Автокорреляция имеет место когда остатки. Виды и методы определения автокорреляции остатков

Автокорреляция остатков обычно встречается в регрессионном анализе при использовании данных временных рядов. Поэтому в дальнейших выкладках вместо символа i используется символ t, отражающий момент наблюдения, объем выборки при этом будем обозначать символом T. В экономических задачах значительно чаще встречается так называемая положительная автокорреляция (), нежели отрицательная автокорреляция ().

В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.

Среди основных причин, вызывающих появление автокорреляции, можно выделить ошибки спецификации, инерцию в изменении экономических показателей, эффект паутины, сглаживание данных.

Последствия автокорреляции в определенной степени сходны с последствиями гетероскедастичности. Среди них при применении МНК обычно выделяют следующие:

1. Оценки параметров, оставаясь линейными и несмещенными, перестают быть эффективными. Следовательно, они перестают обладать свойствами наилучших линейных несмещенных оценок (BLUE-оценок).

2. Дисперсии оценок являются смещенными. Часто дисперсии, вычисляемые по стандартным формулам, являются заниженными, что влечет за собой увеличение -статистик. Это может привести к признанию статистически значимыми объясняющие переменные, которые в действительности таковыми могут и не являться.

3. Оценка дисперсии регрессии является смещенной оценкой истинного значения , во многих случаях занижая его.

4. В силу вышесказанного выводы по - и -статистикам, определяющим значимость коэффициентов регрессии и коэффициента детерминации, возможно, будут неверными. Вследствие этого ухудшаются прогнозные качества модели.

В силу неизвестности значений параметров уравнения регрессии неизвестными будут также и истинные значения отклонений . Поэтому выводы об их независимости осуществляются на основе оценок , полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

1) Графический метод.

Существует несколько вариантов графического определения автокорреляции. Один из них, увязывающий отклонения с моментами их получения (их порядковыми номерами ), приведен на рис. 5.5. Это так называемые последовательно-временные графики. В этом случае по оси абсцисс обычно откладываются либо время (момент) получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения (либо оценки отклонений ).

Рис. 5. 5

Естественно предположить, что на рис. 5.5, а-г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. 5.5,д скорее всего свидетельствует об отсутствии автокорреляции.

Например, на рис. 5.5,б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости. Более того, можно утверждать, что в этом случае имеет место положительная автокорреляция остатков. Она становится весьма наглядной, если график 5.5,б дополнить графиком зависимости от (рис. 5.6).

Рис. 5. 6

Подавляющее большинство точек на этом графике расположено в I и III четвертях декартовой системы координат, подтверждая положительную зависимость между соседними отклонениями.

Следует заметить, что в современных компьютерных прикладных программах для решения задач по эконометрике аналитическое выражение регрессии дополняется графическим представлением результатов. На график реальных колебаний зависимой переменной накладывается график колебаний переменной по уравнению регрессии. Сопоставив эти два графика, можно выдвинуть гипотезу о наличии автокорреляции остатков. Если эти графики пересекаются редко, то можно предположить наличие положительной автокорреляции остатков.

2) метод рядов.

Этот метод достаточно прост: последовательно определяются знаки отклонений . Например,

(-----)(+++++++)(---)(++++)(-),

т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях.

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называется длиной ряда .

Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений , то вполне вероятна положительная автокорреляция. Если же рядов слишком мало, то вероятна отрицательная автокорреляция. Для более детального анализа предлагается следующая процедура. Пусть

– объем выборки;

общее количество знаков «+» при наблюдениях (количество положительных отклонений );

– общее количество знаков «-» при наблюдениях (количество положительных отклонений );

– количество рядов.

При достаточно большом количестве наблюдений () и отсутствии автокорреляции СВ имеет асимптотически нормальное распределение с

Тогда, если , то гипотеза об отсутствии автокорреляции не отклоняется.

Для небольшого числа наблюдений () Свед и Эйзенхарт разработали таблицы критических значений количества рядов при наблюдениях. Суть таблиц в следующем.

На пересечении строки и столбца определяются нижнее и верхнее значения при уровне значимости .

При установлении автокорреляции необходимо в первую очередь

проанализировать правильность спецификации модели.Если после ряда

усовершенсвований регрессии автокорреляция по-прежнему имеет место, то возможны определенные преобразования, устраняющие автокорреляцию. Среди них выделяется авторегрессионная схема первого порядка AR(1).

Контрольные вопросы:

1. В чем суть гетероскедастичности?

2. Приведите аргументы в пользу графического теста, теста Парка и теста Глейзера.

3. Приведите схему теста Голдфельда-Квандта.

4. В чем суть метода взвешенных наименьших квадратов (ВНК)?

5. Что такое автокорреляция?

6. Назовите основные причины автокорреляции.

