Закон полного внутреннего отражения света. Предельный угол полного отражения

Полное внутреннее отражение

Вну́треннее отраже́ние - явление отражения электромагнитных волн от границы раздела двух прозрачных сред при условии, что волна падает из среды с бо́льшим показателем преломления .

Неполное внутреннее отражение - внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны .

Этот оптический феномен наблюдается для широкого спектра электромагнитного излучения включая и рентгеновский диапазон .

В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду - там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Полное внутреннее отражение света

Рассмотрим внутреннее отражение на примере двух монохроматических лучей, падающих на границу раздела двух сред. Лучи падают из зоны более плотной среды (обозначена более тёмным голубым цветом) с коэффициентом преломления на границу с менее плотной средой (обозначена светло-голубым цветом) с коэффициентом преломления.

Красный луч падает под углом , то есть на границе сред он раздваивается - частично преломляется и частично отражается. Часть луча преломляется под углом .

Зелёный луч падает и полностью отражается src="/pictures/wiki/files/100/d833a2d69df321055f1e0bf120a53eff.png" border="0">.

Полное внутреннее отражение в природе и технике

Отражение рентгеновских лучей

Преломление рентгеновских лучей при скользящем падении было впервые сформулировано М. А. Кумаховым, разработавшим рентгеновское зеркало , и теоретически обосновано Артуром Комптоном в 1923 году .

Другие волновые явления

Демонстрация преломления, а значит и эффекта полного внутреннего отражения возможна, например, для звуковых волн на поверхности и в толще жидкости при переходе между зонами различной вязкости или плотности.

Явления, сходные с эффектом полного внутреннего отражения электромагнитного излучения, наблюдаются для пучков медленных нейтронов.

Если на поверхность раздела падает вертикально поляризованная волна под углом Брюстера , то будет наблюдаться эффект полного преломления - отраженная волна будет отсутствовать.

Примечания

Wikimedia Foundation . 2010 .

  • Полное дыхание
  • Полное изменение

Смотреть что такое "Полное внутреннее отражение" в других словарях:

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - отражение эл. магн. излучения (в частности, света) при его падении на границу раздела двух прозрачных сред из среды с большим показателем преломления. П. в. о. осуществляется, когда угол падения i превосходит нек рый предельный (критический) угол … Физическая энциклопедия

    Полное внутреннее отражение - Полное внутреннее отражение. При прохождении света из среды с n1 > n2 происходит полное внутреннее отражение, если угол падения a2 > aпр; при угле падения a1 Иллюстрированный энциклопедический словарь

    Полное внутреннее отражение - отражение оптического излучения (См. Оптическое излучение) (света) или электромагнитного излучения другого диапазона (например, радиоволн) при его падении на границу раздела двух прозрачных сред из среды с большим преломления показателем… … Большая советская энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн, происходит при прохождении их из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2 под углом падения a, превышающим предельный угол aпр, определяемый соотношением sinaпр=n2/n1. Полным… … Современная энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ, ОТРАЖЕНИЕ без ПРЕЛОМЛЕНИЯ света на границе. При прохождении света из более плотной среды (например, стекло) в менее плотную (вода или воздух) существует зона углов преломления, в которой свет не проходит через границу … Научно-технический энциклопедический словарь

    полное внутреннее отражение - Отражение света от среды оптически менее плотной с полным возвращением в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн происходит при их наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол… … Большой Энциклопедический словарь

    полное внутреннее отражение - электромагнитных волн, происходит при наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол iпр … Энциклопедический словарь

Физический смысл показателя преломления. Свет преломляется вследствие изменения скорости его распространения при переходе из одной среды в другую. Показатель преломления второй среды относительно первой численно равен отношению скорости света в первой среде к скорости света во второй среде:

Таким образом, показатель преломления показывает, во сколько раз скорость света в той среде, из которой луч выходит, больше (меньше) скорости света в той среде, в которую он входит.

