Целое уравнение и его корни. Сбор и использование персональной информации

В данном уроке мы продолжаем углубляться в тему «Уравнение с одной переменной». Напомним, что для того, чтобы решить абсолютно любое уравнение, необходимо найти все подходящие значения аргументов, которые делают уравнение верным равенством. Подходящее значение или значение неизвестных или корни уравнения – всё это синонимы, и необходимо их найти или же доказать, что корней в уравнении нет.

Правда теперь стоит поговорить о том, что такое «целое уравнение » и какое количество корней у него. Поэтому необходимо рассмотреть следующие два примера.

Квадрат разности «х» куб и «х» в пятой степени равняется «х» в шестой степени минус два, умноженное на разность «х» и одного.

Во втором уравнении «х» в четвёртой степени минус один, делённое на четыре, минус «х» в квадрате плюс один, делённое на два, равняется три «х» квадрат.

Если посмотреть внимательно, то обе части этих уравнений самостоятельно являются целыми выражениями. Это и есть целое уравнение. Теперь стоит дать чёткое определение целому уравнению с одной переменной (это такое уравнение, где обе части являются целыми выражениями ).

Что если мы упростим примеры? В первом уравнении для начала раскроем скобки, а после этого перенесём все члены в левую часть и приведём подобные слагаемые. Все сделанные преобразования позволяют найти значение: «х» в пятой степени минус два «х» в кубе плюс два «х» минус один равняется нулю. Во втором уравнении повторяем проделанные операции по преобразованию. Однако изначально избавляемся от знаменателя, умножая уравнение на четыре. В итоге мы получаем, что «х» в четвёртой степени минус четырнадцать «х» в квадрате минус три равняется нулю. Мы сделали ряд трансформаций в первом и втором уравнениях, но они не изменили значения, а лишь привели к равносильным уравнениям.

Напомним, что равносильные уравнения также называют эквивалентными. Эквивалентность создаёт дополнительные свойства уравнения: симметрия (когда первое уравнение равносильно второму, то значит и второе равносильно первому) и транзитивность (если у нас есть три уравнения, где первое равносильно второму, а второе равносильно третьему, то это значит, что первое равносильно третьему в том числе). Удобность равносильности уравнений заключается в том, что над ними можно производить ряд упрощений, которые помогают сделать решение более простым.

В итоге мы видим уравнение следующего вида: «Р» от «х» равно нулю, где «Р» от «х» является многочленом стандартного вида. Абсолютно любое целое уравнение заменятся с помощью равносильного, где одна часть выступает многочленом стандартного вида, а вторая – нулем. Уравнение может иметь формат записи, где «Р» от «х» выступают многочленом стандартного вида. В данном виде степенью уравнения выступает степень многочлена. Если же взять произвольное целое уравнение, то его степенью выступает степень равносильного уравнения, которое имеет вид «Р» от «х» равно нуль. Здесь «Р» от «х» является многочленом стандартного вида. То есть мы получаем, что первое уравнение - уравнение пятой степени, а второе – уравнение четвёртой степени.

Если говорить об элементарном примере, где уравнение имеет одну переменную первой степени, то оно имеет следующий формат: сумма «ах» и «b» равняется нулю. Неизвестной переменной выступает «х», а «а» и «b» являются некоторыми числами. Более того, «а» не может равняться нулю, потому что является коэффициентом при переменной «х» и в ином случае переменная исчезает. Когда сделаем необходимые преобразования, то видим, чему равняется «х» (минус «b», поделённое на «а»). Это и выступает корнем уравнения или его значением (также говорят, что корень удовлетворяет данному уравнению). Может возникнуть вопрос: зачем вообще узнавать, сколько корней у уравнения? Ответ прост: так мы будем понимать, сколько решений оно имеет. Например, преимуществом уравнения первой степени в том, что оно имеет только одно решение (корень).

