Дополнительные материалы к уроку "Температура. Термометры"

АБСОЛЮТНАЯ ШКАЛА ТЕМПЕРАТУР.


1. Температура - это мера средней кинетической энергии молекул, характеризующая
степень нагретости тел.

2.Прибор для измерения температуры - термометр .

3. Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах - это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Термометры.
На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35 С до +750 С) и спиртовые (от -80 С до +70 С).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0 С и 100 С).
Этих недостатков лишены
газовые термометры .
Первый газовый термометр был создан франц. физиком Ж. Шарлем.

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.
4. Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.


5.Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

где k – постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу – абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

6.Абсолютная шкала температур - введена англ. физиком У. Кельвином
- нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы – это абсолютный нуль (0К = -273 С), самая низкая температура в природе. АБСОЛЮТНЫЙ НУЛЬ - предельно низкая температура, при которой прекращается тепловое движение молекул.



Связь абсолютной шкалы со шкалой Цельсия

В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

История изобретения термометра

Изобретателем термометра принято считать : в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и , засвидетельствовали, что уже в он сделал нечто вроде термобароскопа ( ). Галилей изучал в это время работы , у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня. Изобретение термометра также приписывают лорду , , Санкториусу, Скарпи, Корнелию Дреббелю ( ), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, и они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского . Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В г. ( ) в усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный ), а второй постоянной точкой - температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии . Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий « » рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от . Он предположил, что отметку 0 ( воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° - кипения воды). В таком виде оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в « » послужило значение : −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это или ), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав .

Об удалении разлившейся ртути из разбитого термометра см. статью

Механические термометры

Термометры этого типа действуют по тому же принципу, что и электронные, но в качестве датчика обычно используется спираль или .

Электрические термометры

Принцип работы электрических термометров основан на изменении контактную разность потенциалов, зависящую от температуры). Наиболее точными и стабильными во времени являются на основе платиновой проволоки или платинового напыления на керамику.

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

    термометры технические жидкостные ТТЖ-М;

    термометры биметаллические ТБ, ТБТ, ТБИ;

    термометры сельскохозяйственные ТС-7-М1;

    термометры максимальные СП-83 М;

    термометры для спецкамер низкоградусные СП-100;

    термометры специальные вибростойкие СП-В;

    термометры ртутные электроконтактные ТПК;

    термометры лабораторные ТЛС;

    термометры для нефтепродуктов ТН;

    термометры для испытаний нефтепродуктов ТИН1, ТИН2, ТИН3, ТИН4.

Меня зовут Влада, я учусь в 4 классе.

На уроках природоведения и окружающего мира мы знакомимся с природой, наблюдаем за происходящими явлениями.

В этом году была очень долгая осень, и нас удивило то, что долгое время на улице не замерзали лужи. Так же мы заметили, что иногда вместе с водой в лужах мог находиться сырой снег или лед. А были дни, когда эти лужи полностью промерзали, и воды в них не было, но через некоторое время они опять полностью успевали растаять.

И тогда мы решили исследовать явления плавления и отвердевания веществ.

В ходе исследования мы решали следующие задачи:

1. Знакомство с процессами плавления и отвердевания различных веществ.

2. Выяснение условий, при которых вещества плавятся.

3. Выяснение условий, при которых вещества отвердевают.

Вещества в природе могут находиться в разных состояниях: жидком, твердом и газообразном. Некоторые вещества мы можем пронаблюдать во всех состояниях, например, воду. А для того чтобы пронаблюдать различные состояния других веществ необходимо создать определенные условия: охлаждать их или нагревать.

Если вещество в твердом состоянии нагревать, то его можно превратить в жидкость. Этот процесс называют плавлением.

Если вещество в жидком состоянии охлаждать, то его можно превратить в твердое тело. Этот процесс называют отвердеванием.

Вещества в твердом состоянии делятся на кристаллы и аморфные тела.

У кристаллов плавление идет при определенной температуре. Пока кристалл плавится, температура его не меняется.

Отвердевание кристаллов идет при той же температуре, что и плавление. Температура при их отвердевании не меняется.

При плавлении и отвердевании аморфных тел температура меняется.

1.Исследование процесса отвердевания воды.

Цель: Исследовать процесс отвердевания воды. Выяснить условия отвердевания воды.

Оборудование: стакан с водой, термометр, секундомер.

Ход исследования.

Наблюдение отвердевания воды проводим во дворе школы.

Термометр опускаем в сосуд с водой и наблюдаем за изменениями температуры воды. По секундомеру следим за временем остывания.

Результаты наблюдений заносим в таблицу:

Температура воды, 0 С

Температура воды, 0 С

Строим график зависимости температуры от времени.