Поскольку скорость распространения электромагнитных волн в вакууме постоянна, целесообразно определить показатели преломления различных сред относительно вакуума. Отношение скорости с распространения света в вакууме к скорости распространения его в данной среде называется абсолютным показателем преломления данного вещества () и является основной характеристикой его оптических свойств,

,

т.е. показатель преломления второй среды относительно первой равен отношению абсолютных показателей этих сред.

Обычно оптические свойства вещества характеризуются показателем преломления n относительно воздуха, который мало отличается от абсолютного показателя преломления. При этом среда, у которой абсолютный показатель больше, называется оптически более плотной.

Предельный угол преломления. Если свет переходит из среды с меньшим показателем преломления в среду с большим показателем преломления (n 1 < n 2 ), то угол преломления меньше угла падения



r < i (рис.3).

Рис. 3. Преломление света при переходе

из оптически менее плотной среды в среду

оптически более плотную.

При увеличении угла падения до i m = 90° (луч 3, рис.2) свет во второй среде будет распространяться только в пределах угла r пр , называемого предельным углом преломления . В область второй среды в пределах угла, дополнительного к предельному углу преломления (90° - i пр ), свет не проникает (на рис.3 эта область заштрихована).

Предельный угол преломления r пр

Но sin i m = 1, следовательно .

Явление полного внутреннего отражения. Когда свет переходит из среды с большим показателем преломления n 1 > n 2 (рис.4), то угол преломления больше угла падения. Свет преломляется (переходит в вторую среду) только в пределах угла падения i пр , который соответствует углу преломления r m = 90°.

Рис. 4. Преломление света при переходе из оптически более плотной среды в среду

оптически менее плотную.

Свет, падающий под большим углом, полностью отражается от границы сред (рис. 4 луч 3). Это явление называется полным внутренним отражением, а угол падения i пр – предельным углом полного внутреннего отражения.

Предельный угол полного внутреннего отражения i пр определяется согласно условию:

, то sin r m =1, следовательно, .

Если свет идет из какой-либо среды в вакуум или в воздух, то

Вследствие обратимости хода лучей для двух данных сред предельный угол преломления при переходе из первой среды во вторую равен предельному углу полного внутреннего отражения при переходе луча из второй среды в первую.

Предельный угол полного внутреннего отражения для стекла меньше 42°. Поэтому лучи, идущие в стекле и падающие на его поверхность под углом 45°, полностью отражаются. Это свойство стекла используется в поворотных (рис.5а) и оборотных (рис. 4б) призмах, часто применяемых в оптических приборах.



Рис. 5: а – поворотная призма; б – оборотная призма.

Волоконная оптика. Полное внутреннее отражение используется при устройстве гибких световодов . Свет, попадая внутрь прозрачного волокна, окруженного веществом с меньшим показателем преломления, многократно отражается и распространяется вдоль этого волокна (рис.6).

Рис.6. Прохождение света внутри прозрачного волокна, окруженного веществом

с меньшим показателем преломления.

Для передачи больших световых потоков и сохранения гибкости светопроводящей системы отдельные волокна собираются в пучки – световоды . Раздел оптики, в котором рассматривают передачу света и изображения по светопроводам, называют волоконной оптикой. Этим же термином называют и сами волоконно-оптические детали и приборы. В медицине световоды используют для освещения холодным светом внутренних полостей и передачи изображения.

Практическая часть

Приборы для определения показателя преломления веществ называются рефрактометрами (рис.7).


Рис.7. Оптическая схема рефрактометра.

1– зеркало, 2 – измерительная головка, 3 – система призм для устранения дисперсии, 4 – объектив, 5 – поворотная призма (поворот луча на 90 0), 6 – шкала (в некоторых рефрактометрах

имеются две шкалы: шкала показателей преломления и шкала концентрации растворов),

7 – окуляр.

Основной частью рефрактометра является измерительная головка, состоящая из двух призм: осветительной, которая находится в откидной части головки, и измерительной.

На выходе осветительной призмы ее матовая поверхность создает рассеянный пучок света, который проходит через исследуемую жидкость (2-3 капли) между призмами. На поверхность измерительной призмы лучи падают под различными углами, в том числе и под углом в 90 0 . В измерительной призме лучи собираются в области предельного угла преломления, чем и объясняется образование границы света - тени на экране прибора.

