Закон распределения максвелла. Распределение максвелла

Статистические распределения

При тепловом движении положения частиц, величина и направление их скоростей изменяются случайным образом. Вследствие гигантского числа частиц случайный характер их движения, проявляется в существовании определенных статистических закономерностей в распределении частиц системы по координатам, значениям скоростей и т.д. Подобные распределения характеризуются соответствующими функциями распределения. Функция распределения (плотность вероятности) характеризует распределения частиц по соответствующей переменной (координаты, величины скоростей и т.д). В основе классической статистики лежат следующие положения:

Все частицы классической системы различимы (т.е. их можно пронумеровать и следить за каждой частицей);

Все динамические переменные, характеризующие состояние частицы, изменяются непрерывно;

В заданном состоянии может находиться неограниченное число частиц.

В состоянии теплового равновесия как бы не изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул в газе, при Т=cоnst, остается постоянной и равной


Это объясняется тем, что в газе устанавливается некоторое стационарное статистическое распределение молекул по значениям скоростей, называемое распределением Максвелла. Распределение Максвелла описывается некоторой функцией f(u), называемой функцией распределения молекул по скоростям .

где N – общее число молекул, dN(u) – число молекул, скорости которых принадлежат интервалу скоростей от u до u + du.

Таким образом, функция Максвелла f(u) равна вероятности того, что величина скорости наугад выбранной молекулы принадлежит единичному интервалу скоростей вблизи значения u. Или она равна доле молекул, скорости которых принадлежат единичному интервалу скоростей вблизи значения u.

Явный вид функции f(u) был получен теоретически Максвеллом:

График функции распределения приведен на рис. 12. Из графика следует, что функция распределения стремится к нулю при u®0 и u®¥ и проходит через максимум при некоторой скорости u В, называемой наиболее вероятной скоростью . Этой скоростью и близкой к ней обладает наибольшее число молекул. Кривая несимметрична относительно u В. Значение наиболее вероятной скорости можно найти, используя условие для максимума функции f(u).

На рис. 13 показано смещение u В с изменением температуры, при этом площадь под графиком остается постоянной и равной 1, что следует из условия нормировки функции Максвелла

Условие нормировки следует из смысла данного интеграла – он определяет вероятность того, что скорость молекулы попадает в интервал скоростей от 0 до ¥. Это достоверное событие, его вероятность, по определению, принимается равной 1.



Знание функции распределения молекул газа по скоростям позволяет вычислять средние значения любых функций скорости, в частности средней арифметической скорости .


Рис.12 Рис. 13

По функции Максвелла можно определить долю молекул, скорости которых принадлежат заданному интервалу скоростей или превышают некоторое значение скорости, например вторую космическую, что определяет рассеяние атмосферы.

Распределение Максвелла

В равновесном состоянии в системе, состоящей из огромного числа частиц, к примеру в некотором объёме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение скорости молекул. Ответ на вопрос, сколько молекул, или какая их часть движется с определœенной скоростью в данный момент, был теоретически получен Максвеллом.

Введем понятие пространства скоростей. Для каждой молекулы откладываем компоненты ее скорости по трем взаимно перпендикулярным осям (рис. 1.3.1).

Каждая точка в пространстве скоростей соответствует одной молекуле с определœенной скоростью. Вектор скорости идет от начала координат к рассматриваемой точке.

Рассмотрим, как будут распределœены молекулы, содержащиеся в единичном объёме газа по скоростям.

Эти молекулы будут изображаться совокупностью из n точек. Из-за столкновений молекул какие-то точки будут выходить из элемента объёма, а другие входить в него. При этом среднее число точек в данном элементе объёма сохраняется.

Закон Максвелла описывается некоторой функцией f(v), которая принято называть функция распределœения молекул по скоростям. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, ᴛ.ᴇ.

Откуда .

Применяя методы теории вероятностей, Максвелл нашел эту функцию:

Из формулы видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0) и от параметра состояния (температуры T).

