Что такое абсолютная ошибка измеряемой величины. Абсолютная и относительная погрешности

В физике и в других науках весьма часто приходится производить измерения различных величин (например, длины, массы, времени, температуры, электрического сопротивления и т. д.).

Измерение – процесс нахождения значения физической величины с помощью специальных технических средств – измерительных приборов.

Измерительным прибором называют устройство, с помощью которого осуществляется сравнение измеряемой величины с физической величиной того же рода, принятой за единицу измерения.

Различают прямые и косвенные методы измерений.

Прямые методы измерений – методы, при которых значения определяемых величин находятся непосредственным сравнением измеряемого объекта с единицей измерения (эталоном). Например, измеряемая линейкой длина какого-либо тела сравнивается с единицей длины – метром, измеряемая весами масса тела сравнивается с единицей массы – килограммом и т. д. Таким образом, в результате прямого измерения определяемая величина получается сразу, непосредственно.

Косвенные методы измерений – методы, при которых значения определяемых величин вычисляются по результатам прямых измерений других величин, с которыми они связаны известной функциональной зависимостью. Например, определение длины окружности по результатам измерения диаметра или определение объема тела по результатам измерения его линейных размеров.

Ввиду несовершенства измерительных приборов, наших органов чувств, влияния внешних воздействий на измерительную аппаратуру и объект измерения, а также прочих факторов все измерения можно производить только с известной степенью точности; поэтому результаты измерений дают не истинное значение измеряемой величины, а лишь приближенное. Если, например, вес тела определен с точностью до 0,1 мг, то это значит, что найденный вес отличается от истинного веса тела менее чем на 0,1 мг.

Точность измерений – характеристика качества измерений, отражающая близость результатов измерений к истинному значению измеряемой величины.

Чем меньше погрешности измерений, тем больше точность измерений. Точность измерений зависит от используемых при измерениях прибо- ров и от общих методов измерений. Совершенно бесполезно стремиться при измерениях в данных условиях перейти за этот предел точности. Можно свести к минимуму воздействие причин, уменьшающих точность измерений, но полностью избавиться от них невозможно, то есть при измерениях всегда совершаются более или менее значительные ошибки (погрешности). Для увеличения точности окончательного результата всякое физическое измерение необходимо делать не один, а несколько раз при одинаковых условиях опыта.

В результате i-го измерения (i – номер измерения) величины "Х”, получается приближенное число Х i , отличающееся от истинного значения Хист на некоторую величину ∆Х i = |Х i – Х|, которая является допущенной ошибкой или, другими словами, погрешностью. Истинная погрешность нам не известна, так как мы не знаем истинного значения измеряемой величины. Истинное значение измеряемой физической величины лежит в интервале

Х i – ∆Х < Х i – ∆Х < Х i + ∆Х

где Х i – значение величины Х, полученное при измерении (то есть измеренное значение); ∆Х – абсолютная погрешность определения величины Х.

Абсолютная ошибка (погрешность) измерения ∆Х – это абсолютная величина разности между истинным значением измеряемой величины Хист и результатом измерения X i: ∆Х = |Х ист – X i |.

Относительная ошибка (погрешность) измерения δ (характеризующая точность измерения) численно равна отношению абсолютной погрешности измерения ∆Х к истинному значению измеряемой величины Х ист (часто выражается в процентах): δ = (∆Х / Х ист) 100% .

Погрешности или ошибки измерений можно разделить на три класса: систематические, случайные и грубые (промахи).

Систематической называют такую погрешность, которая остается постоянной или закономерно (согласно некоторой функциональной зависимости) изменяется при повторных измерениях одной и той же величины. Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, недостатков принятого метода измерений, каких-либо упущений экспериментатора, влияния внешних условий или дефекта самого объекта измерения.