Рис.8. Ход луча в измерительной головке:

1 – осветительная призма, 2 – исследуемая жидкость,

3 – измерительная призма, 4 – экран.

Геометрическая оптика – раздел физики, в котором законы распространения света рассматриваются на основе представления о световых лучах (нормальных к волновым поверхностям линий, вдоль которых распространяется поток световой энергии).

Полное отражение света

Полное отражение света - явление, при котором луч, падающий на границу раздела двух сред, полностью отражается, не проникая во вторую среду.

Полное отражение света происходит при углах падения света на границу раздела сред, превышающих предельный угол полного отражения при распространении света из оптически более плотной среды в среду менее оптически плотную.

Явление полного отражения света в нашей жизни.

Это явление используется в оптоволоконной оптике. Свет, под определенным углом попадая в оптически прозрачную трубку, и многократно отражаясь от ее стенок изнутри выходит через другой ее конец (рис.5). Так передаются сигналы.

При прохождении света из оптически менее плотной среды в более плотную, например из воздуха в стекло или воду,  1 > 2 ; и согласно закону преломления (1.4) показатель преломления n>1 , поэтому > (рис. 10, a): преломленный луч приближается к перпендикуляру к границе раздела сред.

Если направить луч света в обратном направлении – из оптически более плотной среды в оптически менее плотную вдоль бывшего преломленного луча (рис. 10, б), то закон преломления запишется так:

Преломленный луч по выходе из оптически более плотной среды пойдет по линии бывшего падающего луча, поэтому < , т. е. преломленный луч отклоняется от перпендикуляра. По мере увеличения угла угол преломления  растет, оставаясь всё время больше угла . Наконец, при некотором угле падения значение угла преломления приблизится к 90 и преломленный луч пойдет почти по границе раздела сред (рис. 11). Наибольшему возможному углу преломления =90 соответствует угол паления  0 .

Попробуем сообразить, что произойдет при > 0 . При падении света на границу двух сред световой луч, как об этом уже упоминалось, частично преломляется, а частично отражается от нее. При > 0 преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света .

Для наблюдения полного отражения можно использовать стеклянный полуцилиндр с матовой задней поверхностью. Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска (рис. 12). Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности. На этой поверхности луч не преломляется. На плоской поверхности луч частично преломляется и частично отражается. Отражение происходит в соответствии с законом отражения, a преломление – в соответствии с законом преломления

Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка растет, в то время как яркость (энергия) преломленного пучка падает. Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90. Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела (см.рис. 11), доля отраженной энергии составляет почти 100%. Повернем осветитель, сделав угол падениябольшим  0 . Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела, т. е. происходит полное отражение света.

На рисунке 13 изображен пучок лучей от источника, помещенного в воде недалеко от ее поверхности. Большая интенсивность света показана большей толщиной линии, изображающей соответствующий луч.

Угол падения 0 , соответствующий углу преломления 90, называют предельным углом полного отражения . При sin=1 формула (1.8) принимает вид

Из этого равенства и может быть найдено значение предельного угла полного отражения  0 . Для воды (n=1,33) он оказывается равным 4835", для стекла (n=1,5) он принимает значение 4151", а для алмаза (n=2,42) этот угол составляет 2440". Во всех случаях второй средой является воздух.

Явление полного отражения легко наблюдать на простом опыте. Нальем в стакан водуи поднимем его несколько выше уровня глаз. Поверхность воды при рассматривании ее снизу сквозь стенку кажется блестящей, словно посеребренной вследствие полного отражения света.

Полное отражение используют в так называемой волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон – световодов. Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления. За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути (рис. 14).

Волокна набираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения (рис. 15). Жгуты из волокон используются, например, в медицине для исследования внутренних органов.

По мере улучшения технологии изготовления длинных пучков волокон – световодов все шире начинает применяться связь (в том числе и телевизионная) с помощью световых лучей.

Полное отражение света показывает, какие богатые возможности для объяснения явлений распространения света заключены в законе преломления. Вначале полное отражение представляло собой лишь любопытное явление. Сейчас оно постепенно приводит к революции в способах передачи информации.

