Зачем нужен большой адронный коллайдер. Что такое большой адронный коллайдер

Сроки повторного запуска БАКа из‑за выявления на нем новых неполадок уже несколько раз переносились . В частности, в середине июля 2009 года на коллайдере были обнаружены нарушения герметичности и утечки в системе охлаждения в секторах 8‑1 и 2‑3, из‑за чего запуск коллайдера был вновь отложен.

Как объявил ЦЕРН, пучки протонов вновь начнут циркулировать по 27‑километровому кольцу в середине ноября, а столкновения частиц начнутся несколько недель спустя.

Специалисты ЦЕРНа намерены сперва провести столкновения на энергии предыдущей ступени ускорителя ‑ 450 гигаэлектронвольт на пучок, и только затем доведут энергию до половины проектной ‑ до 3,5 тераэлектронвольт на пучок.

Однако физики отмечают, что и на этой энергии цель создания коллайдера ‑ обнаружение бозона Хиггса , частицы, отвечающей за массу всех других элементарных частиц, ‑ может быть достигнута.

БАК будет работать в этом режиме до конца 2010 года, после чего он будет остановлен для подготовки к переходу к энергии в 7 тераэлектронвольт на пучок.

В мае 2009 года в мировой прокат вышел приключенческий фильм "Ангелы и демоны" по мотивам одноименной книги Дэна Брауна.

ЦЕРН играет ключевую роль в сюжете этого произведения, и несколько эпизодов фильма были отсняты на территории ЦЕРНа. Поскольку в фильме присутствуют элементы вымысла, в том числе и при описании того, что и как изучается в ЦЕРНе, руководство ЦЕРНа сочло полезным предупредить те вопросы, которые неизбежно возникнут у многих зрителей фильма. С этой целью был запущен специальный вебсайт Angels and Demons ‑ the science behind the story. На нём в доступной форме рассказывается о тех физических явлениях, которые вплетены в сюжет фильма (прежде всего ‑ это получение, хранение и свойства антиматерии).

Развитие сюжета начинается с двух, казалось бы, не связанных между собой, но, тем не менее, ключевых для фильма событий: смерть действующего Папы Римского, и завершение экспериментов с Большим адронным коллайдером. В результате испытаний ученые получают антивещество, которое по силе действия может сравниться с самым мощным оружием. Тайное общество Иллюминатов решает воспользоваться этим изобретением в собственных целях - уничтожить Ватикан, центр мирового католицизма, который сейчас как раз остался без главы.

Материал подготовлен на основе информации РИА Новости и открытых источников

Ею является поиск путей объединения двух фундаментальных теорий – ОТО (о гравитационном ) и СМ (стандартной модели, объединяющей три фундаментальных физических взаимодействия – электромагнитного, сильного и слабого). Нахождению решения до создания БАКа препятствовали трудности при создании теории квантовой гравитации.

Построение этой гипотезы включает в себя соединение двух физических теорий – квантовой механики и общей теории относительности.

Для этого были использованы сразу несколько популярных и нужных в современной подходов – струнная теория, теория бран, теория супергравитации, а также теория квантовой гравитации. До построения колайдера главной проблемой проведения необходимых экспериментов являлось отсутствие энергии, которую нельзя достичь на других современных ускорителях заряженных частиц.

Женевский БАК дал ученым возможность проведения ранее неосуществимых экспериментов. Считается, что уже в скором будущем при помощи аппарата будут подтверждены или опровергнуты многие физические теории. Одной из самых проблемных является суперсимметрия или теория струн, которая долгое время разделяла физическое на два лагеря – «струнщиков» и их соперников.

Другие фундаментальные эксперименты, проводимые в рамках работы БАК

Интересны и изыскания ученых в области изучения топ- , являющихся самыми кварками и наиболее тяжелыми (173,1 ± 1,3 ГэВ/c²) из всех известных в настоящее время элементарных частиц.

Из-за этого свойства и до создания БАКа, ученые могли наблюдать кварки только на ускорителе «Тэватрон», так как прочие устройства просто не обладали достаточной мощностью и энергией. В свою очередь, теория кварков представляет собой важный элемент нашумевшей гипотезы о бозоне Хиггса.

Все научные изыскания по созданию и изучению свойств кварков ученые производят в топ-кварк-антикварковой паровой в БАКе.

