Вывод основного закона динамики вращательного движения. Проверка основного закона динамики вращательного движения твердого тела Основной закон вращательного движения твердого тела

Моментом силы относительно неподвижной точки O называется векторная физическая величина, определяемая векторным произведением радиус-вектора , проведённого из точки O в точку A приложения силы, на силу (рис.1.4.1):

(1.4.1)

Здесь – псевдовектор, его направление совпадает с направлением движения правого винта при его вращении отк.

Модуль момента силы

,

где
– угол междуи,
– кратчайшее расстояние между линией действия силы и точкойО плечо силы .

Моментом силы относительно неподвижной оси z
, равная проекции на эту ось векторамомента силы, определённого относительно произвольной точки
O данной оси z (рис. 1.4.1).

Работа при вращении тела равна произведению момента действующей силы на угол поворота:

.

С другой стороны эта работа идёт на увеличение его кинетической энергии:

, но

, поэтому

, или
.

Учитывая, что
, получим

. (1.4.2)

Получили основное уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси: момент внешних сил, действующих на тело, равен произведению момента инерции тела на угловое ускорение.

Можно показать, что если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство:


,

где I – главный момент инерции тела (момент инерции относительно главной оси).

1.5 Момент импульса и закон его сохранения

Моментом импульса материальной точки А относительно неподвижной точки О называется векторная физическая величина, определяемая векторным произведением :

(1.5.1)

где – радиус-вектор, проведённый из точкиО в точкуА ;
– импульс материальной точки (рис. 1.5.1).
– псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль вектора момента импульса

,

где
– угол между векторамии,– плечо вектораотносительно точкиО .

Моментом импульса относительно неподвижной оси z называется скалярная величина
, равная проекции на эту ось вектора момента импульса, определённого относительно произвольной точки
О данной оси. Значение момента импульса
не зависит от положения точкиО на осиz .

При вращении абсолютно твёрдого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиусас некоторой скоростью. Скоростьи импульс
перпендикулярны этому радиусу, т.е. радиус является плечом вектора
. Поэтому можно записать, что момент импульса отдельной частицы

и направлен по оси в сторону, определяемую правилом правого винта.

Момент импульса твёрдого тела относительно оси есть сумма моментов импульсов отдельных частиц:

.

Используя формулу
, получим

, т.е.
. (1.5.2)

Таким образом, момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение (1.5.2) по времени:

, т.е.
. (1.5.3)

Это выражение – ещё одна форма основного уравнения (закона) динамики вращательного движения твёрдого тела относительно неподвижной оси: производная по времени от момента импульса механической системы (твёрдого тела) относительно оси равна главному моменту всех внешних сил, действующих на эту систему, относительно той же оси .

Можно показать, что имеет место векторное равенство
.

В замкнутой системе момент внешних сил
и
, откуда

. (1.5.4)

Выражение (1.5.4) представляет собой закон сохранения момента импульса : момент импульса замкнутой системы сохраняется.

Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (таблица 1.5.1).

Таблица 1.5.1

Поступательное

движение

Вращательное

движение

Функциональная

зависимость

Линейное перемещение

перемещение

Линейная скорость

скорость

Линейное ускорение

ускорение

(для материальной точки)

импульса

Основное уравнение динамики



Работа

Работа вращения

Кинетическая энергия

Кинетическая энергия вращения

Закон сохранения импульса

Закон сохранения момента импульса

Основные понятия.

Момент силы относительно оси вращения – это векторное призведение радиус-вектора на силу.

Момент силы – это вектор, направление которого определяется по правилу буравчика (правого винта) в зависимости от направления силы, действующей на тело. Момент силы направлен вдоль оси вращения и не имеет конкретной точки приложения.

Численное значение данного вектора определяется по формуле:

M=r×F × sina (1.15),

где a- угол между радиус-вектором и направлением действия силы.

Если a=0 или p , момент силы М=0 , т.е. сила, проходящяя через ось вращения или совпадающяя с ней, вращения не вызывает.

Наибольший по модулю вращающий момент создается, если сила действует под углом a=p/2 (М > 0) или a=3p/2 (М < 0).

Используя понятие плеча силы (плечо силы d – это перпендикуляр, опущенный из центра вращения на линию действия силы), формула момента силы принимает вид:

Где (1.16)

Правило моментов сил (условие равновесия тела, имеющего неподвижную ось вращения):

Для того, чтобы тело, имеющее неподвижную ось вращения, находилось в равновесии, необходимо, чтобы алгебраическая сумма моментов сил, действующих на данное тело, равнялась нулю.

S М i =0 (1.17)

Единицей измерения момента силы в системе СИ является [Н×м]

При вращательном движении инертность тела зависит не только от его массы, но и от распределения ее в пространстве относительно оси вращения.

Инертность при вращении характеризуется моментом инерциитела относительно оси вращения J.

Момент инерции материальной точки относительно оси вращения – это величина, равная произведению массы точки на квадрат ее расстояния от оси вращения:

J i =m i × r i 2 (1.18)

Моментом инерции тела относительно оси называется сумма моментов инерции материальных точек, из которых состоит тело:

J=S m i × r i 2 (1.19)

Момент инерции тела зависит от его массы и формы, а также от выбора оси вращения. Для определения момента инерции тела относительно некоторой оси используется теорема Штейнера-Гюйгенса:

J=J 0 +m× d 2 (1.20),

где J 0 момент инерции относительно параллельной оси, проходящей через цент масс тела, d расстояние между двумя параллельными осями. Момент инерции в СИ измеряется в [кг×м 2 ]

Момент инерции при вращательном движении туловища человека определяют опытным путем и рассчитывают приблизительно по формулам для цилиндра, круглого стержня или шара.