Волоконная оптика

раздел оптики, в к-ром рассматривается передача света и изображения по световодам и волноводам оптич. диапазона, в частности по многожильным световодам и пучкам гибких волокон. В. о. возникла в 50-х гг. 20 в.

В волоконно-оптич. деталях световые сигналы передаются с одной поверхности (торца световода) на другую (выходную) как совокупность

Поэлементная передача изображения волоконной деталью: 1 - изображение, поданное на входной торец; 2 - светопроводящая жила; 3 - изолирующая прослойка; 4 - мозаичное изображение, переданное на выходной торец.

элементов изображения, каждый из к-рых передаётся по своей световедущей жиле (рис.). В волоконных деталях обычно применяют стеклянное волокно, световедущая жила к-рого (сердцевина) окружена стеклом-оболочкой из др. стекла с меньшим показателем преломления. Вследствие этого на поверхности раздела сердцевины и оболочки лучи, падающие под соответствующими углами, претерпевают полное внутр. отражение и распространяются по световедущей жиле. Несмотря на множество таких отражений, потери в световодах обусловлены гл. обр. поглощением света в массе стекла жилы. При изготовлении световодов из особо чистых материалов удаётся снизить ослабление светового сигнала до неск. десятков и даже единиц дБ/км. Диаметр световедущих жил в деталях разл. назначений лежит в области от нескольких мкм до нескольких мм. Распространение света по световодам, диаметр к-рых велик по сравнению с длиной волны, происходит по законам геометрической оптики; по более тонким волокнам (порядка длины волны) распространяются лишь отд. типы волн или их совокупности, что рассматривается в рамках волновой оптики.

Для передачи изображения в В. о. применяются жёсткие многожильные световоды и жгуты с регулярной укладкой волокон. Кач-во передачи изображения определяется диаметром световедущих жил, их общим числом и совершенством изготовления. Любые дефекты световодов портят изображение. Обычно разрешающая способность волоконных жгутов составляет 10-50 лин./мм, а в жёстких многожильных световодах и спечённых из них деталей - до 100 лин./мм.

Изображение на входной торец жгута проецируется с помощью объектива. Выходной торец рассматривается через окуляр. Для увеличения или уменьшения действит. изображения применяются фоконы - пучки волокон с плавно увеличивающимся или уменьшающимся диаметром. Они концентрируют на выходном узком торце световой поток, падающий на широкий торец. При этом на выходе возрастают освещённость и наклон лучей. Повышение концентрации световой энергии возможно до тех пор, пока числовая апертура конуса лучей на выходе не достигнет числовой апертуры световода (её обычная величина 0,4-1). Это ограничивает соотношение входного и выходного радиусов фокона, к-рое практически не превосходит пяти. Широкое распространение получили также пластины, вырезанные поперёк из плотно спечённых волокон. Они служат фронтальными стёклами кинескопов и переносят изображение на их внеш. поверхность, что позволяет контактно его фотографировать. При этом до плёнки доходит осн. часть света, излучаемого люминофором, и освещённость на ней создаётся в десятки раз большая, чем при съёмке фотоаппаратом с объективом.

Световоды и др. волоконно-оптич. детали применяют в технике, медицине и во многих др. отраслях научных исследований. Жёсткие прямые или заранее изогнутые одножильные световоды и жгуты из волокон диам. 15-50 мкм применяют в медицинских приборах для освещения внутр. полостей носоглотки, желудка, бронхов и т. д. В таких приборах свет от электрич. лампы собирается конденсором на входном торце световода или жгута и по нему подаётся в освещаемую полость. Использование жгута с регулярной укладкой стеклянных волокон (гибкий эндоскоп) позволяет видеть изображение стенок внутр. полостей, диагностировать заболевания и с помощью гибких инструментов выполнять простейшие хирургич. операции без вскрытия полости. Световоды с заданным переплетением применяют в скоростной киносъёмке, для регистрации треков яд. ч-ц, как преобразователи сканирования в фототелеграфировании и телевизионной измерит. технике, как преобразователи кода и как шифровальные устройства. Созданы активные (лазерные) в о л о к н а, работающие как квант. усилители и квант. генераторы света, предназначенные для быстродействующих вычислит. машин и выполнения ф-ций логич. элементов, ячеек памяти и др. Особо прозрачные тонкие волоконные световоды с затуханием в неск. дБ/км применяются как кабели телефонной и телевизионной связи как в пределах объекта (здание, корабль и т. п.), так и на расстоянии от него в десятки км. Волоконная связь отличается помехозащищённостью, малым весом линий передачи, позволяет сэкономить дорогостоящую медь и обеспечивает развязку электрич. цепей.