Важной целью женевского проекта также является процесс изучения механизма электрослабой симметрии, которая также связана с экспериментальным доказательством существования бозона Хиггса. Если обозначить проблематику еще точнее, то предметом изучения является не столько сам бозон, сколько предсказанный Питером Хиггсом механизм нарушения симметрии электрослабого взаимодействия.

В рамках БАКа также проводятся эксперименты по поиску суперсимметрии – причем желаемым результатом станет и теории о том, что любая элементарная частица всегда сопровождается более тяжелым партнером, и ее опровержение.

Немного фактов о Большом адронном коллайдере, как и для чего он создан, какой с него прок и какие потенциальные опасности для человечества он таит.

1. Строительство БАК’а, или Большого адронного коллайдера, задумали еще в 1984 году, а начали только в 2001. Спустя 5 лет, в 2006 году, благодаря усилиям более чем 10-ти тысяч инженеров и ученых из разных государств, строительство Большого адронного коллайдера было завершено.

2. БАК — это самая большая экспериментальная установка в мире.

3. Так почему же Большой адронный коллайдер?
Большим его назвали благодаря его солидным размерам: длина основного кольца, по которому гоняют частицы, составляет порядка 27 км.
Адронным — так как установка ускоряет адроны (частицы, которые состоят из кварков).
Коллайдером — из-за ускоряющихся в противоположном направлении пучков частиц, которые сталкиваются друг с другом в специальных точках.

4. Для чего нужен Большой адронный коллайдер? БАК представляет из себя суперсовременный исследовательский центр, где ученые проводят опыты с атомами, сталкивая между собой на огромной скорости ионы и протоны. Ученые надеются с помощью исследований приоткрыть завесу над тайнами появления Вселенной.

5. Проект обошелся научному сообществу в астрономическую сумму — 6 млрд. долларов. Кстати, Россия делегировала на БАК 700 специалистов, которые работают и по сей день. Заказы для БАК принесли российским предприятиям порядка 120 млн долларов.

6. Без сомнений, главное открытие, сделанное в БАК — открытие в 2012 г. бозона Хиггса, или как его еще называют «частицы Бога». Бозон Хигса — это последнее звено в Стандартной модели. Еще одно значительное событие в Бак’е — достижение рекордного значения энергии столкновений в 2,36 тераэлектронвольта.

7. Некоторые ученые, в том числе и в России, считают, что благодаря масштабным экспериментам в ЦЕРН’е (Европейской организации по ядерным исследованиям, где, собственно, и расположен коллайдер), ученым удастся построить первую в мире машину времени. Однако большинство ученых не разделяют оптимизма коллег.

8. Главные опасения человечества по поводу самого мощного на планете ускорителя основаны на опасности, которая грозит человечеству, в результате образования микроскопических черных дыр, способных к захвату окружающей материи. Есть еще одна потенциальная и крайне опасная угроза — возникновения страпелек (произв. от Странная капелька), которые, гипотетически, способны при столкновении с ядром какого-либо атома, образовывать все новые страпельки, преобразуя материю всей Вселенной. Однако большинство самых авторитетных ученых заявляют, что такой исход маловероятен. Но теоретически возможен

9. В 2008 году на ЦЕРН подали в суд двое жителей штата Гавайи. Они обвинили ЦЕРН в попытке положить конец человечеству из-за халатности, требуя от ученых гарантий на безопасность.

10. Большой адронный коллайдер расположен в Швейцарии недалеко от Женевы. В ЦЕРНе функционирует музей, где посетителям наглядно объясняют о принципах работы коллайдера и для чего он был построен.

11 . Ну и напоследок немного забавный факт. Судя по запросам в Яндексе, многие люди, которые ищут информацию о Большом адронном коллайдере, не знают как правильно пишется название ускорителя. Например, пишут «аНдронный» (и не только пишут, чего стоят репортажи НТВ с их аНдронным коллайдером), порой пишут «андроидный» (Империя наносит ответный удар). В буржуйском нете тоже не отстают и вместо «hadron» вбивают в поисковик «hardon» (на православном английском hard-on — стояк). Интересен вариант написания на белорусском — «Вялікі гадронны паскаральнік», что переводится как «Большой гадронный ускоритель».