Вывод по исследованию:

Отвердевание воды идет при неизменной температуре 0 0 С. Температура в процессе отвердевания не меняется.

2.Исследование процессов плавления снега (льда).

Цель: Исследовать процесс плавления снега (льда). Выяснить условия плавления снега.

Оборудование: стакан со снегом, термометр, секундомер.

Ход исследования.

Наблюдение плавления снега проводим в кабинете физики школы.

Термометр опускаем в сосуд со снегом и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Температура, 0 С

Температура, 0 С

Вывод по исследованию:

Лед – кристаллическое вещество.

Плавление снега идет при неизменной температуре 0 0 С. Температура в процессе плавления не меняется.

3.Исследование процесса плавления парафина.

Цель: Исследовать процесс плавления парафина. Выяснить условия плавления парафина.

Ход исследования.

Наблюдение плавления парафина проводим в кабинете физики школы.

Термометр находится в пробирке с парафином. Помещаем пробирку в горячую воду и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Результаты наблюдений заносим в таблицу:

Температура, 0 С

Вывод по исследованию:

Парафин – аморфное тело. При плавлении парафина температура плавно увеличивается.

4.Исследование процесса отвердевания парафина.

Цель: Исследовать процесс отвердевания парафина. Выяснить условия отвердевания парафина.

Оборудование: пробирка с парафином, термометр, секундомер, сосуд с горячей водой.

Ход исследования.

Наблюдение отвердевания парафина проводим в кабинете физики школы.

Термометр находится в пробирке с парафином. Пробирка в горячую воду и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Результаты наблюдений заносим в таблицу:

Температура, 0 С

Вывод по исследованию:

Парафин – аморфное тело. При отвердевании парафина температура плавно уменьшается.

В ходе исследования мы установили, что процессы плавления и отвердевания кристаллов и аморфных тел протекают по-разному.

Кристаллы имеют определенную температуру плавления и отвердевания. Мы установили, что для воды температура плавления и отвердевания равна 0 0 С. Пока идет процесс плавления или отвердевания температура воды не менялась. Но для того, чтобы вода отвердевала необходимо, чтобы температура воздуха была меньше 0 0 С. Для того чтобы лед плавился необходимо, чтобы температура воздуха была больше 0 0 С.

Аморфные тела не имеют определенной температуры плавления и отвердевания. При нагревании аморфных веществ они постепенно плавятся, при этом их температура растет. При охлаждении они отвердевают, при этом их температура уменьшается.

Долгий путь термометров

Распространенные сегодня средства измерения температуры играют важную роль в науке, технике, в повседневной жизни людей, имеют многовековую историю и связаны с именами многих блестящих ученых разных стран, включая российских и работавших в России.

Подробное описание истории создания даже обычного жидкостного термометра может занять целую книгу, включающую рассказы о специалистах различных направлений – физиках и химиках, философах и астрономах, математиках и механиках, зоологах и ботаниках, климатологах и стеклодувах.

Помещаемые ниже заметки не претендуют на полноту изложения этой весьма занимательной истории, но могут быть полезны для знакомства с областью знания и областью техники, имя которым Термометрия.

Температура

Температура – один из важнейших показателей, который применяется в различных отраслях естествознания и техники. В физике и химии ее используют как одну из основных характеристик равновесного состояния изолированной системы, в метеорологии – как главную характеристику климата и погоды, в биологии и медицине – как важнейшую величину, определяющую жизненные функции.

Еще древнегреческий философ Аристотель (384–322 г. до н.э.) относил понятия тепла и холода к числу основополагающих. Наряду с такими качествами, как сухость и влажность, эти понятия характеризовали четыре элемента «первичной материи» – землю, воду, воздух и огонь. Хотя в те времена и несколько столетий после них уже говорили о степени тепла или холода («теплее», «горячее», «холоднее»), количественных мер не существовало.

Примерно 2500 лет назад древнегреческий медик Гиппократ (ок. 460 – ок. 370 г. до н.э.) понял, что повышенная температура человеческого тела является признаком болезни. Возникла проблема определения нормальной температуры.

Одну из первых попыток ввести понятие стандартной температуры предпринял древнеримский врач Гален (129 – ок. 200), который предложил «нейтральной» считать температуру смеси равных объемов кипящей воды и льда, а температуры отдельных компонентов (кипятка и тающего льда) считать соответственно за четыре градуса тепла и за четыре градуса холода. Вероятно, именно Галену мы обязаны введением термина «temper» (выравнивать), от которого произошло слово «температура». Однако измерять температуру стали гораздо позже.