Волоконные детали изготовляются из особо чистых материалов. Из расплавов подходящих марок стёкол вытягиваются световод и волокно. Предложен новый оптич. материал - кристалловолокно, выращиваемое из расплава. Световодами в кристалло-волокне явл. нитевидные кристаллы, а прослойками - добавки, вводимые в расплав.

Рефрактометрия. Подробно объяснить ход опыта по определения показателя преломления прозрачной жидкости рефрактометром.
38. Рефрактометрия (от лат. refractus - преломленный и греч. metreo - измеряю) - это метод исследования веществ, основанный на определении показателя (коэффициента) преломления (рефракции) и некоторых его функций. Рефрактометрия (рефрактометрический метод) применяется для идентификации химических соединений, количественного и структурного анализа, определения физико-химических параметров веществ.
Показатель преломления n , представляет собой отношение скоростей света в граничащих средах. Для жидкостей и твердых тел n обычно определяют относительно воздуха, а для газов - относительно вакуума. Значения n зависят от длины волны l света и температуры, которые указывают соответственно в подстрочном и надстрочном индексах. Например, показатель преломления при 20°С для D-линии спектра натрия (l = 589 нм) - n D 20 . Часто используют также линии спектра водорода С (l = 656 нм) и F (l = 486 нм). В случае газов необходимо также учитывать зависимость n от давления (указывать его или приводить данные к нормальному давлению).

В идеальных системах (образующихся без изменения объема и поляризуемости компонентов) зависимость показателя преломления от состава близка к линейной, если состав выражен в объемных долях (процентах)

n=n 1 V 1 +n 2 V 2 ,

где n, n 1 ,n 2 - показатели преломления смеси и компонентов,
V 1 иV 2 - объемные доли компонентов (V 1 +V 2 = 1).

Для рефрактометрии растворов в широких диапазонах концентраций пользуются таблицами или эмпирическими формулами, важнейшие из которых (для растворов сахарозы, этанола и др.) утверждаются международными соглашениями и лежат в основе построения шкал специализированных рефрактометров для анализа промышленной и сельскохозяйственной продукции.

Зависимость показателя преломления водных растворов некоторых веществ от концентрации:

Влияние температуры на показатель преломления определяется двумя факторами: изменением количества частиц жидкости в единице объема и зависимостью поляризуемости молекул от температуры. Второй фактор становится существенным лишь при очень большом изменении температуры.
Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным.
Для подавляющего большинства жидкостей температурный коэффициент лежит в узких пределах от –0,0004 до –0,0006 1/град. Важным исключением является вода и разбавленные водные растворы (–0,0001), глицерин (–0,0002), гликоль (–0,00026).
Линейная экстраполяция показателя преломления допустима на небольшие разности температур (10 – 20°С). Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида: n t =n 0 +at+bt 2 +…
Давление влияет на показатель преломления жидкостей значительно меньше, чем температура. При изменении давления на 1 атм. изменение n составляет для воды 1,48 ?10 -5 , для спирта 3,95 ?10 -5 , для бензола 4,8 ?10 -5 . То есть изменение температуры на 1°С влияет на показатель преломления жидкости примерно также, как изменение давления на 10 атм.