7. Перечислите основные методы обнаружения автокорреляции.

8. Каковы последствия автокорреляции?

3 Проверка автокорреляции остатков

При наличии автокорреляции в остатках et оценки коэффициентов регрессии модели, полученные МНК, не будут иметь оптимальные статистические свойства (стандартная ошибка уравнения регрессии и построенные на ее основе доверительные интервалы ненадежны). Автокорреляция в остатках свидетельствует о неудачном подборе модели, о ее несовершенстве. Классические методы математической статистики лишь тогда применимы, когда отдельные члены статистического ряда независимы (некоррелированы). Но и при предпосылке нормального распределения и отсутствия автокорреляции в генеральной совокупности, из которой временной ряд взят, нельзя, к сожалению, разработать точной проверки автокорреляции при малых выборках. Ниже рассмотрены три приема проверки автокорреляции.

1. Один из возможных путей приближенной оценки автокорреляции основывается на использовании первого эмпирического нециклического коэффициента автокорреляции . К сожалению, распределение этого коэффициента для выборок из нормально распределенной, не автокоррелированной генеральной совокупности неизвестно. Поэтому мы пользуемся введенным Р.Л. Андерсоном циклическим коэффициентом автокорреляции, который определяется следующим образом:


(4.14)

Циклическим коэффициентом автокорреляции для сдвига является коэффициент автокорреляции между рядами и . При этом мы предполагаем, что временной ряд повторяется, т.е. что за последним членом xn снова следуют члены x1,x2,... Для циклический коэффициент автокорреляции первого порядка будет коэффициентом корреляции между рядами и x2 ,x3 ,...,xn , x1 . Для больших выборок циклический коэффициент автокорреляции и нециклический коэффициент автокорреляции практически совпадают, для малых выборок их равенство приблизительно. Расчетное значение сравнивается при данной численности наблюдений n с граничными значениями (табл. П.5 Приложения). При положительной автокорреляции оно признается существенным для , если выполняется неравенство > , в противном случае, если , она отсутствует. При отрицательной автокорреляции оно признается существенным, если < , а несущественной - при . Изложенный выше метод может быть использован и для проверки автокорреляции остатков . В последнем случае автокорреляционная функция принимает более простой вид:

(4.15)

2. Для проверки значимости автокорреляции чаще всего используют критерий Дарбина-Уотсона (иногда его обозначают DW). Построенный на основе гипотезы о существовании автокорреляции первого порядка: (4.16)

Где n - длина временного ряда. Величина d имеет симметрическое распределение со средней, равный 2. При отсутствии автокорреляции значение , при полной положительной - d=0 , при полной отрицательной - d=4 .
Расчетное значение d сравнивают с граничными его значениями dL и dU , при этом возможны следующие случаи:

Таблица 4.3


Значение d

Суждение

0 £ d < dL

имеется положительная автокорреляция



неопределенность
автокорреляция отсутствует
неопределенность
имеется отрицательная автокорреляция

Значения dL и dU табулированы (табл. П.7 Приложения) для значений n в интервале 7-100. В этой таблице v означает число независимых переменных в уравнении регрессии. Для функции вида xt =x (t) , v=1 .

3. Иногда вместо статистики Дарбина-Уотсона используется средняя Неймана Q:
(4.17)

(4.18)

(4.19)

Если вычисленное по формуле (4.17) значение Q меньше некоторого критического для данного числа наблюдений n значения (для ), то мы говорим о положительной автокорреляции остатков, если больше значения - то об отрицательной автокорреляции. Эти значения приводятся в табл. П.8 Приложения.

Пример 20. Проверим наличие автокорреляции остатков, полученных в результате моделирования временного ряда примера 1 (см. пример 18).
Прием 1. (через циклический коэффициент автокорреляции).
Первый эмпирический нециклический коэффициент автокорреляции рассчитываем по следующим данным:

1
2
3
4
5
6
7

9
10
11
12
13
14
15

12,051
10,977
-4,097
0,829
-8,245
-6,319
-1,393

8,541
-2,615
4,311
1,237
2,163

9.1 Сущность и причины автокорреляции в остатках

Автокорреляция в остатках обычно встречается при регрессионном анализе временных рядов, и почти не встречается при анализе пространственных выборок. Чаще встречается положительная автокорреляция. Она в большинстве случаев вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов. При положительной автокорреляции остатки изменяются монотонно с течением времени наблюдения, а при отрицательной – следует частое изменение знака остатка.

Среди базовых причин автокорреляции можно выделить следующие:

а) ошибки спецификации – неучет в модели какой-то важной объясняющей переменной или неверный выбор вида функции, что ведет к систематическим отклонениям точек наблюдения от линии регрессии,

б) инœерция – запаздывание реакции экономической системы на изменение факторов,

в) сглаживание данных.