Термоскоп и первые воздушные термометры

История измерения температуры насчитывает всего чуть больше четырех веков. Основываясь на способности воздуха расширяться при нагревании, которое было описано древними византийскими греками еще во II в. до н.э., несколько изобретателей создали термоскоп – простейший прибор со стеклянной трубочкой, заполненной водой. Следует сказать, что греки (первыми из европейцев) познакомились со стеклом еще в V в., в XIII в. появились первые стеклянные венецианские зеркала, к XVII в. стекольное дело в Европе стало довольно развито, и в 1612 г. появилось первое руководство «De arte vitraria» («Об искусстве стеклоделия») флорентийца Антонио Нери (умер в 1614 г.).

Особенно развито было стеклоделие на территории Италии. Поэтому неудивительно, что первые стеклянные приборы появились именно там. Первое описание термоскопа вошло в книгу неаполитанского естествоиспытателя, занимавшегося керамикой, стеклом, искусственными драгоценными камнями и перегонкой, Джованни Баттиста де ла Порта (1535–1615) «Magia Naturalis» («Естественная магия»). Издание вышло в 1558 г.

В 1590-х гг. итальянский физик, механик, математик и астроном Галилео Галилей (1564–1642), по свидетельству его учеников Нелли и Вивиани, построил в Венеции свой стеклянный термобароскоп с использованием смеси воды со спиртом; с помощью этого прибора можно было производить измерения. В некоторых источниках говорится, что в качестве окрашенной жидкости Галилей использовал вино. Рабочим телом служил воздух, а изменения температуры определялись по объему воздуха в приборе. Прибор был неточным, его показания зависели как от температуры, так и от давления, но позволял «сбрасывать» столбик жидкости путем изменения давления воздуха. Описание этого устройства сделал в 1638 г. ученик Галилея Бенадетто Кастелли.

Тесное общение Санторио и Галилея не позволяет определить вклад каждого в их многие технические нововведения. Санторио известен своей монографией «De statica medicina» («О медицине равновесия»), содержащей результаты его экспериментальных исследований и выдержавшей пять изданий. В 1612 г. Санторио в своей работе «Commentaria in artem medicinalem Galeni» («Заметки по медицинскому искусству Галена») впервые описал воздушный термометр. Он же применил термометр для измерения температуры человеческого тела («пациенты зажимают колбу руками, дышат на нее под укрытием, берут ее в рот»), использовал маятник для измерений частоты пульса. Его методика состояла в фиксации скорости падения показаний термометра за время десяти качаний маятника, она зависела от внешних условий и была неточной.

Приборы, подобные термоскопу Галилея, были изготовлены голландским физиком, алхимиком, механиком, гравером и картографом Корнелисом Якобсоном Дреббелом (1572–1633) и английским философом-мистиком и медиком Робертом Флуддом (1574–1637), которые предположительно были знакомы с работами флорентийских ученых. Именно прибор Дреббела был впервые (в 1636 г.) назван «термометром». Он имел вид U-образной трубки с двумя резервуарами. Занимаясь жидкостью для своего термометра, Дреббел открыл способ получения ярких карминовых красок. Флудд, в свою очередь, описал воздушный термометр.

Первые жидкостные термометры

Следующим небольшим, но важным шагом на пути к превращению термоскопа в современный жидкостный термометр стало использование в качестве рабочего тела жидкости и запаянной с одного конца стеклянной трубки. Коэффициенты термического расширения жидкостей меньше, чем газов, но зато объем жидкости не меняется с изменением внешнего давления. Этот шаг был сделан примерно в 1654 г. в мастерских великого герцога тосканского Фердинанда II Медичи (1610–1670).

Тем временем в различных странах Европы начались систематические метеорологические измерения. Каждый ученый в тот период использовал свою температурную шкалу, и дошедшие до нас результаты измерений невозможно ни сравнить между собой, ни связать с современными градусами. Понятие градуса температуры и реперных точек температурной шкалы появилось, видимо, в нескольких странах еще в XVII в. Мастера на глазок наносили 50 делений так, чтобы при температуре таяния снега спиртовой столбик не опускался ниже 10-го, а на солнце не поднимался выше 40-го деления.

Одна из первых попыток калибровки и стандартизации термометров была предпринята в октябре 1663 г. в Лондоне. Члены Королевского общества согласились использовать один из спиртовых термометров, изготовленных физиком, механиком, архитектором и изобретателем Робертом Гуком (1635–1703), в качестве стандартного и сравнивать с ним показания других термометров. Гук вводил в спирт красный пигмент, шкалу делил на 500 частей. Он изобрел также термометр-минима (показывающий самую низкую температуру).