Обычно n жидких и твердых тел рефрактометрией определяют с точностью до 0,0001 на рефрактометрах , в которых измеряют предельные углы полного внутреннего отражения. Наиболее распространены рефрактометры Аббе с призменными блоками и компенсаторами дисперсии, позволяющие определять n D в "белом" свете по шкале или цифровому индикатору. Максимальная точность абсолютных измерений (10 -10) достигается на гониометрах с помощью методов отклонения лучей призмой из исследуемого материала. Для измерения n газов наиболее удобны интерференционные методы. Интерферометры используют также для точного (до 10 -7) определения разностей n растворов. Для этой же цели служат дифференциальные рефрактометры, основанные на отклонении лучей системой двух-трех полых призм.
Автоматические рефрактометры для непрерывной регистрации n в потоках жидкостей используют на производствах при контроле технологических процессов и автоматическом управлении ими, а также в лабораториях для контроля ректификации и как универсальные детекторы жидкостных хроматографов.

При некотором угле падения света ${\alpha }_{pad}={\alpha }_{pred}$, который называют предельным углом , угол преломления равен $\frac{\pi }{2},\ $при этом преломленный луч скользит по поверхности раздела сред, следовательно, преломленный луч отсутствует. Тогда из закона преломления можно записать, что:

Рисунок 1.

В случае полного отражения уравнение:

не имеет решения в области действительных значений угла преломления (${\alpha }_{pr}$). В таком случае $cos{(\alpha }_{pr})$ чисто мнимая величина. Если обратиться к Формулам Френеля, то их удобно представить в виде:

где угол падения обозначен $\alpha $ (для краткости написания), $n$ -- показатель преломления среды, где свет распространяется.

Из формул Френеля видно, что модули $\left|E_{otr\bot }\right|=\left|E_{otr\bot }\right|$, $\left|E_{otr//}\right|=\left|E_{otr//}\right|$, что означает, что отражение является «полным».

Замечание 1

Надо отметить, что неоднородная волна во второй среде не исчезает. Так, если $\alpha ={\alpha }_0={arcsin \left(n\right),\ то\ }$ $E_{pr\bot }=2E_{pr\bot }.$ Нарушения закона сохранения энергии в данном случае нет. Так как формулы Френеля справедливы для монохроматического поля, то есть к установившемуся процессу. В таком случае закон сохранения энергии требует, чтобы среднее за период изменение энергии во второй среде было равно нулю. Волна и соответствующая доля энергии проникает через грани цу раздела во вторую среду на небольшую глубину порядка длины волны и движется в ней параллельно границе раздела с фазовой скоростью, которая меньше фазовой скорости волны во второй среде. Он возвращается в первую среду в точке, которая смещена относительно точки входа.

Проникновение волны во вторую среду можно наблюдать в эксперименте. Интенсивность световой волны во второй среде заметна только на расстояниях меньших длины волны. Около поверхности раздела, на которую падает волна света, которая испытывает полное отражение, на стороне второй среды можно видеть свечение тонкого слоя, если во второй среде есть флуоресцирующее вещество.

Полное отражение вызывает возникновение миражей, когда поверхность земли имеет высокую температуру. Так, полное отражение света, которое идет от облаков приводит к появлению впечатления, что на поверхности нагретого асфальта находятся лужи.

При обычном отражении отношения $\frac{E_{otr\bot }}{E_{pad\bot }}$ и $\frac{E_{otr//}}{E_{pad//}}$ всегда вещественны. При полном отражении они комплексны. Это значит, что в таком случае фаза волны терпит скачок, при этом он отличен от нуля или $\pi $. Если волна поляризована перпендикулярно плоскости падения, то можно записать:

где ${\delta }_{\bot }$ - искомый скачок фазы. Приравняем вещественные и мнимые части, имеем:

Из выражений (5) получаем:

Соответственно, для волны, которая поляризована в плоскости падения можно получить:

Скачки фаз ${\delta }_{//}$ и ${\delta }_{\bot }$ не одинаковы. Отраженная волна будет поляризована эллиптически.