Адронный коллайдер. Фото

История создания ускорителя, который мы знаем сегодня как большой адронный коллайдер, начинается ещё с 2007 года. Изначально хронология ускорителей началась с циклотрона. Прибор представлял собой небольшое устройство, которое легко умещалось на столе. Затем история ускорителей стала стремительно развиваться. Появился синхрофазотрон и синхротрон.

В истории, пожалуй, самым занимательным стал период с 1956 по 1957 годы. В те времена советская наука, в частности физика, не отставала от зарубежных братьев. Используя наработанный годами опыт, советский физик по имени Владимир Векслер совершил прорыв в науке. Им был создан самый мощный по тем временам синхрофазотрон. Его рабочая мощность была равна 10 гигаэлектронвольт (10 миллиардов электронвольт). После этого открытия создавались уже серьёзные образцы ускорителей: большой электронно-позитронный коллайдер, Швейцарский ускоритель, в Германии, США. Все они имели одну общую цель — изучение фундаментальных частиц кварков.

Большой адронный коллайдер был создан в первую очередь благодаря стараниям итальянского физика. Имя ему Карло Руббиа, лауреат Нобелевской премии. Во время своей деятельности Руббиа работал директором в Европейской организации по ядерным исследованиям. Решено было построить и запустить адронный коллайдер именно на месте центра исследований.

Где адронный коллайдер?

Коллайдер размещён на границе между Швейцарией и Францией. Длина его окружности составляет 27 километров, поэтому его и называют большим. Кольцо ускорителя уходит вглубь от 50 до 175 метров. В коллайдере установлено 1232 магнита. Они являются сверхпроводящими, а значит из них можно выработать максимальное поле для разгона, так как затраты энергии в таких магнитах практически отсутствуют. Общий вес каждого магнита составляет 3,5 тонны при длине 14,3 метра.

Как и любой физический объект, большой адронный коллайдер выделяет тепло. Поэтому его необходимо постоянно остужать. Для этого поддерживается температура 1,7 К с помощью 12 миллионов литров жидкого азота. Помимо этого, для охлаждения используется (700 тысяч литров), и самое важное - используется давление, которое в десять раз ниже нормального атмосферного.

Температура 1,7 К по шкале Цельсия составляет -271 градус. Такая температура почти близка к называется минимально возможный предел, который может иметь физическое тело.

Внутренняя часть тоннеля не менее интересна. Там находятся ниобий-титановые кабели со сверхпроводящими возможностями. Их длина составляет 7600 километров. Общий вес кабелей равен 1200 тонн. Внутренность кабеля — это сплетение 6300 проволок с общим расстоянием в 1,5 миллиарда километров. Такая длина равна 10 астрономическим единицам. Например, равняется 10 таким единицам.

Если говорить о его географическом местоположении, то можно сказать, что кольца коллайдера лежат меж городов Сен-Жени и Форнее-Вольтер, расположенными на французской стороне, а также Мейрин и Вессурат - со Швейцарской стороны. Маленькое кольцо, именуемое PS, проходит вдоль границы по диаметру.

Смысл существования

Для того чтобы ответить на вопрос «для чего нужен адронный коллайдер», нужно обратиться к учёным. Многие учёные говорят, что это самое великое изобретение за весь период существования науки, и то, что без него у науки, которая известна нам сегодня, просто нет смысла. Существование и запуск большого адронного коллайдера интересны тем, что при столкновении частиц в адронном коллайдере происходит взрыв. Все мельчайшие частицы разлетаются в разные стороны. Образовываются новые частицы, которые могут объяснить существование и смысл многого.

Первое, что учёные старались найти в этих разбившихся частицах — это теоретически предсказанную физиком Питером Хиггсом элементарную частицу, названную Это потрясающая частица является носителем информации, как считается. Ещё её принято называть «частицей Бога». Открытие ее приблизило бы учёных к пониманию вселенной. Нужно отметить, что в 2012 году, 4 июля, адронный коллайдер (запуск его частично удался) помог обнаружить похожую частицу. На сегодняшний день учёные пытаются изучить её подробнее.

Долго ли...