В любом измерительном приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но порядок которой можно учесть. Систематические погрешности либо увеличивают, либо уменьшают результаты измерения, то есть эти погрешности характеризуются постоянным знаком. Например, если при взвешивании одна из гирь имеет массу на 0,01 г большую, чем указано на ней, то найденное значение массы тела будет завышенным на эту величину, сколько бы измерений ни производилось. Иногда систематические ошибки можно учесть или устранить, иногда этого сделать нельзя. Например, к неустранимым ошибкам относятся ошибки приборов, о которых мы можем лишь сказать, что они не превышают определенной величины.

Случайными ошибками называют ошибки, которые непредсказуемым образом изменяют свою величину и знак от опыта к опыту. Появление случайных ошибок обусловлено действием многих разнообразных и неконтролируемых причин.

Например, при взвешивании весами этими причинами могут быть колебания воздуха, осевшие пылинки, разное трение в левом и правом подвесе чашек и др. Случайные ошибки проявляются в том, что, произведя измерения одной и той же величины Х в одинаковых условиях опыта, мы получаем несколько различающихся значений: Х1, Х2, Х3,…, Х i ,…, Х n , где Х i – результат i-го измерения. Установить какую-либо закономерность между результатами не удается, поэтому результат i - го измерения Х считается случайной величиной. Случайные ошибки могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.

Промахи и грубые погрешности – чрезмерно большие ошибки, явно искажающие результат измерения. Этот класс погрешностей вызван чаще всего неправильными действиями экспериментатора (например, из-за невнимательности вместо показания прибора «212» записывается совершенно другое число – «221»). Измерения, содержащие промахи и грубые погрешности, следует отбрасывать.

Измерения могут быть проведены с точки зрения их точности техническим и лабораторным методами.

При использовании технических методов измерение проводится один раз. В этом случае удовлетворяются такой точностью, при которой погрешность не превышает некоторого определенного, заранее заданного значения, определяемого погрешностью примененной измерительной аппаратурой.

При лабораторных методах измерений требуется более точно указать значение измеряемой величины, чем это допускает ее однократное измерение техническим методом. В этом случае делают несколько измерений и вычисляют среднее арифметическое полученных значений, которое принимают за наиболее достоверное (истинное) значение измеряемой величины. Затем производят оценку точности результата измерений (учет случайных погрешностей).

Из возможности проведения измерений двумя методами вытекает и существование двух методов оценки точности измерений: технического и лабораторного.

Относительная ошибка

Ошибки средняя квадратичная т, истинная А называются абсолютными ошибками.

В некоторых случаях абсолютная ошибка недостаточно показательна, в частности, при линейных измерениях. Например, линия измерена с ошибкой ±5 см. Для длины линии в 1 метр эта точность, очевидно, низкая, а для длины линии в 1 километр точность безусловно более высокая. Поэтому нагляднее точность измерения будет характеризоваться отношением абсолютной ошибки к полученному значению измеренной величины. Такое отношение называется относительной ошибкой. Относительная ошибка выражается дробью, причем дробь преобразуется так, чтобы числитель ее был равен единице.

Относительную ошибку определяют по соответствующей абсолютной

ошибке. Пусть X - полученное значение некоторой величины, тогда - средняя квадратичная относительная ошибка этой величины; - истинная относительная ошибка.

Знаменатель относительной ошибки целесообразно округлять до двух значащих цифр с нулями.

Пример. В приведенном случае средняя квадратичная относительная ошибка измерения линии будет равна

Предельная ошибка

Предельной ошибкой называется наибольшее значение случайной ошибки, которое может появиться при данных условиях равноточных измерений.

Теорией вероятности доказано, что случайные ошибки только в трех случаях из 1000 могут превзойти величину Зт; 5 ошибок из 100 могут превзойти и 32 ошибки из 100 могут превзойти т.

Исходя из этого, в геодезической практике результаты измерений, содержащие ошибки 0>3т , относят к измерениям, содержащим грубые ошибки, и в обработку не принимают.

Значения ошибок 0 = 2т используют как предельные при составлении технических требований для данного вида работ, т. е. все случайные ошибки измерений, превышающие по своей величине эти значения, считают недопустимыми. При получении расхождений, превышающих величину 2т, принимают меры по улучшению условий измерений, а сами измерения повторяют.