Применение полного отражения

Допустим, что две одинаковые среды разделены тонким воздушным промежутком. На него падает световая волна под углом, который больше, чем предельный. Может сложиться так, что она проникнет в воздушный промежуток как неоднородная волна. Если толщина зазора мала, то данная волна достигнет второй границы вещества и при этом будет не очень ослабленной. Перейдя из воздушного промежутка в вещество, волна превратится снова в однородную. Такой опыт был проведен еще Ньютоном. Ученый прижимал к гипотенузной грани прямоугольной призмы другую призму, которая со шлифована сферически. При этом свет проходил во вторую призму не только там, где они соприкасаются, но и в небольшом кольце вокруг контакта, в месте, где толщина зазора сравнима с длинной волны. Если наблюдения проводились в белом свете, то край кольца имел красноватую окраску. Так и должно быть, так как глубина проникновения пропорциональна длине волны (для красных лучей она больше, чем для синих). Изменяя толщину промежутка, можно изменять интенсивность проходящего света. Это явление легло в основу светового телефона, который был запатентован фирмой Цейсс. В этом устройстве в качестве одной из сред выступает прозрачная мембрана, которая совершает колебания под действием звука, падающего на нее. Свет, который проходит сквозь воздушный промежуток, изменяет интенсивность в такт с изменениями силы звука. Попадая на фотоэлемент, он порождает переменный ток, который меняется в соответствии с изменениями силы звука. Полученный ток усиливается и используется далее.

Явления проникновения волн сквозь тонкие промежутки не специфичны для оптики. Это возможно для волны любой природы, если фазовая скорость в промежутке выше, чем фазовая скорость в окружающей среде. Важное значение данное явление имеет в ядерной и атомной физике.

Явление полного внутреннего отражения используют для изменения направления распространения света. С этой целью используют призмы.

Пример 1

Задание: Приведите пример явления полного отражения, которое часто встречается.

Решение:

Можно привести такой пример. Если шоссейная дорога сильно нагрета, то температура воздуха максимальна около поверхности асфальта и убывает при увеличении расстояния от дороги. Значит, показатель преломления воздуха минимален у поверхности и растет при увеличении расстояния. Как результат этого, лучи, имеющие небольшой угол относительно поверхности шоссе терпят полное отражение. Если сконцентрировать свое внимание, при движении в автомобиле, на подходящем участке поверхности шоссе, то можно увидеть довольно далеко едущую впереди машину в перевернутом виде.

Пример 2

Задание: Каков угол Брюстера для пучка света, который падает на поверхность кристалла, если предельный угол полного отражения для данного пучка на границе раздела воздух -- кристалл равен 400?

Решение:

\[{tg(\alpha }_b)=\frac{n}{n_v}=n\left(2.2\right).\]

Из выражения (2.1) имеем:

Подставим правую часть выражения (2.3) в формулу (2.2), выразим искомый угол:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left({\alpha }_{pred}\right)\ }}\right).\]

Проведем вычисления:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left(40{}^\circ \right)\ }}\right)\approx 57{}^\circ .\]

Ответ: ${\alpha }_b=57{}^\circ .$

    На рисунке а показан нормальный луч, который проходит границу «воздух — плексиглас» и выходит из плексигласовой пластины, не претерпевая никакого отклонения при прохождении двух границ между плексигласом и воздухом. На рисунке б показан луч света, входящий в полукруглую пластину нормально без отклонения, но составляющий угол у с нормалью в точке О внутри пластины плексигласа. Когда луч покидает более плотную среду (плексиглас), скорость его распространения в менее плотной среде (воздухе) увеличивается. Поэтому он преломляется, составляя угол х по отношению к нормали в воздухе, который больше, чем у.

    Исходя из того что n = sin (угол, который луч составляет с нормалью в воздухе) / sin (угол, который луч составляет с нормалью в среде), плексигласа n n = sin x/sin у. Если производится несколько измерений х и у, то показатель преломления плексигласа может быть подсчитан усреднением результатов для каждой пары величин. Угол у может быть увеличен путем перемещения источника света по дуге круга с центром в точке О.

    Результатом этого является увеличение угла х до тех пор, пока не достигается положение, показанное на рисунке в , т. е. пока х не станет равен 90 о . Ясно, что угол х не может быть больше. Угол, который теперь луч образует с нормалью внутри плексигласа, называется критическим или предельным углом с (это тот угол падения на границу из более плотной среды в менее плотную, когда угол преломления в менее плотной среде составляет 90°).