Конечно, сразу возникает вопрос, а почему учёные так долго изучают эти частицы. Если есть прибор, то можно запускать его, и каждый раз снимать все новые и новые данные. Дело в том, что работа адронного коллайдера — это дорогостоящее удовольствие. Один запуск обходится в большую сумму. Например, годовой расход энергии равняется 800 млн. кВт/ч. Такой объем энергии расходует город, в котором проживает около 100 тыс. человек, по средним меркам. И это не считая затрат на обслуживание. Ещё одна причина - это то, что у адронного коллайдера взрыв, который происходит при сталкивании протонов, связан с получением большого объёма данных: компьютеры считывают столько информации, что на обработку уходит большое количество времени. Даже несмотря на то что мощность компьютеров, которые получают информацию, велика даже по сегодняшним меркам.

Следующая причина — это не менее известная Учёные, работающие с коллайдером в этом направлении, уверены, что видимый спектр всей вселенной составляет всего 4%. Предполагается, что оставшиеся — это тёмная материя и тёмная энергия. Экспериментально пытаются доказать то, что эта теория верна.

Адронный коллайдер: за или против

Выдвинутая теория о тёмной материи поставила под сомнение безопасность существования адронного коллайдера. Возник вопрос: "Адронный коллайдер: за или против?" Он волновал многих учёных. Все великие умы мира разделились на две категории. «Противники» выдвинули интересную теорию о том, что если такая материя существует, то у неё должна быть противоположная ей частица. И при столкновении частиц в ускорителе возникает тёмная часть. Существовал риск того, что тёмная часть и часть, которую мы видим, столкнутся. Тогда это могло бы привести к гибели всей вселенной. Однако после первого запуска адронного коллайдера эта теория была частично разбита.

Далее по значимости идёт взрыв вселенной, вернее сказать - рождение. Считается, что при столкновении можно пронаблюдать то, как вселенная вела себя в первые секунды существования. То, как она выглядела после происхождения Большого взрыва. Считается, что процесс столкновения частиц очень схож с тем, который был в самом начале зарождения вселенной.

Ещё не менее фантастичная идея, которую проверяют учёные - это экзотические модели. Это кажется невероятным, но есть теория, которая предполагает, что существуют иные измерения и вселенные с похожими на нас людьми. И как ни странно, ускоритель и здесь сможет помочь.

Проще говоря, цель существования ускорителя в том, чтобы понять, что такое вселенная, как она была создана, доказать или опровергнуть все существующие теории о частицах и связанных с ними явлениях. Конечно, на это потребуются годы, но с каждым запуском появляются новые открытия, которые переворачивают мир науки.

Факты об ускорителе

Всем известно, что ускоритель разгоняет частицы до 99% скорости света, но не многие знают, что процент равен 99,9999991% от скорости света. Это потрясающая цифра имеет смысл благодаря идеальной конструкции и мощным магнитам ускорения. Также нужно отметить некоторые менее известные факты.

Приблизительно 100 млн. потоков с данными, которые приходят от каждого из двух основных детекторов, могут в считаные секунды заполнить больше 100 тысяч компакт-дисков. Всего за один месяц количество дисков бы достигло такой высоты, что если их сложить в стопу, то хватило бы до Луны. Поэтому было принято решение собирать не все данные, которые приходят с детекторов, а лишь те, которые разрешит использовать система сбора данных, которая по факту выступает как фильтр для полученных данных. Было решено записывать лишь 100 событий, которые возникли в момент взрыва. Записываться эти события будут в архив вычислительного центра системы Большого адронного коллайдера, который расположен в Европейской лаборатории по физике элементарных частиц, которая по совместительству является местом расположения ускорителя. Записываться будут не те события, которые были зафиксированы, а те, которые представляют для научного сообщества наибольший интерес.

Последующая обработка

После записи сотни килобайт данных будут обрабатывать. Для этого используется более двух тысяч компьютеров, расположенных, в ЦЕРН. Задача этих компьютеров заключается в обработке первичных данных и формировании из них базы, которая будет удобна для дальнейшего анализа. Далее сформированный поток данных будет направлен на вычислительную сеть GRID. Эта интернет-сеть объединяет тысячи компьютеров, которые располагаются в разных институтах по всему миру, связывает более сотни крупных центров, которые расположены на трёх континентах. Все такие центры соединены с ЦЕРН с использованием оптоволокна - для максимальной скорости передачи данных.