Контрольные вопросы и упражнения:

  • 1. Перечислить виды измерений и дать их определение.
  • 2. Перечислить виды ошибок измерений и дать их определение.
  • 3. Перечислить критерии, применяемые для оценки точности измерений.
  • 4. Найти среднюю квадратичную ошибку ряда измерений, если вероятнейшие ошибки равны: - 2,3; + 1,6; - 0,2; + 1,9; - 1,1.
  • 5. Найти относительную ошибку измерения длины линии по результатам: 487,23 м и 486,91 м.

Абсолютной погрешностью измерения называется величина, определяемая разницей между результатом измерения x и истинным значением измеряемой величины x 0:

Δx = |x - x 0 |.

Величина δ, равная отношению абсолютной погрешности измерения к результату измерения, называется относительной погрешностью:

Пример 2.1. Приближённым значением числа π является 3.14. Тогда погрешность его равна 0.00159. Абсолютную погрешность можно считать равной 0.0016, а относительную погрешность равной 0.0016/3.14 = 0.00051 = 0.051 %.

Значащие цифры. Если абсолютная погрешность величины a не превышает одной единицы разряда последней цифры числа a, то говорят, что у числа все знаки верные. Приближённые числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52400 равна 100, то это число должно быть записано, например, в виде 524·10 2 или 0.524·10 5 . Оценить погрешность приближённого числа можно, указав, сколько верных значащих цифр оно содержит. При подсчёте значащих цифр не считаются нули с левой стороны числа.

Например, число 0.0283 имеет три верных значащих цифры, а 2.5400 - пять верных значащих цифр.

Правила округления чисел . Если приближённое число содержит лишние (или неверные) знаки, то его следует округлить. При округлении возникает дополнительная погрешность, не превышающая половины единицы разряда последней значащей цифры (d ) округлённого числа. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причём если первая отбрасываемая цифра больше или равна d /2, то последняя сохраняемая цифра увеличивается на единицу.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются (как и лишние нули). Например, если погрешность измерения 0.001 мм, то результат 1.07005 округляется до 1.070. Если первая из изменяемых нулями и отбра-сываемых цифр меньше 5, остающиеся цифры не изменяются. Например, число 148935 с точностью измерения 50 имеет округление 148900. Если первая из заменяемых нулями или отбрасываемых цифр равна 5, а за ней не следует никаких цифр или идут нули, то округление производится до ближайшего чётного числа. Например, число 123.50 округляется до 124. Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. Например, число 6783.6 округляется до 6784.

Пример 2.2. При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300 - 1284 = 16, а при округлении до 1280 абсолютная погрешность составляет 1280 - 1284 = 4.


Пример 2.3. При округлении числа 197 до 200 абсолютная погрешность составляет 200 - 197 = 3. Относительная погрешность равна 3/197 ≈ 0.01523 или приближённо 3/200 ≈ 1.5 %.

Пример 2.4. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая - 50 г. Взвешивание дало 3600 г. Это число - приближённое. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 = 1.4 %.

Погрешности решения задачи на PC

В качестве основных источников погрешности обычно рассматривают три вида ошибок. Это так называемые ошибки усечения, ошибки округления и ошибки распространения. Например, при использовании итерационных методов поиска корней нелинейных уравнений результаты являются приближёнными в отличие от прямых методов, дающих точное решение.

Ошибки усечения

Этот вид ошибок связан с погрешностью, заложенной в самой задаче. Он может быть обусловлен неточностью определения исходных данных. Например, если в условии задачи заданы какие-либо размеры, то на практике для реальных объектов эти размеры известны всегда с некоторой точностью. То же самое касается любых других физических параметров. Сюда же можно отнести неточность расчётных формул и входящих в них числовых коэффициентов.

Ошибки распространения

Данный вид ошибок связан с применением того или иного способа решения задачи. В ходе вычислений неизбежно происходит накопление или, иначе говоря, распространение ошибки. Помимо того, что сами исходные данные не являются точными, новая погрешность возникает при их перемножении, сложении и т. п. Накопление ошибки зависит от характера и количества арифметических действий, используемых в расчёте.