Голландский физик-теоретик, математик, астроном и изобретатель Христиан Гюйгенс (1629–1695) в 1665 г. вместе с Р.Гуком предложил использовать температуры таяния льда и кипения воды для создания шкалы температур. Первые внятные метеорологические рекорды были записаны с использованием шкалы Гука–Гюйгенса.

Первое описание настоящего жидкостного термометра появилось в 1667 г. в издании Академии дель Чименто * «Очерки о естественно-научной деятельности Академии опытов». В Академии проведены и описаны первые эксперименты в области калориметрии. Было показано, что под разрежением вода кипит при более низкой температуре, чем при атмосферном давлении, что при замерзании она расширяется. «Флорентийские термометры» широко использовались в Англии (введены Р.Бойлем) и во Франции (распространились благодаря астроному И.Бульо). Автор известной русской монографии «Понятия и основы термодинамики» (1970) И.Р.Кричевский считает, что именно работы Академии положили начало использованию жидкостных термометров.

Один из членов Академии математик и физик Карло Ренальдини (1615–1698) в сочинении «Philosophia naturalis» Естественная философия»), изданном в 1694 г., предложил за реперные точки принять температуры таяния льда и кипения воды.

Родившийся в немецком городе Магдебурге инженер-механик, электротехник, астроном, изобретатель воздушного насоса Отто фон Герике (1602–1686), который прославился опытом с магдебургскими полушариями, также занимался термометрами. В 1672 г. он соорудил водно-спиртовой прибор высотой в несколько метров со шкалой, имевшей восемь делений: от «очень холодно» до «очень жарко». Размеры сооружения, надо признать, не продвинули термометрию вперед.

Гигантомания Герике через три столетия нашла последователей в США. Самый большой в мире термометр высотой 40,8 м (134 фута) сооружен в 1991 г. в память о рекордно высокой температуре, достигнутой в Долине смерти в Калифорнии в 1913 г.: + 56,7 °С (134 °F). Трехсторонний термометр находится в небольшом городке Бейкер неподалеку от Невады.

Первые точные термометры, вошедшие в широкий обиход, изготовил немецкий физик Даниель Габриель Фаренгейт (1686–1736). Изобретатель родился на территории нынешней Польши, в Гданьске (тогда Данциг), рано осиротел, начал изучать торговое дело в Амстердаме, но не закончил обучения и, увлекшись физикой, стал посещать лаборатории и мастерские в Германии, Голландии и Англии. С 1717 г. жил в Голландии, где имел стеклодувную мастерскую и занимался изготовлением точных метеорологических приборов – барометров, альтиметров, гигрометров и термометров. В 1709 г. он изготовил спиртовой, а в 1714 г. – ртутный термометр.

Ртуть оказалась весьма удобным рабочим телом, поскольку имела более линейный ход зависимости объема от температуры, чем спирт, нагревалась значительно быстрее спирта и могла использоваться при гораздо более высоких температурах. Фаренгейт разработал новый метод очистки ртути и использовал резервуар для ртути в форме цилиндра, а не шарика. Кроме того, для повышения точности термометров Фаренгейт, владевший стеклодувным мастерством, стал использовать стекло с наименьшим коэффициентом термического расширения. Лишь в области низких температур ртуть (температура замерзания –38,86 °С) уступала спирту (температура замерзания –114,15 °С).

С 1718 г. Фаренгейт в Амстердаме читал лекции по химии, в 1724 г. стал членом Королевского общества, хотя не получил ученой степени и опубликовал всего один сборник исследовательских статей.

Для своих термометров Фаренгейт сначала использовал модифицированную шкалу, принятую датским физиком Олафом Ремером (1644–1710) и предложенную английским математиком, механиком, астрономом и физиком Исааком Ньютоном (1643–1727) в 1701 г.

Первоначальные попытки самого Ньютона разработать температурную шкалу оказались наивными и почти сразу были отброшены. За реперные точки предлагалось брать температуру воздуха зимой и температуру тлеющих углей. Затем Ньютон использовал точку таяния снега и температуру тела здорового человека, в качестве рабочего тела – льняное масло, а шкалу (по образцу 12 месяцев в году и 12 часов в сутках до полудня) разбил на 12 градусов (по другим данным, на 32 градуса). При этом градуировка проводилась путем смешивания определенных количеств кипящей и только что оттаявшей воды. Но и этот способ оказался неприемлемым.

В использовании масла Ньютон не был первым: еще в 1688 г. французский физик Далансе в качестве реперной точки для калибровки спиртовых термометров применял точку плавления коровьего масла. Если бы этот прием сохранился, Россия и Франция имели бы разные температурные шкалы: и распространенное в России топленое масло, и знаменитое вологодское масло отличаются по составу от европейских сортов.