До того, как мы перейдём к более сложным примерам, необходимо вспомнить, какие операции можно осуществить по преобразованию уравнений. Среди них:

  • Раскрытие скобок в любой части уравнения;
  • Приведение подобных в любой части уравнения;
  • Перенос любого члена в другую часть, предварительно изменив его знак на противоположный;
  • Прибавление одинакового выражения к обеим частям уравнения;
  • Вычитание одинакового выражения у обеих частей уравнений;
  • Умножение и деление на число, не являющееся нулем, обеих частей уравнения. Однако данное свойство может добавить новые корни или избавить от них.

Проведя ряд таких преобразований, мы получаем равносильное уравнение.

Теперь рассмотрим уравнение второй степени. Его можно привести к виду суммы «ах» в квадрате, «bx» и «с», равное нулю. Здесь мы видим переменную «х», а также некоторые числа (в особенности «а» не может быть равно нулю, ведь тогда уравнение второй степени превратиться в уравнение первой степени). Для того чтобы понять, какое число корней имеет уравнение, необходимо найти значение дискриминанта «D», формулой которого является разница «b» в квадрате и четырёх «ас». Когда мы нашли дискриминант, мы понимает, что уравнение может иметь два решения (если дискриминант больше нуля), может иметь один корень (если равен нулю) и не иметь корней (если меньше нуля). Уравнение второй степени не может иметь больше двух корней. В тех случаях, когда есть два решения, доступна формула корня, где «х» равно минус «b» плюс корень из дискриминанта, поделённое на два «а».

Уравнение второй степени или же квадратное уравнение имеет корень, которое обращает трёхчлен в значение нуля или так называемое тождество. Если говорить о коэффициентах, которые используют в квадратном уравнении, то каждый имеет определённое название: «а» выступает старшим коэффициентом, «b» - коэффициент при «х» или второй коэффициент, а «с» - свободный член уравнения. Есть примеры, когда старший коэффициент равен единице, в таком случае квадратное уравнение называется приведённым. Уравнение второй степени может быть полным и неполным. Неполное квадратное уравнение – такое, в котором второй коэффициент или свободный член равен нулю. Что является графиком уравнения второй степени? Совершенно верно, это парабола, которая симметрична относительно оси ординат, и может иметь значение функции от нуля до плюс бесконечности или же от нуля до минус бесконечности. Вспомним по графику, какое количество пересечений парабола может иметь, ведь именно от этого зависит количество корней или решений. Когда пересечение происходит в одной точке, то есть при вершине, то получаем один корень или, как говорят, два совпадающих корня. Когда же парабола встречается с осью абсцисс дважды, то значит у нас два корня или два решений. По ряду принципов можно определить направленность параболы. Положительность основного коэффициента говорит о направлении ветвей вверх. Схожесть старшего и второго коэффициентов говорит о том, что график расположен в левой полуплоскости относительно оси ординат. Различие этих коэффициентов говорит о том, что фигура находится в правой части.

Если говорить об уравнениях более высокой степени, то их также можно привести к основному виду. Например, уравнение третей степени выглядит как сумма произведения «а» и «х» в кубе, «b» и «х» в квадрате, «сх» и d, всё равное нулю. Кубическое уравнение также имеет график функций, который на декартовой системе представлен в виде кубической параболы. Что по поводу уравнения четвёртой степени: сумма произведения «а» и «х» в четвёртой степени, «b» и «х» в кубе, «с» и «х» в квадрате, «dх» и «е». Уравнение четвёртой степени выступает наивысшим, потому что только до четвёртой степени возможно решение в радикалах или при различных значениях коэффициентов. Во всех случаях «а» не может равняться нулю по тому, что уравнение станет более низкой степени. Отметим, что уравнение с n-ой степенью не может иметь более n-ого количества корней . Можно вывести формулы корней для уравнений третей и четвёртой степени, однако они будут очень сложны, и запомнить их будет невозможно для учащегося. Если говорить об уравнениях пятой степени и выше, то там даже формулы корней не выведены. Как тогда можно решить уравнения третей степени и выше?