Ошибки округления

Это тип ошибок связан с тем, что истинное значение числа не всегда точно сохраняется компьютером. При сохранении вещественного числа в памяти компьютера оно записывается в виде мантиссы и порядка примерно так же, как отображается число на калькуляторе.

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы - килограммы, объёма - кубические литры, времени - секунды, скорости - метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения - сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром - чтобы гигрометром - чтобы определять влажность, амперметром - замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1 o С + 0,1 o С / 2 = 0,15 o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. Точность измерения не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности - 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности -(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Инструкция

В первую очередь, проведите несколько измерений прибором одной и той же величины, чтобы иметь возможность действительное значение. Чем больше будет проведено измерений, тем точнее будет результат. Например, взвесьте на электронных весах. Допустим, вы получили результаты 0,106, 0,111, 0,098 кг.

Теперь посчитайте действительное значение величины (действительное, поскольку истинное найти невозможно). Для этого сложите полученные результаты и разделите их на количество измерений, то есть найдите среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

Источники:

  • как найти погрешность измерений

Неотъемлемой частью любого измерения является некоторая погрешность . Она представляет собой качественную характеристику точности проведенного исследования. По форме представления она может быть абсолютной и относительной.

Вам понадобится

  • - калькулятор.

Инструкция

Вторые возникают от влияния причин, и случайный характер. К ним можно отнести неправильное округление при подсчете показаний и влияние . Если такие ошибки значительно меньше, чем деления шкалы этого прибора измерения, то в качестве абсолютной погрешности целесообразно взять половину деления.

Промах или грубая погрешность представляет собой результат наблюдения, который резко отличается от всех остальных.

Абсолютная погрешность приближенного числового значения – это разность между результатом, в ходе измерения и истинным значением измеряемой величины. Истинное или действительное значение отражает исследуемую физическую величину. Эта погрешность является самой простой количественной мерой ошибки. Её можно рассчитать по следующей формуле: ∆Х = Хисл - Хист. Она может принимать положительное и отрицательное значение. Для большего понимания рассмотрим . В школе 1205 учащихся, при округлении до 1200 абсолютная погрешность равняется: ∆ = 1200 - 1205 = 5.

Существуют определенные расчета погрешности величин. Во-первых, абсолютная погрешность суммы двух независимых величин равна сумме их абсолютных погрешностей: ∆(Х+Y) = ∆Х+∆Y. Аналогичный подход применим для разности двух погрешностей. Можно воспользоваться формулой: ∆(Х-Y) = ∆Х+∆Y.

Источники:

  • как определить абсолютную погрешность

Измерения физических величин всегда сопровождаются той или иной погрешностью . Она представляет собой отклонение результатов измерения от истинного значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

Погрешности могут возникнуть в результате влияния различных факторов. Среди них можно выделить несовершенство средств или методов измерения, неточности при их изготовлении, несоблюдение специальных условий при проведении исследования.

Существует несколько классификаций . По форме представления они могут быть абсолютными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:∆х = хисл- хист. Вторые определяются отношением абсолютных погрешностей к величине истинного значения показателя.Формула расчета имеет вид:δ = ∆х/хист. Измеряется в процентах или долях.

Приведенная погрешность измерительного прибора находится как отношение ∆х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

По условиям возникновения различают основные и дополнительные. Если измерения проводились в нормальных условиях, то возникает первый вид. Отклонения, обусловленные выходом значений за пределы нормальных, является дополнительной. Для ее оценки в документации обычно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

Также погрешности физических измерений подразделяются на систематические, случайные и грубые. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые возникают от влияния причин, и характер. Промах представляет собой результат наблюдения, который резко отличается от всех остальных.