Наблюдательный Ремер заметил, что его маятниковые часы летом идут медленнее, чем зимой, а деления шкал его астрономических инструментов летом больше, чем зимой. Для повышения точности измерений времени и астрономических параметров нужно было проводить эти измерения при одинаковых температурах и, следовательно, иметь точный термометр. Ремер, как и Ньютон, использовал две реперные точки: нормальную температуру тела человека и температуру таяния льда (рабочим телом служило крепленое красное вино или 40%-й раствор спирта, подкрашенный шафраном, в 18-дюймовой трубке). Фаренгейт добавил к ним третью точку, которая отвечала наиболее низкой температуре, достигаемой тогда в смеси вода–лед–нашатырь.

Добившись с помощью своего ртутного термометра значительно более высокой точности измерений, Фаренгейт разделил каждый градус Ремера на четыре и в качестве реперных для своей температурной шкалы принял три точки: температуру солевой смеси воды со льдом (0 °F), температуру тела здорового человека (96 °F) и температуру таяния льда (32 °F), причем последнюю считал контрольной.

Вот как об этом он написал в статье, опубликованной в журнале «Philosophical Transaction » (1724,
т. 33, с. 78): «…положив термометр в смесь аммонийной соли или морской соли, воды и льда, найдем точку на шкале, обозначающую нуль. Вторая точка получается, если используется та же смесь без соли. Обозначим эту точку за 30. Третья точка, обозначаемая как 96, получается, если термометр взят в рот, получая тепло здорового человека».

Существует легенда, что за низшую точку шкалы Фаренгейт принял температуру, до которой охлаждался воздух зимой 1708/09 г. в его родном городе Данциге. Можно также встретить утверждения, что он верил, будто человек погибает от холода при 0 °F и от теплового удара при
100 °F. Наконец, говорили, что он член франкмасонской ложи с ее 32 степенями посвящения, поэтому и принял точку таяния льда равной этому числу.

После ряда проб и ошибок Фаренгейт пришел к весьма удобной температурной шкале. Точка кипения воды оказалась по принятой шкале равной 212 °F, а весь температурный интервал жидкофазного состояния воды – соответствующим 180 °F. Обоснованием этой шкалы служило отсутствие отрицательных значений градуса.

Проведя впоследствии серии точных измерений, Фаренгейт установил, что температура кипения меняется в зависимости от атмосферного давления. Это позволило ему создать гипсотермометр – прибор для измерения атмосферного давления по температуре кипения воды. Ему же принадлежит первенство в открытии явления переохлаждения жидкостей.

Работы Фаренгейта положили начало термометрии, а затем термохимии и термодинамике. Шкала Фаренгейта была принята в качестве официальной во многих странах (в Англии – с 1777 г.), лишь нормальная температура человеческого тела была исправлена на 98,6 о F. Сейчас такая шкала используется только в США и на Ямайке, остальные страны в 1960-х и 1970-х гг. перешли на использование шкалы Цельсия.

В широкую медицинскую практику термометр был введен голландским профессором медицины, ботаники и химии, основателем научной клиники Германом Бургаве (1668–1738), его учеником Герардом ван Свитеном (1700–1772), австрийским врачом Антоном де Хаеном (1704–1776) и независимо от них англичанином Джорджем Мартином.

Основатель Венской школы медицины Хаен установил, что температура здорового человека в течение дня дважды поднимается и опускается. Будучи сторонником теории эволюции, он объяснил это тем, что предки человека – рептилии, жившие у моря, – меняли свою температуру в соответствии с приливом и отливом. Однако его работы были надолго забыты.

Мартин в одной из своих книг писал о том, что его современники спорили, меняется ли температура плавления льда с высотой, и для установления истины перевозили термометр из Англии в Италию.

Не менее удивительно, что измерениями температуры тела человека позже интересовались ученые, прославившиеся в разных областях знания: А.Лавуазье и П.Лаплас, Дж.Дальтон и Г.Дэви, Д.Джоуль и П.Дюлонг, У.Томсон и А.Беккерель, Ж.Фуко и Г.Гельмгольц.

«Много ртути утекло» с тех пор. Почти трехсотлетняя эпоха широкого использования ртутных термометров, похоже, скоро закончится из-за токсичности жидкого металла: в европейских странах, где вопросам безопасности людей уделяется все больше внимания, приняты законы об ограничении и запрещении производства таких термометров.

* Основанная во Флоренции в 1657 г. учениками Галилея под покровительством Фердинанда II Медичи и его брата Леопольдо, Академия дель Чименто просуществовала недолго, но стала прообразом Королевского общества, Парижской академии наук и других европейских академий. Она задумывалась для пропаганды научных знаний и расширения коллективной деятельности по их развитию.