График функции f(v) приведен на рис.1.3.2. Функция f(v) начинается от нуля, достигает максимума при v в и затем асимптотически стремится к нулю. Кривая не симметрична относительно v в.

Распределœение Максвелла - это распределœение по скоростям молекул идеального газа, находящегося в состоянии термодинамического равновесия.

Интегрируя распределœение Максвелла, можно рассчитать средние величины. Средний квадрат скорости (средняя квадратичная скорость)

v в
Скорость, при которой функция распределœения молекул идеального газа по скоростям максимальна, принято называть наиболее вероятной скоростью. Значение наиболее вероятной скорости можно определить, используя условие максимума функции откуда следует, что

Для того, чтобы найти число молекул, обладающих скоростями в интервале от v 1 до v 2 , крайне важно определить площадь под соответствующим участком кривой (рис.1.3.2.)

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и вид кривой изменяется. Распределœения для двух разных температур приведены на рис.1.3.3. Поскольку площадь, ограниченная кривой, остается неизменной, следовательно, при повышении температуры кривая распределœения молекул по скоростям будет растягиваться и понижаться.

Рис.1.3.3 Т 1 < Т.

Среднее значение абсолютной величины скорости (среднее значение скорости равно нулю, так как отрицательное и положительное значения компонент равноправны) определяется по формуле

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, скорости, характеризующие состояние газа:

1) наиболее вероятная ;

2) средняя скорость ;

3) средняя квадратичная .

Эти скорости связаны соотношением

v В: ávñ: áv кв ñ @1:1,13:1,22,

то есть средняя квадратичная скорость имеет наибольшую величину.

Исходя их распределœения молекул по скоростям, перейдя к новой переменной Е=m 0 v 2 /2, можно получить функцию распределœения молекул по энергиям

Тогда средняя кинœетическая энергия молекулы идеального газа равна

Для того, чтобы рассчитать количество молекул DN, скорости которых находятся в промежутке от v до v+Dv, удобно ввести относительную скорость u=v/v В, где v В - наиболее вероятная скорость. Тогда DN - число молекул, относительные скорости которых находятся в интервале u, u+Du, ᴛ.ᴇ. v/v в, v+Dv/v В, где должно быть Dv†v. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, имеем

где N - полное число молекул газа, DN/N - относительное число (доля) молекул, имеющих скорости в интервале u, u+Du. График этой зависимости соответствует рис.1.3.2, в случае если по оси абсцисс отложить u, а по оси ординат величину DN/(NDu) - функцию распределœения.

Пример7. Определить среднеквадратичную скорость молекул азота при температуре 27°С. Как зависит средне квадратичная скорость от молекулярной массы и температуры?

Т=300°К, m=28 кг/кмоль, k=1,38×10 -23 Дж/град.

Решение. где ;

Таким образом

Средняя квадратичная скорость прямо пропорциональна корню квадратному из температуры и обратно пропорциональна корню квадратному из молекулярной массы.

Распределение Максвелла - понятие и виды. Классификация и особенности категории "Распределение Максвелла" 2017, 2018.

  • - Распределение Максвелла

    В равновесном состоянии в системе, состоящей из огромного числа частиц, например в некотором объеме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение... .


  • - Распределение Максвелла

    Молекулы газа вследствие теплового движения испытывают многочисленные соударения друг с другом. При каждом соударении скорости молекул изменяются как по величине, так и по направлению. В результате в сосуде, содержащем большое число молекул, устанавливается некоторое... .


  • - Распределение Максвелла по направлениям скоростей

    Теперь, когда мы определились, какую же величину будем искать, давайте воспользуемся довольно часто используемым в физике приёмом. Мы попытаемся “угадать” искомое распределение. А проверку того, что мы угадали правильно, мы получим, сравнивая результаты нашей... .


  • -

    В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной скоростью, отвечает распределение Максвелла. Оно является частным... .


  • - Семинары 5, 6. Распределение Максвелла

    О т в е т ы 4.1. а) 4 % б) 4.2. 1.4× 4.3. а) . б) г) 4.4. а) б) г) В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной...

    Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого... .