Говоря о фактах, нужно упомянуть также о физических показателях строения. Туннель ускорителя находится в отклонении на 1,4% от горизонтальной плоскости. Сделано это в первую очередь для того, чтобы поместить большую часть туннеля ускорителя в монолитную скалу. Таким образом, глубина размещения на противоположных сторонах разная. Если считать со стороны озера, которое находится недалеко от Женевы, то глубина будет равна 50 метрам. Противоположная часть имеет глубину 175 метров.

Интересно то, что лунные фазы влияют на ускоритель. Казалось бы, как такой отдалённый объект может воздействовать на таком расстоянии. Однако замечено, что во время полнолуния, когда происходит прилив, земля в районе Женевы, поднимается на целых 25 сантиметров. Это влияет на длину коллайдера. Протяжённость тем самым увеличивается на 1 миллиметр, а также изменяется энергия пучка на 0,02%. Поскольку контроль энергии пучка должен проходить вплоть до 0,002%, исследователи обязаны учитывать это явление.

Также интересно то, что туннель коллайдера имеет форму восьмиугольника, а не круга, как многие представляют. Углы образуются из-за коротких секций. В них располагаются установленные детекторы, а также система, которая управляет пучком ускоряющихся частиц.

Строение

Адронный коллайдер, запуск которого связан с использованием многих деталей и волнением учёных, - удивительное устройство. Весь ускоритель состоит из двух колец. Малое кольцо называется Протонный синхротрон или, если использовать аббревиатуры — PS. Большое кольцо - Протонный суперсинхротрон, или SPS. Совместно два кольца позволяют разогнать части до 99,9 % скорости света. При этом коллайдер повышает и энергию протонов, увеличивая их суммарную энергию в 16 раз. Также он позволяет сталкивать частицы между собой примерно 30 млн. раз/с. в течение 10 часов. От 4 основных детекторов получается по большей мере 100 терабайт цифровых данных в секунду. Получение данных обусловлено отдельными факторами. Например, они могут обнаружить элементарные частицы, которые имеют отрицательный электрический заряд, а также обладают половинным спином. Поскольку эти частицы являются неустойчивыми, то прямое их обнаружение невозможно, возможно обнаружить только их энергию, которая будет вылетать под определённым углом к оси пучка. Эта стадия называется первым уровнем запуска. За этой стадией следят более чем 100 специальных плат обработки данных, в которые встроены логические схемы реализации. Эта часть работы характерна тем, что в период получения данных происходит отбор более чем 100 тысяч блоков с данными в одну секунду. Затем эти данные будут использоваться для анализа, который происходит с использованием механизма более высокого уровня.

Системы следующего уровня, наоборот, принимают информацию от всех потоков детектора. Программное обеспечение детектора работает в сети. Там оно будет использовать большое количество компьютеров для обработки последующих блоков данных, среднее время между блоками - 10 микросекунд. Программы должны будут создавать отметки частиц, соответствуя изначальным точкам. В результате получится сформированный набор данных, состоящих из импульса, энергии, траектории и других, которые возникли при одном событии.

Части ускорителя

Весь ускоритель можно поделить на 5 основных частей:

1) Ускоритель электронно-позитронного коллайдера. Деталь, представляет собой около 7 тысяч магнитов со сверхпроводящими свойствами. С помощью них происходит направление пучка по кольцевому туннелю. А также они сосредотачивают пучок в один поток, ширина которого уменьшится до ширины одного волоса.

2) Компактный мюонный соленоид. Это детектор, предназначенный для общего назначения. В таком детекторе ведутся поиски новых явлений и, например, поиск частиц Хиггса.

3) Детектор LHCb. Значение этого устройства заключается в поиске кварков и противоположных им частиц - антикварков.

4) Тороидальная установка ATLAS. Этот детектор предназначен для фиксации мюонов.

5) Alice. Этот детектор захватывает столкновения ионов свинца и протон-протонные столкновения.

Проблемы при запуске адронного коллайдера

Несмотря на то что наличие высоких технологий исключает возможность ошибок, на практике все иначе. Во время сборки ускорителя происходили задержки, а также сбои. Нужно сказать, что неожиданной такая ситуация не была. Устройство содержит столько нюансов и требует такой точности, что учёные ожидали подобных результатов. Например, одна из проблем, которая встала перед учёными во время запуска - отказ магнита, который фокусировал пучки протонов непосредственно перед их столкновением. Эта серьёзная авария была вызвана разрушением части крепления вследствие потери сверхпроводимости магнитом.