Печатается с продолжением

– Де лос Рейес по крайней мере, – заметил он, – хочет сосредоточить все секретные службы в одних руках – разведку таможни, где он работал, и полицейского департамента Манилы, сделать их армейскими. Тогда таким, как вы, уважаемая Амалия, не надо будет о нас беспокоиться. Ну а пока что – представляете – страна без разведки.

Я молча наклонила голову.

– Но это не всё, – со зловещей серьезностью продолжил Айк. – У нас появилась дивизия. В нее, правда, поначалу войдет только один полк. А теперь угадайте, сколько в ней сегодня рядовых.

Я, конечно, угадала, показав большим и указательным пальцем: ноль.

– А вот тут уже в дело вступаю я, – с удовольствием признался Айк. – Это по моей части. Сделать армию из ничего. Офицеров ведь тоже нет. Которые должны знать про такие вещи, как газовая маска, чтение карты, рекогносцировка, стрельба и штык. И учить солдат.

– А ваш генерал? Который настоящий?

– Генерал? Мощной тенью он стоит за своим другом Мануэлем Кесоном, борясь с волнами здешней политики. Генерал, дорогая Амалия, пишет для президента доклад. Надо закончить к апрелю. Не будет доклада – не будет денег, так что давайте относиться к этому всерьез. То есть пишет-то Орд, но генерал сделает из текста то, что надо. Это он умеет как никто. Я даже знаю одну секретную фразу оттуда. Сказать?

– Конечно.

– "Безопасность Филиппин будет безопасностью западной цивилизации".

Мы скорбно помолчали.

– Хорошо, Айк, так где же вы оставили десять фунтов живого веса? Только у авиаторов?

Нет, Айк, оказывается, пока страна отдыхала, успел по ней неплохо попутешествовать. Начавшийся год должен стать первым опытом призыва рекрутов, но ведь для таковых нужны военные лагеря. А самое интересное, что в лагерях нужны хоть какие-то – за неимением офицеров – инструкторы. Для новобранцев, которые, как выяснилось, говорят на восьми разных диалектах. И неграмотных среди них двадцать процентов, причем это еще оптимистическая оценка.

Всего, перечислял Айк, надо сто бараков. А еще есть земля, на которой предстоит бараки строить, – ее просто так не получишь. Кровати. Ремни. Форма.

– Возникла идея, дорогая Амалия, максимизировать – хорошее слово – использование местных материалов. Знаете ли вы, что такое гуинит? Нет? Гуинита не знаете? Кошмар. А ведь это материал, который тут будет использоваться вместо стали для касок. Вообще-то это кокосовое волокно. Шляпа такая будет, с полями, как бы из папье-маше. Абака вместо кожи для ремней, это вроде как веревка. Да, и конечно, обувь от "Анг тибай", мы уже об этом говорили. Что еще? Ага, кокосовые пуговицы. И только что пожалованный в генералы господин Сантос заявляет местной прессе, что в итоге мы имеем концепцию уникальной формы и снаряжения, которые – это цитата – будут отличать филиппинского солдата от воинов всех армий мира.

Но была и хорошая новость. На побережье обнаружились забытые и почти как новые восьмидюймовки из прошлого века. На подставках, уточнил Айк.

И тут вдобавок выяснилось – Айк думал, что я об этом уже знала, – что целый месяц лично генерал Дуглас Макартур вел настоящую войну с Вашингтоном, которую, в общем-то, проиграл и серьезно утратил престиж в местных политических кругах. Дело было в винтовках – из чего-то же надо стрелять армии в кокосовых шлемах, а для начала – учиться стрелять.

– Раз уж у нас день секретов, напомню вам, что в американской армии, с ее вечным нейтралитетом, сто тридцать две тысячи солдат. Двенадцать танков, и так далее. Меньше, чем у вашей Португалии. А при Рузвельте военный бюджет упал с трех с половиной до двух с половиной сотен миллионов. Конгресс пытается его еще урезать. И кто нам тут даст оружие, если у самой армии США его нет? Я говорю про нормальную, современную винтовку. Про "Гаранд". Но у нас она с Великой войны не производилась! "Спрингфилды" – тоже, самим не хватает. Зато, вспомнил вдруг наш генерал, с той же войны осталось невероятное количество "Энфилдов" одна тысяча девятьсот третьего года! Ваши, между прочим. Британские. По лицензии. От "Ремингтона".

Далее же, как я поняла, история развивалась так. Генерал запросил для будущей филиппинской армии сначала девяносто тысяч винтовок в год, а потом предложил нарастить цифру до четырехсот тысяч. По символической цене в восемь песо штука (за бесполезно валяющуюся на складах рухлядь).