В данном случае необходимо использовать приёмы, которые помогут упростить решение. Первая подсказка – разложить многочлены на множители. Попробуем применить данный приём на практике, решая пример «х» куб минус восемь «х» квадрат минус «х» плюс восемь равно нулю. Когда сделаем необходимые преобразования (вынесем «х» квадрат за скобки, далее разность «х» и восемь вынести за скобки, напоследок разложим получившуюся формулу). В результате мы видим, что разность «х» и восемь равна нулю, разность «х» и один равна нулю и произведение «х» и один равна нулю. Так мы и доказали, что изначальное уравнение имеет три корня или три значения (восемь, один и минус один).

При решении уравнения выше второй степени, можно порой использовать приём введения новой переменны. Например, есть уравнение, где произведение «х» квадрат минус пять «х» плюс четыре и «х» квадрат минус пять «х» плюс шесть, оно равняется сто двадцати. В данном примере для того чтобы найти решение, необходимо всё перенести в левую часть и раскрыть скобки, сделав необходимые преобразования. Получаем «х» в четвёртой степени минус десять «х» в кубе плюс тридцать пять «х» в кубе минус пятьдесят «х» минус девяносто десть равно нулю. Даже если мы приведём подобные, то уравнение всё равно получится очень сложное, а решить его будет абсолютно невозможно. Поэтому посмотрим внимательнее на формулу и увидим, что разность «х» в квадрате и пять «х» повторяется в обеих скобках. Что если мы введём новую переменную «у» вместо данной части? Тогда мы получаем произведение суммы «у» и четыре и суммы «у» и шести, равное сто двадцати. Упростив, мы получаем квадратное уравнение с корнями минус шестнадцать и шесть. Теперь вместо «у» мы можем подставить разность «х» квадрат и пять «х». Уравнение «х» квадрат минус пять «х» равно минус шестнадцать не имеет корней, потому что дискриминант отрицательный. А второе квадратное уравнение имеет дискриминант выше нуля, поэтому получаем два корня: минус один и шесть.

Метод введения новой переменной позволяет легко решить уравнения четвёртой степени, которые имеют следующий вид: произведение «а» и «х» в четвёртой степени плюс произведение «b» и «х» во второй степени плюс «с» равняется нулю. В данном случае «а» не может равняться нулю. Это пример биквадратного уравнения, потому что уравнение является квадратным относительно «х» в квадрате. Применим теорию на практике, решив уравнение девять «х» в четвёртой степени минус десять «х» во второй степени плюс один равно нулю. Вместо «х» квадрат введём новую переменную «у», тогда выйдет квадратное уравнение с «у», где дискриминант выше нуля, поэтому получаем два корня: одна девятая и один. Теперь подставляем «х» в квадрате и получаем четыре значения корня «х»: минус одна третья, одна третья, минус один и один. Получается, что исходное биквадратное уравнение имеет четыре решения.

В результате урока нам удалось обобщить и создать систему по знаниям в теме “Уравнения”. Теперь учащиеся смогут логически решать сложные примеры, применяя новые приёмы, и анализирую процесс решения. Если осталось дополнительное время, то стоит провести небольшой опрос среди учащихся. Начните с того, чтобы вам дали определение, что такое уравнение с одной переменной. Далее попросите рассказать о процессе решения, и что такое корень, какое количество корней может иметь уравнение. Следующая важная часть знаний – равносильные или эквивалентные уравнения, поэтому необходимо, чтобы учащиеся разложили по полочкам характерные таким уравнениям свойства.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Тема урока: «Целое уравнение и его корни».

Цели:

    образовательные:

    • рассмотреть способ решения целого уравнения с помощью разложения на множители;

    развивающие:

    воспитательные:

Класс: 9

Учебник: Алгебра. 9 класс: учебник для общеобразовательных учреждений/ [Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского.- 16-е изд. – М.: Просвещение, 2010

Оборудование: компьютер с проектором, презентация «Целые уравнения»

Ход урока:

    Организационный момент.

Просмотр видеоролика «Всё в твоих руках».

Бывают моменты в жизни, когда руки опускаются и кажется, что ничего не получится. Тогда вспомните слова мудреца "Все в твоих руках:" и пусть эти слова будут девизом нашего урока.