  • - Распределение Максвелла (для модуля скорости)

    Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как: поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально, то будет иметь хи-квадрат... .


  • - Распределение молекул по скоростям (распределение Максвелла)

    Предположим, что нам удалось измерить скорости всех молекул газа в некоторый момент времени, т.е. получить v1, v2, ... ,vN. Нанесем их на ось скоростей в виде точек. Как видно из рис. 8.3, распределение точек на оси не будет равномерным – в области больших и малых скоростей они... .


  • Так как в состоянии равновесия давление во всех частях системы одинаково, то естественно допустить, что в газе отсутствуют какие-либо направленные движения молекул, то есть движения молекул предельно неупорядочены.

    В отношении скоростей молекулы это означает:

    Скорость молекул и ее проекции являются непрерывными величинами, так как ни одно значение скорости не имеет преимущества перед другими значениями;

    При тепловом равновесии в газе все направления скоростей молекул равновероятны. В противном случае это привело бы к образованию направленных макроскопических потоков молекул и возникновению перепадов давления.

    Так как скорость и ее проекции являются непрерывными величинами, вводится понятие функции плотности распределения f(v x), f(v y), f(v z) по компонентам скоростей молекул (v x , v y , v z) и по модулю скорости f(v)

    Выражения для функций плотности вероятности по компонентам скоростей v x , v y , v z имеют вид

    График функции f(v x)изображен на рис. 1.

    Функция имеет максимум при v x = 0, симметрична относительно его и экспоненциально стремится к нулю при v x ® ± ¥. Отложим по оси абсцисс элементарные скоростные интервалы dv x около значений v x , равных 0; ± v x ¢; ± v x ¢¢. Произведение f(v x) dv x равно доле молекул, компонента скорости v x которых лежит в интервале около указанных значений. С другой стороны, произведение f(v x) dv x на графике равно заштрихованным площадкам около выбранных скоростей.

    Из сопоставления размеров заштрихованных площадей следует:

    Относительное большинство молекул имеет проекцию скорости вдоль оси v x , близкую к нулю;

    Доли молекул, имеющих одинаковые значения v x , но летящие в противоположных направлениях (разные знаки +v x и -v x), одинаковы;

    Число молекул, имеющих большие значения компонент скоростей, мало (мала площадь около ± v x ¢¢).

    Аналогичный анализ можно провести и для f(v y), f(v z).

    График функции f(v) изображен на рис. 2.

    Функция равна 0 при v = 0; стремится к нулю при v ® ¥, при v = v b имеет максимум. Значение скорости v b , при которой функция плотности распределения достигает максимума, называется наиболее вероятной скоростью. Ее значение находится из условия экстремума.

    Произведение f(v) dv дает долю молекул, скорости которых лежат в выбранном интервале dv. На графике это произведение равно заштрихованным площадкам. Как видно из графика, максимальная площадка соответствует скорости v b . С увеличением скорости доля молекул, обладающих большими скоростями, уменьшается (малая площадь при v 3). Зная аналитический вид f(v), можно найти

    Распределение молекул по скоростям зависит от температуры.

    Закон Максвелла распределения молекул газа по скоростям описывает поведение очень большого числа частиц, то есть является статистическим законом. Распределение молекул по скоростям устанавливается посредством их столкновений. При столкновениях изменяются скорости отдельных молекул, но закон распределения по скоростям не изменяется.

    Характерными параметрами распределения Максвелла являются наиболее вероятная скорость υ в, соответствующая максимуму кривой распределения, и среднеквадратичная скорость где – среднее значение квадрата скорости.

    Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

    Еще по теме Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.:

    1. 57. Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.
    2. Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение

    §4 Закон Максвелла о распределении по скоростям и энергиям

    Закон распределения молекул идеального газа по скоростям, теоретически полученный Максвеллом в 1860 г. определяет, какое число dN молекул однородного (p = const) одноатомного идеального газа из общего числа N его молекул в единице объёма имеет при данной температуре Т скорости, заключенные в интервале от v до v + dv .