– И тут началось! – развел руками Айк. – Военное министерство заявило, что дать столько оружия филиппинцам – значит создать ситуацию, когда мы, Америка, не сможем в случае чего "вмешаться против" нового Содружества. Но в итоге одобрили, для начала, сто тысяч "Энфилдов". И вот приходит бумага – а там стоит окончательная цена. Восемнадцать песо. И где их взять? На генерала теперь смотрят, как…

Айк откинулся на плетеную спинку кресла и небрежным голосом заметил:

– А на фоне этих больших неприятностей кого волнуют мелкие? Типа того, что это очень большая винтовка для филиппинского солдата. Ну, и там – слабый экстрактор, пружинка ломается, патрон остается в магазине, приходится доставать его руками. Если успеваешь. Зато их сколько угодно.

– Айк, а скажите мне – откуда вообще пошла идея, что японцы заглядываются на здешний архипелаг? Мой кучер в этом убежден, но ведь у всяких идей есть исходная точка, правда?

Айк с удовлетворением ставит пустой пивной бокал и вздыхает.

– Это совсем секретно, Амалия. Не говорите японцам, если их выявите и обезвредите. Но история такая. Когда мы с вами были совсем юны, году этак в девятом или десятом, какой-то мой соотечественник-идиот выдвинул гениальную идею: если японцев на их островах семьдесят миллионов, а здесь – пустующие джунгли с комарами и обезьянами, то японцы обязательно рано или поздно захотят взять эти острова себе. Он озаглавил эту идею "концепцией демографического давления". И куча яйцеголовых ученых, особенно из сумасшедшей Ассоциации по международным делам, на полном серьезе обсуждали и единогласно громили эту безумную мысль, пока она не запала в голову каждому третьесортному журналисту, которому как раз в данный момент нечего сказать. И…

Айк очевидно задумался насчет второго пива, но – как подсказал мне мой дар дедукции – вспомнил про Мэйми и передумал.

– И все это было смешно, пока здешние огненные националисты во главе все с тем же господином Кесоном не решили всерьез взяться за независимость. А президентом тогда был еще Хувер…

"Ху-увер", – прозвучал у меня в голове ленивый бас Магды.

– И что бы вы думали, Амалия, Хувер, будучи человеком простым, особо не утруждал себя сложными аргументами. Он спокойно заветировал тот, первый акт о независимости, потому что иначе, без Америки, местные жители не смогут защитить себя от чего? От "демографического давления" соседних азиатских народов. Все, кто хоть что-то понимал в восточных делах, поморщились – но что вы хотите, это же Хувер. Вот так.

Я мрачно оглянулась на оживлявшуюся после дневного оцепенения залу.

– Айк, как вы знаете, у меня была некоторая возможность ознакомиться с этим самым сверхсекретным планом "Орандж"…

– Куда же от вас скроешься.

– И там, конечно, нет никаких японцев.

– А только воображаемый противник. Если серьезно, то таковым могли бы быть и китайцы, вот только на них напали японцы, отхватили Маньчжурию и непонятно что будет дальше…

– А если противник…

– Зверообразные и несчетные полчища такового…

– Выбивает вас с Батаана, то обороняющиеся перемещаются на остров Коррехидор, который виден отсюда, и в его высеченных в скале еще испанцами туннелях сидят и ждут, когда из Перл-Харбора подойдут линкоры.

– Да, в общем, так. Не считая того, что при испанцах артиллерия была другой, она тогда не могла добить с берега до Коррехидора. А сейчас может. Но о чем вы говорите, Амалия. У нас же есть план. Создания полумиллионной армии.

– Не оставляйте усилий, Айк.

– Вам телеграмма, госпожа де Соза, международная.

Вот оно, и как же это я чувствую – вижу – слова через сероватую бумагу, скрывающую текст от посторонних глаз?

Телеграмма из Лондона, без подписи. Конечно, без подписи. Но это оно, чего я ждала: история закончена, жди, мы скоро приедем.

Почему из Лондона? Хотя для отвода глаз все пригодится. "Мы"? У них – то есть Элистера и… конечно, Эшендена… была какая-то общая история?

– Мы хотели с вами посоветоваться, – траурным голосом сказал мне портье, возвышаясь надо мной на целую голову. – Ведь из постояльцев отеля вы единственная подданная империи. Как насчет музыки?

Смотрю на него в недоумении. Я должна сочинять музыку?

И тут Джим, вечный Джим, прошел мимо меня на пару с другим белым и шитым золотом мальчиком, в ногу, с трудом таща куда-то портрет в золотой раме. И – со сползающей с этой рамы черной лентой.