Устная работа.

2х + 6 =10, 14х = 7, х 2 – 16 = 0, х – 3 = 5 + 2х, х 2 = 0,

Сообщение темы урока, цели.

Сегодня мы познакомимся с новым видом уравнений – это целые уравнения. Научимся их решать.

Запишем в тетради число, классная работа и тему урока: «Целое уравнение, его корни».

2.Актуализация опорных знаний.

Решите уравнение:

Ответы: а)х = 0; б) х =5/3; в) х = -, ; г) х = 1/6; - 1/6; д) корней нет; е) х = 0; 5; - 5; ж) 0; 1; -2; з)0; 1; - 1; и) 0,2; - 0,2; к) -3; 3.

3.Формирование новых понятий.

Беседа с учениками:

    Что такое уравнение? (равенство, содержащее неизвестное число)

    Какие виды уравнений вы знаете? (линейные, квадратные)




3.Сколько корней может иметь линейное уравнение?) (один, множество и ни одного корня)

4.Сколько корней может иметь квадратное уравнение?

Отчего зависит количество корней? (от дискриминанта)

В каком случае квадратное уравнение имеет 2 корня?(Д0)

В каком случае квадратное уравнение имеет 1 корень? (Д=0)

В каком случае квадратное уравнение не имеет корней? (Д0)



Целое уравнение – это уравнение левая и правая часть, которого является целым выражением. (читают вслух).

Из рассмотренных линейных и квадратных уравнений, мы видим, что количество корней не больше его степени.

Как вы думаете, можно ли не решая уравнения, определить количество его корней? (возможные ответы детей)

Познакомимся с правилом определения степени целого уравнения?

Если уравнение с одной переменной записано в виде Р(х)=0, где Р(х)- многочлен стандартного вида, то степень этого многочлена называют степенью уравнения. Степенью произвольного целого уравнения называют степень равносильного ему уравнения вида Р(х)=0, где Р(х)- многочлен стандартного вида.

Уравнение n ой степени имеет не более n корней.

Целое уравнение можно решить несколькими способами:

способы решения целых уравнений

разложение на множители графический введение новой

переменной

(Записывают схему в тетрадь)

Сегодня мы рассмотрим один из них: разложение на множители на примере следующего уравнения:х 3 – 8х 2 –х +8 = 0.(на доске объясняет учитель, ученики записывают в тетрадь решение уравнения)

Как называется способ разложения на множители, с помощью которого можно левую часть уравнения разложить на множители? (способ группировки). Разложим левую часть уравнения на множители, а для этого сгруппируем слагаемые, стоящие в левой части уравнения.

Когда произведение множителей равно нулю? (когда хотя бы один из множителей равен нулю). Приравняем к нулю каждый множитель уравнения.

Решим полученные уравнения

Сколько корней мы получили? (запись в тетради)

х 2 (х – 8) – (х – 8) = 0

(х – 8) (х 2 – 1) = 0

(х – 8)(х – 1)(х + 1) = 0

х 1 = 8, х 2 = 1, х 3 = - 1.

Ответ: 8; 1; -1.

4.Формирование умений и навыков. Практическая часть.

работа по учебнику №265(запись в тетради)

Какова степень уравнения и сколько корней имеет каждое из уравнений:

Ответы: а) 5, б) 6, в) 5, г) 2, д) 1, е) 1

266(а) (решение у доски с объяснением)

Решите уравнение:

5.Итог урока:

Закрепление теоретического материала:

    Какое уравнение с одной переменной называется целым? Приведите пример.

    Как найти степень целого уравнения? Сколько корней имеет уравнение с одной переменной первой, второй степени, n –ой степени?

6.Рефлексия

Дайте оценку своей работе. Поднимите руку, кто…

1) понял тему на отлично

2) понял тему на хорошо

    пока испытываю трудности

7.Домашнее задание:

п.12(с.75-77 пример 1)№267(а, б).