    Для вывода функции распределения молекул по скоростям f ( v ) равной отношению числа молекул dN , скорости которых лежат в интервале v ÷v + dv к общему числу молекул N и величине интервала dv

    Максвелл использовал два предложения:

    а) все направления в пространстве равноправны и поэтому любое направление движения частицы, т.е. любое направление скорости одинаково вероятно. Это свойство иногда называют свойством изотропности функции распределения.

    б) движение по трем взаимно перпендикулярным осям независимы т.е. х-компоненты скорости не зависит от того каково значения ее компонент или . И тогда вывод f ( v ) делается сначала для одной компоненты , а затем обобщается на все координаты скорости.

    Считается также, что газ состоит из очень большого числа N тождественных молекул находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Силовые поля на газ не действуют.

    Функции f ( v ) определяет относительное число молекул dN ( v )/ N скорости которых лежат в интервале от v до v + dv (например: газ имеет N = 10 6 молекул, при этом dN = 100

    молекул имеют скорости от v =100 до v + dv =101 м/с (dv = 1 м ) тогда .

    Используя методы теории вероятностей, Максвелл нашел функцию f ( v ) - закон распределения молекул идеального газа по скоростям:

    f ( v ) зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т )

    f ( v ) зависит от отношения кинетической энергии молекулы, отвечающей рассматриваемой скорости к величине kT характеризующей среднюю тепловую энергию молекул газа.

    При малых v и функция f ( v ) изменяется практически по параболе . П ри возрастании v множитель уменьшается быстрее, чем растет множитель , т.е. имеется max функции f ( v ) . Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью найдем из условия

    Следовательно, с ростом температуры наиболее вероятная скорость растёт, но площадь S , ограниченная кривой функции распределения остаётся неизменной, так как из условия нормировки (так как вероятность достоверного события равна 1), поэтому при повышении температуры кривая распределения f ( v ) будет растягиваться и понижаться.

    В статистической физике среднее значение какой-либо величины определяется как интеграл от 0 до бесконечности произведения величины на плотность вероятности этой величины (статистический вес)

    < X >=

    Тогда средняя арифметическая скорость молекул

    И интегрируя по частям получили

    Скорости, характеризующие состояние газа

    §5 Экспериментальная проверка закона распределения Максвелла - опыт Штерна

    Вдоль оси внутреннего цилиндра с целью натянута платиновая проволока, покрытая слоем серебра, которая нагревается током. При нагревании серебро испаряется, атомы серебра вылетают через щель и попадают на внутреннюю поверхность второго цилиндра. Если оба цилиндра неподвижны, то все атомы независимо от их скорости попадают в одно и то же место В. При вращении цилиндров с угловой скоростью ω атома серебра попадут в точки В’, B ’’ и так далее. По величине ω, расстоянию? и смещению х = ВВ’ можно вычислить скорость атомов, попавших в точку В’.

    Изображение щели получается размытым. Исследуя толщину осаждённого слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому распределению.

    §6 Барометрическая формула

    Распределение Больцмана

    До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

    Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p , то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

    Разность давления на высотах h и h + dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

    плотность на высоте h , и так как , то = const .

    Тогда

    Из уравнения Менделеева-Клапейрона.

    Тогда

    Или

    С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

    Пропотенцируем данное выражение (

    Барометрическая формула, показывает, как меняется давление с высотой

    При

    Тогда

    Т.к.

    то

    n h ,

    n 0 концентрация молекул на высоте h =0.

    Т .к

    то

    потенциальная энергия молекул в поле тяготения

    распределение Больцмана во внешнем потенциальном поле. Из него следует, что при T = const плотность газа больше там, где меньше потенциальная энергия молекул.

    §7 Опытное определение постоянной Авогадро

    Ж. Перрен (французкий ученый) в 1909 г. исследовал поведение броуновских частиц в эмульсии гуммигута (сок деревьев) с размерами осматривались с помощью микроскопа, который имел глубину поля - 1мкм. Перемещая микроскоп в вертикальном направлении можно было исследовать распределение броуновских частиц по высоте.