Эта проблема возникла 2007 году. Из-за неё запуск коллайдера откладывали несколько раз, и только в июне запуск состоялся, спустя почти год коллайдер все же запустился.

Последний запуск коллайдера прошёл успешно, было собрано множество терабайт данных.

Адронный коллайдер, запуск которого состоялся 5 апреля 2015 года, успешно функционирует. В течение месяца пучки будут гонять по кольцу, постепенно увеличивая мощность. Цели для исследования как таковой нет. Будет повышена энергия столкновения пучков. Значение поднимут с 7 ТэВ до 13 ТэВ. Такое увеличение позволит увидеть новые возможности при столкновении частиц.

В 2013 и 2014 гг. проходили серьёзные технические осмотры туннелей, ускорителей, детекторов и другого оборудования. В результате было 18 биполярных магнитов со сверхпроводящей функцией. Нужно отметить, что общее количество их составляет 1232 штуки. Однако оставшиеся магниты не остались без внимания. В остальных заменили системы защиты от остывания, поставили улучшенные. Также улучшена охлаждающая система магнитов. Это позволяет им оставаться при низких температурах с максимальной мощностью.

Если все пройдёт успешно, то следующий запуск ускорителя пройдёт лишь через три года. Через этот период намечены плановые работы по улучшению, техническому осмотру коллайдера.

Нужно отметить, что ремонт обходится в копейку, не учитывая стоимость. Адронный коллайдер, по состоянию на 2010 год имеет цену, равную 7,5 млрд. евро. Эта цифра выводит весь проект на первое место в списке самых дорогих проектов в истории науки.

Еще несколько лет назад я понятия не имел что такое адронные коллайдеры, Бозон Хиггса и для чего тысячи ученых всего мира трудятся в огромном физическом кампусе на границе Швейцарии и Франции, закапывая в землю миллиарды долларов.
Затем для меня, как и многих других жителей планеты, стали привычными выражение Большой Адронный Коллайдер, знание о сталкивающихся в нем на скорости света элементарных частицах и об одном из величайших открытий последнего времени — Бозоне Хиггса.

И вот, в середине июня мне представилась возможность своими глазами увидеть то, о чем столько говорят и о чем бродит столько противоречивых слухов.
Это была не просто короткая экскурсия, а полноценный день, проведенный в крупнейшей в мире лаборатории ядерной физики — Церне. Здесь нам удалось и пообщаться с самими учеными-физиками, и увидеть массу интересного в этом научном кампусе, спуститься в святая-святых — Большой Адронный Коллайдер (а ведь когда он запущен и в нем проводятся испытания, какой-либо доступ извне к нему невозможен), побывать на заводе по производству гигантских магнитов для коллайдера, в центре Atlas, где ученые проводят анализ данных, полученных в коллайдере, тайком побывать в новейшем строящемся линейном коллайдере и даже, почти как в квесте, практически пройти по тернистому пути элементарной частицы, от конца к началу. И увидеть, откуда же все начинается…
Но обо всем этом в отдельных постах. Сегодня просто Большой Адронный Коллайдер.
Если это можно назвать просто мой мозг отказывается понять, КАК такое можно было сначала придумать, а затем построить.

2. Много лет назад эта картинка стала всемирно известной. Многие считают, что это и есть Большой Адронный в разрезе. На самом деле, это разрез одного из самых больших детекторов — CMS. Его диаметр составляет около 15 метров. Это не самый большой детектор. Диаметр Atlas-а около 22 метров.

3. Чтобы примерно понимать, что это вообще такое и насколько коллайдер большой, посмотрим на спутниковую карту.
Это предместье Женевы, совсем недалеко от Женевского озера. Именно здесь базируется огромный кампус ЦЕРНа, о котором я отдельно расскажу чуть позже, и под землей на различных глубинах располагается куча коллайдеров. Да-да. Он не один. Их десяток. Большой Адронный просто венчает эту структуру, образно говоря, завершая цепочку коллайдеров, по которым разгоняются элементарные частицы. Об этом тоже я расскажу отдельно, пройдя вместе с частицей от Большого (LHC) до самого первого, линейного Linac.
Диаметр кольца LHC составляет почти 27 километров и он залегает на глубине чуть более 100 метров (на рисунке самое большое кольцо).
В LHC есть четыре детектора — Alice, Atlas, LHCb и CMS. Мы спускались к детектору CMS.