«лист контроля ученика»

Лист контроля ученика

Этапы работы

Оценка

Итого

Устный счёт

Решите уравнение

Решение квадратных уравнений

Решение кубических уравнений

Лист контроля ученика

Класс______ Фамилия Имя ___________________

Этапы работы

Оценка

Итого

Устный счёт

Решите уравнение

Какова степень знакомых уравнений

Решение квадратных уравнений

Решение кубических уравнений

Лист контроля ученика

Класс______ Фамилия Имя ___________________

Этапы работы

Оценка

Итого

Устный счёт

Решите уравнение

Какова степень знакомых уравнений

Решение квадратных уравнений

Решение кубических уравнений

Просмотр содержимого документа
«раздаточный материал»

1.Решите уравнения:

а) x 2 = 0 е) x 3 – 25x = 0


а) x 2 = 0 е) x 3 – 25x = 0
б) 3x – 5 = 0 ж) x(x – 1)(x + 2) = 0
в) x 2 –5 = 0 з) x 4 – x 2 = 0
г) x 2 = 1/36 и) x 2 –0,01 = 0,03
д) x 2 = – 25 к) 19 – c 2 = 10

3. Решите уравнения:

x 2 -5x+6=0 y 2 -4y+7=0 x 2 -12x+36=0

4. Решите уравнения:

I вариант II вариант III вариант

x 3 -1=0 x 3 - 4x=0 x 3 -12x 2 +36x=0


«тест »


Здравствуйте! Сейчас Вам будет предложен тест по математике из 4 вопросов. Нажимайте на кнопки на экране под вопросами, в которых, по Вашему мнению, записан верный ответ. Нажмите кнопку «далее», чтобы начать тестирование. Желаю удачи!


1. Решите уравнение:

3х + 6 = 0

Правильного

ответа нет


Корней


Правильного

ответа нет

Корней


4. Решите уравнение: 0 х = - 4

Корней

Много

корней



Просмотр содержимого презентации
«1»



  • Решите уравнение:
  • УСТНАЯ РАБОТА

Цели:

образовательные:

  • обобщить и углубить сведения об уравнениях; ввести понятие целого уравнения и его степени, его корней; рассмотреть способ решения целого уравнения с помощью разложения на множители.
  • обобщить и углубить сведения об уравнениях;
  • ввести понятие целого уравнения и его степени, его корней;
  • рассмотреть способ решения целого уравнения с помощью разложения на множители.

развивающие:

  • развитие математического и общего кругозора, логического мышления, умение анализировать, делать вывод;
  • развитие математического и общего кругозора, логического мышления, умение анализировать, делать вывод;

воспитательные:

  • воспитывать самостоятельность, четкость и аккуратность в действиях.
  • воспитывать самостоятельность, четкость и аккуратность в действиях.

  • Психологическая установка
  • Продолжаем обобщать и углублять сведения об уравнениях;
  • знакомимся с понятием целого уравнения,

с понятием степени уравнения;

  • формируем навыки решения уравнений;
  • контролируем уровень усвоения материала;
  • На уроке можем ошибаться, сомневаться, консультироваться.
  • Каждый учащийся сам себе дает установку.

  • Какие уравнения называются целыми?
  • Что называется степенью уравнения?
  • Сколько корней имеет уравнение n-й степени?
  • Методы решения уравнений первой, второй и третьей степеней.
  • План урока

а) x 2 = 0 е) x 3 – 25x = 0 в) x 2 –5 = 0 з) x 4 – x 2 = 0 г) x 2 = 1/36 и) x 2 –0,01 = 0,03 д) x 2 = – 25 к) 19 – c 2 = 10

Решите уравнения:


Например:

X²=x³-2(x-1)

  • Уравнения

Если уравнение с одной переменной

записано в виде

P(x) = 0, где P(x)- многочлен стандартного вида,

то степень этого многочлена называют

степенью данного уравнения

2x³+2x-1=0 (5-я степень)

14x²-3=0 (4-я степень)

Например:


Какова степень знакомых нам уравнений?