    Обычно наблюдается слабый отраженный луч, так же как и яркий луч, который преломляется вдоль прямого края пластины. Это является следствием частичного внутреннего отражения. Заметьте также, что когда используется белый свет, то свет, появляющийся вдоль прямого края, разлагается на цвета спектра. Если источник света продвинут далее вокруг дуги, как на рисунке г , так что I внутри плексигласа становится больше критического угла с и преломления на границе двух сред не происходит. Вместо этого луч испытывает полное внутреннее отражение под углом r по отношению к нормали, где r = i.

    Чтобы произошло полное внутреннее отражение , угол падения i должен быть измерен внутри более плотной среды (плексигласа) и он должен быть больше критического угла с. Заметьте, что закон отражения также справедлив для всех углов падения больше критического угла.

    Критический угол бриллианта составляет лишь 24°38". Его «высверк», таким образом, зависит от той легкости, с которой происходит множественное полное внутреннее отражение, когда он освещается светом, что в большой мере зависит от искусной огранки и полировки, усиливающей этот эффект. Ранее было определено, что n = 1 /sin с, поэтому точное измерение критического угла с позволит определить n.

    Исследование 1. Определить n для плексигласа методом нахождения критического угла

    Поместите полукруглую пластину плексигласа в центре большого листа белой бумаги и тщательно обведите ее очертания. Найдите среднюю точку О прямого края пластины. При помощи транспортира постройте нормаль NO, перпендикулярную этому прямому краю в точке О. Вновь поместите пластину в ее очертания. Передвигайте источник света вокруг дуги влево от NO, все время направляя падающий луч на точку О. Когда преломленный луч пойдет вдоль прямого края, как показано на рисунке, отметьте путь падающего луча тремя точками Р 1 , Р 2 , и P 3 .

    Временно уберите пластину и соедините три эти точки прямой линией, которая должна пройти через О. При помощи транспортира измерьте критический угол с между прочерченным падающим лучом и нормалью. Вновь аккуратно поместите пластину в ее очертания и повторите проделанное прежде, но на этот раз двигайте источник света вокруг дуги вправо от NO, непрерывно направляя луч на точку О. Запишите два измеренных значения с в таблицу результатов и определите среднее значение критического угла с. Затем определите показатель преломления n n для плексигласа по формуле n n = 1 /sin с.

    Прибор для исследования 1 может быть также использован для того, чтобы показать, что для лучей света, распространяющихся в более плотной среде (плексиглас) и падающих на границу раздела «плексиглас — воздух» под углами, большими критического угла с, угол падения i равен углу отражения r.

    Исследование 2. Проверить закон отражения света для углов падения, больших критического угла

    Поместить полукруглую пластину плексигласа на большой лист белой бумаги и тщательно обведите ее очертания. Как и в первом случае, найдите среднюю точку О и постройте нормаль NO. Для плексигласа критический угол с = 42°, следовательно, углы падения i > 42° больше критического угла. При помощи транспортира постройте лучи под углами 45°, 50°, 60°, 70° и 80° к нормали NO.

    Вновь аккуратно поместите пластину плексигласа в ее очертания и направьте луч света из источника света вдоль линии 45°. Луч направится к точке О, отразится и появится с дугообразной стороны пластины по другую сторону от нормали. Отметьте три точки P 1 , Р 2 и Р 3 на отраженном луче. Временно уберите пластину и соедините три точки прямой линией, которая должна пройти через точку О.

    При помощи транспортира измерьте угол отражения r между и отраженным лучом, записав результаты в таблицу. Аккуратно поместите пластину в ее очертания и повторите проделанное для углов 50°, 60°, 70° и 80° к нормали. Запишите значение r в соответствующее место таблицы результатов. Постройте график зависимости угла отражения r от угла падения i. Прямолинейный график, построенный в диапазоне углов падения от 45° до 80°, будет достаточен, чтобы показать, что угол i равен углу r.

Последние материалы раздела:

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....