4. Помимо этих четырех детекторов, все остальное пространство под землей представляет из себя тоннель, в котором располагается беспрерывная кишка из вот таких синих сегментов. Это магниты. Гигантские магниты, в которых создается сумасшедшее магнитное поле, в котором и двигаются со скоростью света элементарные частицы.
Всего их 1734.

5. Внутри магнит представляет из себя вот такую сложную структуру. Здесь масса всего, но самое основное — это две полые трубки внутри, в которых летают протонные пучки.
В четырех местах (в тех самых детекторах) эти трубки пересекаются и протонные пучки сталкиваются. В тех местах, где они сталкиваются, протоны разлетаются на различные частицы, что и фиксируют детекторы.
Это если вкратце говорить о том, что это за ерунда и как она работает.

6. Итак, 14 июня, утро, ЦЕРН. Мы приезжаем к малозаметному заборчику с воротами и небольшим зданием на территории.
Это вход в один из четырех детекторов Большого Адронного Коллайдера — CMS.
Здесь я хочу немного остановиться, чтобы рассказать о том, как нам вообще удалось сюда попасть и благодаря кому.
А всему «виной» Андрей, наш человек, который работает в ЦЕРНе, и благодаря которому наше посещение было не какой-то короткой скучной экскурсией, а невероятно интересным и наполненным огромным количеством информации.
Андрей (он в зеленой футболке) никогда не против гостей и всегда рад способствовать посещению этой Мекки ядерной физики.
Знаете, что интересно? Это пропускной режим в Коллайдере и в ЦЕРНе вообще.
Да, все по магнитной карте, но… сотрудник по своему пропуску имеет доступ на 95% территории и объектов.
И только те, где повышенный уровень радиационной опасности, нужен специальный доступ — это внутрь самого коллайдера.
А так — без проблем сотрудники передвигаются по территории.
На минуточку — здесь вложены миллиарды долларов и масса самого невероятного оборудования.
И тут же я вспоминаю какие-нибудь заброшенные объекты в Крыму, где все давно нафиг вырезано, но, тем не менее, все мегасекретно, снимать ни в коем случае нельзя, и объект невесть какой стратегический.
Просто здесь люди адекватно думают головой.

7. Так выглядит территория CMS. Никаких тебе понтов во внешней отделке и супер-тачек на парковке. А ведь могут себе позволить. Просто незачем.

8. ЦЕРН, как ведущий мировой научный центр в области физики, использует несколько различных направлений в части пиара. Один из них — так называемое «Tree».
В его рамках приглашаются школьные учителя по физике из разных стран и городов. Им здесь показывают и рассказывают. Затем учителя возвращаются в свои школы и рассказывают об увиденном ученикам. Какое-то количество учеников, вдохновившись рассказом, начинают с большим интересом заниматься физикой, затем идут в ВУЗы на физические специальности и в будущем, возможно, даже попадут сюда работать.
Но пока дети еще учатся в школе, у них тоже есть возможность побывать в ЦЕРНе и, конечно же, спуститься в Большой Адронный Коллайдер.
Несколько раз в месяц здесь проводятся специальные «дни открытых дверей» для одаренных детей из разных стран, влюбленных в физику.
Их отбирают те самые учителя, которые были в основе этого дерева и подают предложения в офис ЦЕРНа в Швейцарии.
Так совпало, что в день, когда мы приехали увидеть Большой Адронный Коллайдер, сюда приехала одна из таких групп из Украины — дети, воспитанники Малой Академии Наук, прошедшие сложный конкурс. Вместе с ними мы спустились на 100-метровую глубину, в самое сердце Коллайдера.

9. Слава с нашими бейджами-пропусками.
Обязательные элементы работающих здесь физиков — шлем с фонарем и ботинки с металлической пластиной на носке (чтобы при падении груза уберечь пальцы ног)

10. Одаренные дети, увлеченные физикой. Через несколько минут сбудется их места — они спустятся в Большой Адронный Коллайдер

11. Рабочие играют в домино отдыхают перед очередной сменой под землей

12. Контрольно-управляющий центр CMS. Сюда стекаются первичные данные от основных датчиков, характеризующих функционирование системы.
Во время работы коллайдера, здесь круглосуточно работает команда из 8 человек.