  • а) x 2 = 0 е) x 3 – 25x = 0
  • б) 3x – 5 = 0 ж) x(x – 1)(x + 2) = 0
  • в) x 2 5 = 0 з) x 4 – x 2 = 0
  • г) x 2 = 1/36 и) x 2 0,01 = 0,03
  • д) x 2 = – 25 к) 19 – c 2 = 10


  • Решите уравнения:
  • 2 ∙х + 5 =15
  • 0∙х = 7

Сколько корней может иметь уравнение I степени?

Не более одного!


0, D=-12, D x 1 =2, x 2 =3 нет корней x=6. Сколько корней может иметь уравнение I I степени (квадратное) ? Не более двух!" width="640"
  • Решите уравнения:
  • x 2 -5x+6=0 y 2 -4y+7=0 x 2 -12x+36=0
  • D=1, D0, D=-12, D

x 1 =2, x 2 =3 нет корней x=6.

Сколько корней может иметь уравнение I I степени (квадратное) ?

Не более двух!


Решите уравнения:

  • I вариант II вариант III вариант

x 3 -1=0 x 3 - 4x=0 x 3 -12x 2 +36x=0

  • x 3 =1 x(x 2 - 4)=0 x(x 2 -12x+36)=0

x=1 x=0, x=2, x= -2 x=0, x=6

1 корень 3 корня 2 корня

  • Сколько корней может иметь уравнение I I I степени?

Не более трех!


  • Как вы думаете сколько корней может иметь уравнение

IV, V , VI, VII, n степени?

  • Не более четырёх, пяти, шести, семи корней!

Вообще не более n корней!


ax²+bx+c=0

Квадратное уравнение

ax + b = 0

Линейное уравнение

Нет корней

Нет корней

Один корень


Разложим левую часть уравнения

на множители:

x²(x-8)-(x-8)=0

Ответ:=1, =-1.

  • Уравнение третьей степени вида: ax³+bx²+cx+d=0

Путем разложения на множители


(8x-1)(2x-3)-(4x-1)²=38

Раскроем скобки и приведем

подобные слагаемые

16x²-24x-2x+3-16x²+8x-138=0

Ответ: x=-2


Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Yandex.RTB R-A-339285-1

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Определение 1

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Определение 2

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

Пример 1

Рациональные уравнения:

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x - 1 = 2 + 2 7 · x - a · (x + 2) , 1 2 + 3 4 - 12 x - 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Определение 3

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Определение 4

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

Пример 2

3 · x + 2 = 0 и (x + y) · (3 · x 2 − 1) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x - 1 = x 3 и x: (5 · x 3 + y 2) = 3: (x − 1) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Пример 3

Необходимо найти корни целого уравнения 3 · (x + 1) · (x − 3) = x · (2 · x − 1) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = (3 · x + 3) · (x − 3) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = (− 5) 2 − 4 · 1 · (− 6) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = - - 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 - 7 2 ,

x 1 = 6 или x 2 = - 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · (6 + 1) · (6 − 3) = 6 · (2 · 6 − 1) − 3 и 3 · (− 1 + 1) · (− 1 − 3) = (− 1) · (2 · (− 1) − 1) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Определение 5

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.
Пример 4

Найдите решение уравнения (x 2 − 1) · (x 2 − 10 · x + 13) = 2 · x · (x 2 − 10 · x + 13) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: (x 2 − 1) · (x 2 − 10 · x + 13) − 2 · x · (x 2 − 10 · x + 13) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида (x 2 − 10 · x + 13) · (x 2 − 2 · x − 1) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Ответ: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Пример 5

Есть ли корни у уравнения (x 2 + 3 · x + 1) 2 + 10 = − 2 · (x 2 + 3 · x − 4) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением (y + 1) 2 + 10 = − 2 · (y − 4) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: - 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: - 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p (x) q (x) = 0 , где p (x) и q (x) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p (x) q (x) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p (x) q (x) = 0 может быть сведено в выполнению двух условий: p (x) = 0 и q (x) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p (x) q (x) = 0:

  • находим решение целого рационального уравнения p (x) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q (x) ≠ 0 .

Если это условие выполняется, то найденный корень Если нет, то корень не является решением задачи.