    Применив к ним распределение Больцмана можно записать

    n = - где m -масса частицы

    m - масса вытесненной жидкости:

    Если n 1 и n 2 концентрация частиц на уровнях h 1 и h 2 , а k = R / N A , то

    N A =

    Значение хорошо согласуется со справочным значением , что подтверждает больцмановское распределение частиц

    Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

    В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυ x , Δυ y , Δυ z , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υ i , поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность.

    Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 году с помощью методов теории вероятностей.


    Вывод формулы функции распределения молекул по скоростям есть в учебнике Ю.И Тюрина и др. (ч. 1) или И.В. Савельева (т. 1). Мы воспользуемся результатами этого вывода.

    Скорость – векторная величина. Для проекции скорости на ось х (x -й составляющей скорости) из (2.2.1) имеем

    Тогда

    (2.3.1)

    Где А 1 – постоянная, равная

    Графическое изображение функции показано на рисунке 2.2. Видно, что доля молекул со скоростью не равна нулю. При , (в этом физический смысл постоянной А1).

    Приведённое выражение и график справедливы для распределения молекул газа по x-компонентам скорости. Очевидно, что и по y - и z -компонентам скорости также можно получить:

    Где , или

    (2.3.2)

    Формуле (2.3.2) можно дать геометрическое истолкование: dn xyz – это число молекул в параллелепипеде со сторонами dυ x , dυ y , dυ z , то есть в объёме dV =dυ x dυ y dυ z (рис. 2.3), находящемся на расстоянии от начала координат в пространстве скоростей.

    Эта величина (dn xyz ) не может зависеть от направления вектора скорости . Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости.

    Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ (рис. 2.4). Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

    Общее число молекул в слое, как следует из (2.3.2)

    Где – доля всех частиц в шаровом слое объема dV , скорости которых лежат в интервале от υ до υ+dυ.

    При dυ = 1 получаем плотность вероятности , или функцию распределения молекул по скоростям:

    (2.3.4)

    Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в единичном интервале скоростей, включающем данную скорость.

    Обозначим: тогда из (2.3.4) получим:

    (2.3.5)

    График этой функции показан на рисунке 2.5.

    Выводы:

    Рассмотрим пределы применимости классического описания распределения частиц по скоростям. Для этого воспользуемся соотношением неопределенностей Гейзенберга. Согласно этому соотношению координаты и импульс частицы не могут одновременно иметь определенное значение. Классическое описание возможно, если выполнены условия:

    Здесь – постоянная Планка – фундаментальная константа, определяющая масштаб квантовых (микроскопических) процессов.

    Таким образом, если частица находится в объеме , то в этом случае возможно описание ее движения на основе законов классической механики.

    Наиболее вероятная, среднеквадратичная и средняя арифметическая скорости молекул газа

    Рассмотрим, как изменяется с абсолютной величиной скорости число частиц, приходящихся на единичный интервал скоростей, при единичной концентрации частиц.

    График функции распределения Максвелла

    ,

    Приведен на рисунке 2.6.

    Из графика видно, что при «малых» υ, т.е. при , имеем ; затем достигает максимума А и далее экспоненциально спадает .

    Величину скорости, на которую приходится максимум зависимости , называют наиболее вероятной скоростью.

    Найдем эту скорость из условия равенства производной .

    Среднюю квадратичную скорость найдем, используя соотношение : Средняя арифметическая скорость:
    . .

    Где – число молекул со скоростью от υ до υ+dυ. Если подставить сюда f (υ) и вычислить, то получим: В таком виде

    кроме того

    Максвелловский закон распределения по скоростям и все вытекающие следствия справедливы только для газа в равновесной системе. Закон статистический, и выполняется тем лучше, чем больше число молекул.

    Последние материалы раздела:

    Чудеса Космоса: интересные факты о планетах Солнечной системы
    Чудеса Космоса: интересные факты о планетах Солнечной системы

    ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

    Реферат: Школьный тур олимпиады по литературе Задания
    Реферат: Школьный тур олимпиады по литературе Задания

    Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

    Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....