В зависимости от характера измеряемой величины могут использоваться различные способы измерения погрешности. Первый из них это метод Корнфельда. Он основан на исчислении доверительного интервала в пределах от минимального до максимального результата. Погрешность в этом случае будет представлять собой половину разности этих результатов: ∆х = (хmax-xmin)/2. Еще один из способов – это расчет средней квадратической погрешности.

Измерения могут проводиться с разной степенью точности. При этом абсолютно точными не бывают даже прецизионные приборы. Абсолютная и относительная погрешности могут быть малы, но в реальности они есть практически всегда. Разница между приближенным и точным значениями некой величины называется абсолютной погрешностью . При этом отклонение может быть как в большую, так и в меньшую сторону.

Вам понадобится

  • - данные измерений;
  • - калькулятор.

Инструкция

Перед тем как рассчитывать абсолютную погрешность, примите за исходные данные несколько постулатов. Исключите грубые погрешности. Примите, что необходимые поправки уже вычислены и внесены в результат. Такой поправкой может быть, перенос исходной точки измерений.

Примите в качестве исходного положения то, что и учтены случайные погрешности. При этом подразумевается, что они меньше систематических, то есть абсолютной и относительной, характерных именно для этого прибора.

Случайные погрешности влияют на результат даже высокоточных измерений. Поэтому любой результат будет более или менее приближенным к абсолютному, но всегда будут расхождения. Определите этот интервал. Его можно выразить формулой (Xизм- ΔХ)≤Хизм ≤ (Хизм+ΔХ).

Определите величину, максимально приближенную к значению. В измерениях берется арифметическое, которое можно по формуле, на рисунке. Примите результат за истинную величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

Зная истинную величину , вы можете найти абсолютную погрешность, необходимо учитывать при всех последующих измерениях. Найдите величину Х1 – данные конкретного измерения. Определите разность ΔХ, отняв от большего меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание

Как правило, на практике абсолютно точное измерение провести не удается. Поэтому за эталонную величину принимается предельная погрешность. Она представляет собой максимальное значение модуля абсолютной погрешности.

Полезный совет

В практических измерениях за величину абсолютной погрешности обычно принимается половина наименьшей цены деления. При действиях с числами за абсолютную погрешность принимается половина значения цифры, которая находится в следующим за точными цифрами разряде.

Для определения класса точности прибора более важным бывает отношение абсолютной погрешности к результату измерений или к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методики. Точность зависит также от внимательности и состояния экспериментатора. Погрешности разделяются на абсолютные, относительные и приведенные.

Инструкция

Пусть однократное измерение величины дало результат x. Истинное значение обозначено за x0. Тогда абсолютная погрешность Δx=|x-x0|. Она оценивает абсолютную . Абсолютная погрешность складывается из трех составляющих: случайных погрешностей, систематических погрешностей и промахов. Обычно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

Истинное значение измеряемой величины в промежутке (x-Δx ; x+Δx). Короче это записывается как x0=x±Δx. Важно измерять x и Δx в одних и тех же единицах измерения и записывать в одном и том же формате , например, целая часть и три запятой. Итак, абсолютная погрешность дает границы интервала, в котором с некоторой вероятностью находится истинное значение.

Измерения прямые и косвенные. В прямых измерениях сразу замеряется искомая величина соответствующим прибором. Например, тела линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

Если результат представляет собой зависимость от трех непосредственно измеряемых величин, имеющих погрешности Δx1, Δx2, Δx3, то погрешность косвенного измерения ΔF=√[(Δx1 ∂F/∂x1)²+(Δx2 ∂F/∂x2)²+(Δx3 ∂F/∂x3)²]. Здесь ∂F/∂x(i) – частные производные от функции по каждой из непосредственно измеряемых величин.

Полезный совет

Промахи – это грубые неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методики эксперимента. Чтобы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и подробно расписывайте полученный результат.

Источники:

Результат любого измерения неизбежно сопровождается отклонением от истинного значения. Вычислить погрешность измерения можно несколькими способами в зависимости от ее типа, например, статистическими методами определения доверительного интервала, среднеквадратического отклонения и пр.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....