Пример 6

Найдем корни уравнения 3 · x - 2 5 · x 2 - 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p (x) q (x) = 0 , в котором p (x) = 3 · x − 2 , q (x) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 - 2 = 5 · 4 9 - 2 = 20 9 - 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p (x) q (x) = 0 . Вспомним, что это уравнение равносильно целому уравнению p (x) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p (x) q (x) = 0:

  • решаем уравнение p (x) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.
Пример 7

Решите уравнение x 2 - 2 · x - 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = (− 1) 2 − 1 · (− 11) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · (x + 3) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p (x) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q (x) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p (x) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p (x) q (x) = 0 . Быстрее сразу находить корни целого уравнения p (x) = 0 , после чего проверять, выполняется ли для них условие q (x) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p (x) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Пример 8

Найдите корни уравнения (2 · x - 1) · (x - 6) · (x 2 - 5 · x + 14) · (x + 1) x 5 - 15 · x 4 + 57 · x 3 - 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения (2 · x − 1) · (x − 6) · (x 2 − 5 · x + 14) · (x + 1) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

(− 2) 5 − 15 · (− 2) 4 + 57 · (− 2) 3 − 13 · (− 2) 2 + 26 · (− 2) + 112 = − 720 ≠ 0 ;

(− 1) 5 − 15 · (− 1) 4 + 57 · (− 1) 3 − 13 · (− 1) 2 + 26 · (− 1) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , - 2

Пример 9

Найдите корни дробного рационального уравнения 5 · x 2 - 7 · x - 1 · x - 2 x 2 + 5 · x - 14 = 0 .

Решение

Начнем работу с уравнением (5 · x 2 − 7 · x − 1) · (x − 2) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ - ∞ , - 7 ∪ - 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 - принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p (x) q (x) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Пример 10

Решите дробное рациональное уравнение - 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Пример 11

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · (x + 5) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и - 5 .

Ответ: - ∞ , - 5 ∪ (- 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r (x) = s (x) , где r (x) и s (x) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p (x) q (x) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r (x) = s (x) равносильно уравнение r (x) − s (x) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r (x) − s (x) = 0 в тождественную ему рациональную дробь вида p (x) q (x) .

Так мы переходим от исходного дробного рационального уравнения r (x) = s (x) к уравнению вида p (x) q (x) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r (x) − s (x) = 0 к p (x) q (x) = 0 , а затем к p (x) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r (x) = s (x) и уравнение p (x) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p (x) = 0 может дать нам корни, которые будут посторонними для r (x) = s (x) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r (x) = s (x) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p (x) q (x) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p (x) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r (x) = s (x) → r (x) - s (x) = 0 → p (x) q (x) = 0 → p (x) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Пример 12

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 - 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p (x) q (x) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 - 1 x - 1 = x · x - 1 · (x + 1) - 1 · x · (x + 1) x · (x + 1) = = x 2 - x - 1 - x 2 - x x · (x + 1) = - 2 · x - 1 x · (x + 1)

Для того, чтобы найти корни уравнения - 2 · x - 1 x · (x + 1) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = - 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим - 1 2 - 1 2 + 1 = 1 - 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Пример 13

Найдите корни уравнения x 1 x + 3 - 1 x = - 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 - 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 - 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 - 1 0 = - 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Пример 14

Решите уравнение 7 + 1 3 + 1 2 + 1 5 - x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 - x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 - x 2 = 24 7 .

Вычтем из обеих частей 3: 1 2 + 1 5 - x 2 = 3 7 . По аналогии 2 + 1 5 - x 2 = 7 3 , откуда 1 5 - x 2 = 1 3 , и дальше 5 - x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Ответ: x = ± 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Последние материалы раздела:

Презентация на тему
Презентация на тему "квадратный корень из произведения" Разложение на простые множители

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без...

Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г
Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г

история создания песни "Марш Буденного", презентация,фонограмма и текст песни. Скачать:Предварительный просмотр:Конкурс «Военная песня» «Марш...

Бактерии- древние организмы
Бактерии- древние организмы

Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...