

1. Способы решения системы уравнений:

а) подстановка

б) сложение;

в) графический.

10.Сумма углов треугольника равна 180°.

11.Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

12.В любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.

13Если все три угла треугольника острые, то треугольник называется остроугольным.

14.Если один из углов треугольника тупой, то треугольник называется тупоугольным.

15. Если один из углов треугольника прямой, то треугольник называется прямоугольным.

16. Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой , а две другие стороны – катетами.

17. В треугольнике: 1) против большей стороны лежит больший угол; 2) обратно, против большего угла лежит большая сторона.

18. В прямоугольном треугольнике гипотенуза больше катета.

19. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).

20. Каждая сторона треугольника меньше суммы двух других сторон.

21 Сумма двух острых углов прямоугольного треугольника равна 90°.

22. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

Признаки равенства прямоугольных треугольников: 1) по двум катетам; 2) по гипотенузе и острому углу; 3) по гипотенузе и катету; 4) по катету и острому углу

Длина перпендикуляра, проведенного из точки к прямой, называется расстоянием от этой точки до прямой.

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Yandex.RTB R-A-339285-1 Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥ . Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b . Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b , или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10 - 11 классов).

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7 - 9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a → = (a x , a y) и b → = (b x , b y) являются направляющими векторами прямых a и b ;

и n b → = (n b x , n b y) являются нормальными векторами прямых a и b , то указанное выше необходимое и достаточное условие запишем так: a → = t · b → ⇔ a x = t · b x a y = t · b y или n a → = t · n b → ⇔ n a x = t · n b x n a y = t · n b y или a → , n b → = 0 ⇔ a x · n b x + a y · n b y = 0 , где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A 1 x + B 1 y + C 1 = 0 ; прямая b - A 2 x + B 2 y + C 2 = 0 . Тогда нормальные векторы заданных прямых будут иметь координаты (А 1 , В 1) и (А 2 , В 2) соответственно. Условие параллельности запишем так:

A 1 = t · A 2 B 1 = t · B 2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y = k 1 x + b 1 . Прямая b - y = k 2 x + b 2 . Тогда нормальные векторы заданных прямых будут иметь координаты (k 1 , - 1) и (k 2 , - 1) соответственно, а условие параллельности запишем так:

k 1 = t · k 2 - 1 = t · (- 1) ⇔ k 1 = t · k 2 t = 1 ⇔ k 1 = k 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x - x 1 a x = y - y 1 a y и x - x 2 b x = y - y 2 b y или параметрическими уравнениями прямой на плоскости: x = x 1 + λ · a x y = y 1 + λ · a y и x = x 2 + λ · b x y = y 2 + λ · b y .

Тогда направляющие векторы заданных прямых будут: a x , a y и b x , b y соответственно, а условие параллельности запишем так:

a x = t · b x a y = t · b y

Разберем примеры.

Пример 1

Заданы две прямые: 2 x - 3 y + 1 = 0 и x 1 2 + y 5 = 1 . Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x 1 2 + y 5 = 1 ⇔ 2 x + 1 5 y - 1 = 0

Мы видим, что n a → = (2 , - 3) - нормальный вектор прямой 2 x - 3 y + 1 = 0 , а n b → = 2 , 1 5 - нормальный вектор прямой x 1 2 + y 5 = 1 .

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t , при котором будет верно равенство:

2 = t · 2 - 3 = t · 1 5 ⇔ t = 1 - 3 = t · 1 5 ⇔ t = 1 - 3 = 1 5

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y = 2 x + 1 и x 1 = y - 4 2 . Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x 1 = y - 4 2 к уравнению прямой с угловым коэффициентом:

x 1 = y - 4 2 ⇔ 1 · (y - 4) = 2 x ⇔ y = 2 x + 4

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2 x + 1 , например, (0 , 1) , координаты этой точки не отвечают уравнению прямой x 1 = y - 4 2 , а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2 x + 1 это вектор n a → = (2 , - 1) , а направляющий вектором второй заданной прямой является b → = (1 , 2) . Скалярное произведение этих векторов равно нулю:

n a → , b → = 2 · 1 + (- 1) · 2 = 0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t , чтобы выполнялось равенство:

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Пример 3

Заданы прямые x 1 = y - 2 0 = z + 1 - 3 и x = 2 + 2 λ y = 1 z = - 3 - 6 λ . Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a → и b → заданных прямых имеют координаты: (1 , 0 , - 3) и (2 , 0 , - 6) .

1 = t · 2 0 = t · 0 - 3 = t · - 6 ⇔ t = 1 2 , то a → = 1 2 · b → .

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

AB и С D пересечены третьей прямой MN , то образовавшиеся при этом углы получают попарно такие названия:

соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7;

внутренние накрест лежащие углы : 3 и 5, 4 и 6;

внешние накрест лежащие углы : 1 и 7, 2 и 8;

внутренние односторонние углы : 3 и 6, 4 и 5;

внешние односторонние углы : 1 и 8, 2 и 7.

Так, ∠ 2 = ∠ 4 и ∠ 8 = ∠ 6, но по доказанному ∠ 4 = ∠ 6.

Следовательно, ∠ 2 =∠ 8.

3. Соответственные углы 2 и 6 одинаковы, поскольку ∠ 2 = ∠ 4, а ∠ 4 = ∠ 6. Также убедимся в равенстве других соответственных углов.

4. Сумма внутренних односторонних углов 3 и 6 будет 2d, потому что сумма смежных углов 3 и 4 равна 2d = 180 0 , а ∠ 4 можно заменить идентичным ему ∠ 6. Также убедимся, что сумма углов 4 и 5 равна 2d.

5. Сумма внешних односторонних углов будет 2d, потому что эти углы равны соответственно внутренним односторонним углам , как углы вертикальные .

Из выше доказанного обоснования получаем обратные теоремы.

Когда при пересечении двух прямых произвольной третьей прямой получим, что:

1. Внутренние накрест лежащие углы одинаковы;

или 2. Внешние накрест лежащие углы одинаковые;

или 3. Соответственные углы одинаковые;

или 4. Сумма внутренних односторонних углов равна 2d = 180 0 ;

или 5. Сумма внешних односторонних равна 2d = 180 0 ,

то первые две прямые параллельны.

Последние материалы раздела:

Презентация на тему
Презентация на тему "химия вокруг нас"

Назад Вперёд Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о...

Творительный падеж в польском языке (Narzędnik w języku polskim)
Творительный падеж в польском языке (Narzędnik w języku polskim)

Творительный падеж часто изучают первым, ведь без знания правильных окончаний мы не можем рассказать о себе по-польски. Если в русском языке нам...

Технологии дистанционного обучения Системы и технологии дистанционного обучения
Технологии дистанционного обучения Системы и технологии дистанционного обучения

Педагогические технологии дистанционного обучения Введение. Дистанционная форма обучения (ДО) все увереннее заявляет о себе, особенно в высшем...