13. Нужно сказать, что в настоящий момент Большой Адронный остановлен на два года для выполнения программы ремонта и модернизации коллайдера.
Дело в том, что 4 года назад на нем произошла авария, после которой коллайдер так и не работал на полную мощность (об аварии я расскажу в следующем посте).
После модернизации, которая закончится в 2014 году, он должен работать на еще большей мощности.
Если бы коллайдер сейчас работал, побывать в нем нам бы точно не удалось

14. На специальном техническом лифте мы спускаемся на глубину более 100 метров, где расположен Коллайдер.
Лифт является единственным средством спасения персонала в случае чрезвычайной ситуации, т.к. лестниц здесь нет. То есть это самое безопасное место в CMS.
По инструкции, в случае тревоги, весь персонал должен немедленно направляться к лифту.
Здесь создается избыточной давление, чтобы в случае задымления дым не попал внутрь и люди не получили отравление.

15. Борис переживает, чтобы не было задымления

16. На глубине. Здесь все пронизано коммуникациями

17. Бесконечные километры проводов и кабелей для передачи данных

18. Здесь огромное количество труб. Так называемая криогеника. Дело в том, что внутри магнитов для охлаждения используется гелий. Также необходимо охлаждение других систем, а также гидравлика.

19. В залах обработки данных, расположенных в детекторе расположен находится огромное число серверов.
Они объединены в так называемые триггеры невероятной производительности.
Например, первый триггер за 3 миллисекунды из 40 000 000 событий должен отобрать около 400 и передать их на второй триггер — высшего уровня.

20. Оптоволоконное безумие.
Компьютерные залы расположены выше детектора, т.к. здесь совсем небольшое магнитное поле, не препятствующие работе электроники.
В самом детекторе сбор данных осуществлять бы не удалось.

21. Глобальный триггер. Он состоит из 200 компьютеров

22. Какой там Apple? Dell !!!

23. Серверные шкафы надежно заперты

24. Забавный рисунок на одном из рабочих мест операторов.

25. В конце 2012 года в Большом Адронном Коллайдере в результате эксперимента таки был открыт Бозон Хиггса, и это событие широко отмечалось работниками ЦЕРНа.
Бутылки от шампанского после празднования не выбросили специально, считая, что это только начало великих дел

26. На подходе к самому детектору везде таблички, предупреждающие о радиационной опасности

26. У всех сотрудников Коллайдера есть персональные дозиметры, которые они обязаны поднести к считывающему устройству и зафиксировать свое нахождение.
Дозиметр накапливает уровень радиации и в случае приближения к граничной дозе, информирует сотрудника, а также он-лайн передает данные на пост управления, предупреждая о том, что около коллайдера находится человек, который в опасности

27. Перед самым детектором система доступа высшего уровня.
Войти можно, приложим персональную карту, дозиметр и пройдя сканирование сетчатки глаза

28. Что я и делаю

29. И вот он — детектор. Небольшое жало внутри — это что-то похожее на патрон для дрели, в котором расположены те огромные магниты, которые сейчас казались бы совсем маленькими. В настоящий момент магниты отсутствуют, т.к. проходит модернизация

30. В рабочем состоянии детектор соединен и выглядит единым целым

31. Вес детектора — 15 тысяч тонн. Здесь создается невероятное по силе магнитное поле.

32. Сравните размеры детектора с людьми и техникой, работающими внизу

33. Кабеля синего цвета — питание, красные — данные

34. Интересно, что во время работы Большой Адронный потребляет в час 180 мегаватт электроэнергии.

35. Текущие работы по обслуживанию датчиков

36. Многочисленные датчики

37. И питание к ним… обратно возвращается оптоволокно

38. Взгляд невероятно умного человека.

39. Полтора часа под землей пролетает, как пять минут… Поднявшись обратно на бренную землю, невольно задумываешься… КАК это можно сделать.
И ЗАЧЕМ они это делают….

Последние материалы раздела:

Роль Троцкого в Октябрьской революции и становлении советской власти
Роль Троцкого в Октябрьской революции и становлении советской власти

«Лента.ру»: Когда началась Февральская революция, Троцкий находился в США. Чем он там занимался и на какие деньги жил?Гусев: К началу Первой...

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...