Последствия автокорреляции в остатках такие же, как и в случае гетероскедастичности (потеря эффективности, смещение дисперсий оценок параметров, занижение стандартных ошибок и завышение t –статистик параметров), а это может повлечь признание незначимых факторов значимыми. Вследствие перечисленных обстоятельств, прогнозные качества модели ухудшаются.

При анализе временных рядов вместо индекса i часто будем использовать время t , а вместо числа наблюдений n будем писать – продолжительность интервала наблюдения временного ряда.

Мы будем рассматривать автокорреляцию первого порядка, так как в большинстве практических случаев автокорреляционная функция быстро убывает.

Коэффициент автокорреляции 1-го порядка в остатках:

В случае если данный коэффициент корреляции существенно отличен от 0, то можно говорить о наличии автокорреляции.

9.2. Обнаружение автокорреляции в остатках

1. Графический метод – при использовании этого метода строится график: ε t есть функция от ε t – 1 . В случае если в графике прослеживается отчетливая положительная или отрицательная тенденция, то, скорее всœего, имеет место соответствующая автокорреляция в остатках.

2. Метод рядов

В моменты времени определяются знаки отклонений, к примеру:

– для 20-ти наблюдений.

Рядом называют непрерывную последовательность одинаковых знаков (ряд ограничен скобками, в примере приведено 5 рядов). Количество знаков называют длиной ряда. В случае если рядов мало по сравнению с числом наблюдений, то вполне вероятна положительная автокорреляция, в случае если рядов много, – то отрицательная.

Для более детального анализа используется следующая процедура:

Пусть - число знаков ʼʼ+ʼʼ,

Число знаков ʼʼ–ʼʼ,

Количество рядов.

При достаточном количестве наблюдений и при отсутствии автокорреляции в остатках случайная величина имеет асимптотически нормальное распределœение со следующими параметрами:

Тогда, в случае если k лежит внутри интервала

то гипотеза об отсутствии автокорреляции не отклоняется; если лежит левее данного интервала, то есть положительная автокорреляция, а если правее – то отрицательная автокорреляция. Здесь γ – уровень значимости гипотезы об отсутствии автокорреляции. Стоит сказать, что для небольших и существует таблица Сведа–Эйзенхарта͵ в которой по значениям и находятся и .

В случае если k 1 < k < k 2 , то автокорреляция отсутствует, в случае если k < k 1 – есть положительная автокорреляция, в случае если k > k 2 – есть отрицательная автокорреляция.

3. Тест Дарбина-Уотсона (DW ). Это – самый популярный тест: ─ критерий Дарбина – Уотсона.

Установим связь между этим критерием и коэффициентом корреляции:

учитывая, что и , получим:

Процедура обнаружения автокорреляции по критерию DW такова:

1. Вычисляется критерий DW , для чего должна быть выполнена регрессия y на x и определœены остатки. Далее выдвигается гипотезаоб отсутствии автокорреляции в остатках.

2. По таблице критических значений теста Дарбина–Уотсона для назначенного уровня значимости γ , числа наблюдений n и числа факторов p определяются верхняя du и нижняя dl критические точки

3. Строятся области: I–от 0 до dl ; II–от dl до du; III–от du до 4–du ; IV– от 4–ul до 4–dl и V–от 4–dl до 4.

Это поясняется табл. 9.1.

таблица 9.1

При использовании критерия следует учитывать следующие ограничения:

а) он применим лишь для модели с ненулевым свободным членом,

в) временной ряд должен иметь одинаковую периодичность, то есть не должно быть пропусков наблюдений,

где - коэффициент авторегрессии, - количество наблюдений, – дисперсия коэффициента c 1 в уравнении авторегрессии y t = a + bx t + c 1 y t - 1 +…+ ε t , c 1 – коэффициент при в упомянутом уравнении.

Как использовать h – статистику?

Стоит сказать, что для назначенного уровня значимости γ выдвигают гипотезу об отсутствии автокорреляции в остатках, ᴛ.ᴇ. полагают, что в модели AR(1) остатков и статистика h имеет стандартное нормальное распределœение: .

По таблице функции Лапласа определяют критическую точку такую, что . В случае если , то отклоняется. В противном случае не отклоняется и автокорреляция не признается.

9.3. Методы устранения автокорреляции

1.Обобщенный МНК (ОМНК)

Рассмотрим исходную модель в моменты времени t и t –1:

– есть случайная величина, так как и – случайные величины,

Так как и .

Остаток не коррелирует ни с одним регрессором, следовательно, можно применить классический МНК. Оценка параметра b вычисляется непосредственно, а оценка параметра a вычисляется так: .

ОМНК может применяться для данных, начиная с момента , ᴛ.ᴇ. первое наблюдение теряется; его можно восстановить для и , используя поправку Прайса–Уинстена.

Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными. Однако при моделировании временных рядов нередко встречается ситуация, когда остатки содержат тенденцию или циклические колебания. Это свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят об автокорреляции остатков.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

  • 1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
  • 2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными.

Существуют два наиболее распространенных метода определения автокорреляции остатков:

  • 1) построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции.
  • 2) использование критерия Дарбина -- Уотсона и расчет величины:

Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина -- Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 и Н1* состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках.

Далее по специальным таблицам определяются критические значения критерия Дарбина -- Уотсона dL и dU для заданного числа наблюдений n, числа независимых переменных модели k и уровня значимости б . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

есть положительная автокорреляция. Принимается гипотеза H1 с вероятностью (1- б ).

зона неопределенности.

автокорреляция остатков нет.

зона неопределенности.

есть отрицательная автокорреляция. Принимается гипотеза H1* с вероятностью (1-б).

Если фактическое значение критерия Дарбина -- Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.

Есть несколько существенных ограничений на применение критерия Дарбина -- Уотсона:

  • 1. Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии.
  • 2. Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка.
  • 3. Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.

В эконометрических исследованиях часто возникают ситуации, когда дисперсия остатков постоянна, но наблюдается статистическая зависимость остатков эконометрической модели между собой. Это явление называют автокорреляцией остатков .

В общем случае автокорреляция (последовательная корреляция) – это взаимосвязь упорядоченных во времени или в пространстве последовательных элементов соответственно временного или пространственного ряда данных.

На рис.5.5 показана зависимость Y от X , а также линия оцененного по этим данным уравнения парной линейной регрессии. Уже по рисунку видно, что оцененная регрессия не очень хороша: зависимость Y от X явно нелинейна. Если использовать проведенную регрессионную прямую, скажем, для прогнозирования дальнейшей динамики Y , результат будет неудовлетворительным.

Рис.5.5. К вопросу об автокорреляции остатков

Как же можно выразить формально неудовлетворительность полученного уравнения регрессии?

Мы видим, например, на рис.5.5, что в этом случае отклонения от линии регрессии не случайно распределены вокруг нее, а обладают определенной закономерностью. Эта закономерность, в частности, выражается в одинаковом, как правило, знаке каждых двух соседних отклонений . Это может являться следствием:

Неверной спецификации модели (ввиду нелинейного характера связи переменных);

Воздействием какого-то фактора, не включенного в модель в качестве объясняющей переменной. Величина такого неучтенного фактора может менять свою динамику в рассматриваемый период, отклоняясь в достаточно длительные промежутки времени в ту или иную сторону от своего среднего значения. Это, очевидно, может служить причиной длительных устойчивых отклонений зависимой переменной от линии регрессии.

Обе указанные причины свидетельствуют о том, что существует возможность улучшить уравнение регрессии путем оценивания какой-то новой нелинейной формулы или включения некоторой новой объясняющей переменной.

Зависимость, показанная на рис.5.5, очевидно, нелинейна. Но это – крайний случай. Далеко не всегда бывает столь же очевидно, что отклонения от регрессионной прямой имеют неслучайный, закономерный характер. Для оценки степени такой неслучайности необходимо ввести количественную меру .

Итак, одним из основных предполагаемых свойств отклонений наблюдаемых значений от регрессионной формулы является их статистическая независимость между собой .

Мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка , т.е. когда ошибки зависят только от ошибок предыдущего периода. Применение обычного метода наименьших квадратов в этом случае дает несмещенные и состоятельные оценки параметров, однако можно показать, что оценка дисперсии оказывается смещенной вниз , что может отрицательно сказаться при проверке гипотез о значимости оценок параметров. Образно говоря, МНК рисует более оптимистичную картину, чем есть на самом деле.



Следовательно, последствия автокорреляции состоят в том, что:

- оценка дисперсии при использовании МНК является заниженной .

Большинство тестов на наличие автокорреляции в ошибках модели (наиболее широко используется тест Дарбина-Уотсона ) используют следующую идею: если корреляция есть у ошибок , то она присутствует и в остатках , получаемых после применения к модели обычного метода наименьших квадратов.

То есть, поскольку значения ошибок остаются неизвестными ввиду неизвестности истинных значений параметров модели, то проверяется статистическая независимость их аналогов – отклонений . При этом проверяется обычно их некоррелированность (являющаяся необходимым, но недостаточным атрибутом независимости ), причем некоррелированность не любых, а соседних величин .

- соседние во времени значения (в случае временных рядов);

- соседние по возрастанию переменной Х значения (в случае перекрестных выборок).

Первого порядка ” означает, что остатки зависят только от остатков предыдущего периода.



Практически, однако, используют тесно связанную с статистику Дарбина-Уотсона, обозначаемую как DW-статистика или как d‑статистика , и рассчитываемую по формуле:

. (5.13)

.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....