Мощный… да ладно уж, просто толстый и грозный старик с бородкой клинышком, с саблей на боку и множеством внушительных орденов. Джордж. Джордж Пятый. У меня умер король?

Ну да, это же мой король. Я была еще девочкой – а он уже стоял где-то там, на недосягаемых вершинах, иногда выезжал в зеленые парки Лондона в экипаже, запряженном лошадьми. Потом, в последние годы, болел и выздоравливал, болел и выздоравливал. Но он был всегда.

Сейчас для нас потребуются только снег, чашка, термометр и немного терпения. Принесём с мороза чашку снега, поставим её в тёплое, но не горячее место, погрузим в снег термометр и будем наблюдать за температурой. Сначала столбик ртути сравнительно быстро поползёт вверх. Снег при этом остаётся ещё сухим. Достигнув нуля, столбик ртути остановится. С этого момента снег начинает таять. На дне чашки появляется вода, а термометр по-прежнему показывает нуль. Непрерывно перемешивая снег, нетрудно убедиться, что, пока весь он не растает, ртуть не сдвинется с места.

Чем же вызвана остановка температуры и как раз на то время, когда снег превращается в воду? Поступающее к чашке тепло целиком расходуется на разрушение кристалликов-снежинок. И как только последний кристаллик разрушится, температура воды начнёт повышаться.

То же самое явление можно наблюдать и при плавлении любых других кристаллических веществ. Все они требуют некоторого количества теплоты для перехода из твёрдого состояния в жидкое. Это количество, вполне определённое для каждого вещества, называют теплотой плавления.

Величина теплоты плавления для разных веществ различна. И вот именно здесь, когда мы начинаем сравнивать удельные теплоты плавления для различных веществ, вода снова выделяется среди них. Как и удельная теплоёмкость, удельная теплота плавления льда намного превосходит теплоту плавления любого другого вещества.

Чтобы расплавить один грамм бензола, нужно 30 калорий, теплота плавления олова равна 13 калориям, свинца - около 6 калорий, цинка - 28, меди - 42 калории. А чтобы превратить при нуле градусов лёд в воду, необходимо 80 калорий! Такого количества теплоты достаточно для повышения температуры одного грамма жидкой воды от 20 градусов до кипения. Только у одного металла, алюминия, удельная теплота плавления превосходит теплоту плавления льда.

Итак, вода при нуле градусов отличается от льда при той же температуре тем, что каждый грамм воды содержит в себе теплоты на 80 калорий больше, чем грамм льда.

Теперь, зная, как высока теплота плавления льда, мы видим, что нам нет никаких оснований жаловаться иногда, что лёд тает "слишком быстро". Имей лёд такую же теплоту плавления, как большинство других тел, он таял бы в несколько раз быстрее.

В жизни нашей планеты таяние снега и льда имеет совершенно исключительное по своей важности значение. Нужно помнить, что только ледниковый покров занимает более трёх процентов всей земной поверхности или 11 процентов всей суши. В районе южного полюса лежит огромный материк Антарктика, превышающий по размерам Европу и Австралию, вместе взятые, покрытый сплошным слоем льда. На миллионах квадратных километров суши царит вечная мерзлота. Только ледники и вечная мерзлота составляют пятую часть суши. К этому надо прибавить ещё поверхность, занесённую в зимнее время снегом. И тогда можно сказать, что от одной четверти до одной трети суши всегда покрыто льдом и снегом. Несколько месяцев в году эта площадь превышает половину всей суши.

Ясно, что огромные массы застывшей воды не могут не отражаться на климате Земли. Какое колоссальное количество солнечного тепла расходуется только на то, чтобы расплавить весной один снежный покров! Ведь в среднем он достигает около 60 сантиметров толщины, а на каждый грамм надо затратить 80 калорий. Но солнце - такой мощный источник энергии, что в наших широтах оно справляется с этой работой иногда в несколько дней. И трудно представить, какое половодье ждало бы нас, если бы лёд имел, например, такую теплоту плавления, как свинец. Весь снег мог бы растаять за один день или даже за несколько часов, и тогда разлившиеся до необычайных размеров реки смыли бы с поверхности земли и самый плодородный слой почвы, и растения, принося всему живому на Земле неисчислимые бедствия.

Лёд, плавясь, поглощает огромное количество тепла. Такое же количество тепла отдаёт вода при замерзании. Если бы вода имела небольшую теплоту плавления, то наши реки, озёра и моря, вероятно, застывали бы после первых же заморозков.

Итак, к большой теплоёмкости воды прибавилась ещё одна замечательная особенность - большая теплота плавления.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...