Момент инерции человека относительно вертикальной оси вращения, которая проходит через центр масс (центр масс тела человека находится в сагиттальной плоскости немного впереди второго крестцового позвонка), в зависимости от положения человека, имеет следующие значения: при стойке “смирно” – 1,2 кг×м 2 ; при позе «арабеск» – 8 кг×м 2 ; в горизонтальном положении – 17 кг× м 2 .

Работа во вращательном движении совершается при вращении тела под действием внешних сил.

Элементарная работа силы во вращательном движении равна произведению момента силы на элементарный угол поворота тела:

dA i =M i × dj (1.21)

Если на тело действует несколько сил, то элементарная работа равнодействующей всех приложенных сил определяется по формуле:

dA=M× dj (1.22),

где М – суммарный момент всех внешних сил, действующих на тело.

Кинетическая энергия вращающегося тела W к зависит от момента инерции тела и угловой скорости его вращения:

Момент импульса (момент количества движения) – величина, численно равная произведению импульса тела на радиус вращения.

L=p× r=m× V× r (1.24).

После соответствующих преобразований можно записать формулу для определения момента импульса в виде:

(1.25).

Момент импульса – вектор, направление которого определяется по правилу правого винта. Единицей измерения момента импульса в СИ является [кг×м 2 /с]

Основные законы динамики вращательного движения.

Основное уравнение динамики вращательного движения:

Угловое ускорение тела, совершающего вращательное движение, прямо пропорционально суммарному моменту всех внешних сил и обратно пропорционально моменту инерции тела.

(1.26).

Данное уравнение играет ту же роль при описании вращательного движения, что и второй закон Ньютона для поступательного движения. Из уравнения видно, что при действии внешних сил угловое ускорение тем больше, чем меньше момент инерции тела.

Второй закон Ньютона для динамики вращательного движения можно записать в ином виде:

(1.27),

т.е. первая производная от момента импульса тела по времени равна суммарному моменту всех внешних сил, действующих на данное тело.

Закон сохранения момента импульса тела:

Если суммарный момент всех внешних сил, действующих на тело, равен нулю, т.е.

S M i =0 , тогда dL/dt=0 (1.28).

Из этого следует или (1.29).

Это утверждение составляет сущность закона сохранения момента импульса тела, который формулируется следующим образом:

Момент импульса тела остается постоянным, если суммарный момент внешних сил, действующих на вращающееся тело, равен нулю.

Этот закон является справедливым не только для абсолютно твердого тела. Примером является фигурист, который выполняет вращение вокруг вертикальной оси. Прижимая руки, фигурист уменьшает момент инерции и увеличивает угловую скорость. Чтобы затормозить вращения, он, наоборот, широко разводит руки; в результате момент инерции увеличивается, и угловая скорость вращения уменьшается.

В заключение приведем сравнительную таблицу основных величин и законов, характеризующих динамику поступательного и вращательного движений.

Таблица 1.4.

Поступательное движение Вращательное движение
Физическая величина Формула Физическая величина Формула
Масса m Момент инерции J=m×r 2
Сила F Момент силы M=F×r, если
Импульс тела (количество движения) p=m×V Момент импульса тела L=m×V×r; L=J×w
Кинетическая энергия Кинетическая энергия
Механическая работа dA=FdS Механическая работа dA=Mdj
Основное уравнение динамики поступательного движения Основное уравнение динамики вращательного движения ,
Закон сохранения импульса тела или если Закон сохранения момента импульса тела или SJ i w i =const, если

Центрифугирование.

Разделение неоднородных систем, состоящих из частиц различной плотности, может быть произведено под действием силы тяжести и силы Архимеда (выталкивающей силы). Если есть водная суспензия частиц различной плотности, то на них действует результирующая сила

F р =F т – F А =r 1 ×V×g - r×V×g , т.е

F р =(r 1 - r)× V×g (1.30)

где V – объем частицы, r 1 и r – соответственно плотности вещества частицы и воды. Если плотности незначительно отличаются друг от друга, то результирующая сила мала и расслоение (осаждение) происходит достаточно медленно. Поэтому используют принудительное разделение частиц за счет вращения разделяемой среды.

Центрифугированием называется процесс разделения (сепарации) неоднородных систем, смесей или взвесей, состоящих из частиц различной массы, происходящий под действием центробежной силы инерции.

Основу центрифуги составляет ротор с гнездами для пробирок, расположенный в закрытом корпусе, который приводится во вращение электродвигателем. При вращении с достаточно высокой скоростью ротора центрифуги частицы взвеси, различные по масссе, под действием центробежной силы инерции распределяются слоями на различной глубине, а наиболее тяжелые осаждаются на дне пробирки.

Можно показать, что сила, под действием которой происходит сепарация, определяется по формуле:

(1.31)

где w - угловая скорость вращения центрифуги, r – расстояние от оси вращения. Эффект центрифугирования тем больше, чем больше различие плотностей сепарируемых частиц и жидкости, а также существенно зависит от угловой скорости вращения.

Ультрацентрифуги, работающие при скорости вращения ротора порядка 10 5 –10 6 оборотов в минуту, способны разделить частицы размером менее 100нм, взвешенные или растворенные в жидкости. Они нашли широкое применение в медико-биологических исследованиях.

С помощью ультрацентрифугирования можно разделить клетки на органеллы и макромолекулы. Вначале оседают (седиментируют) более крупные части (ядра, цитоскелет). При дальнейшем увеличении скорости центрифугирования последовательно оседают более мелкие частицы – сначала митохондрии, лизосомы, затем микросомы и, наконец, рибосомы и крупные макромолекулы. При центрифугировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фракционированные клеточные экстракты (бесклеточные системы) широко используют для изучения внутриклеточных процессов, например для изучения биосинтеза белка, расшифровки генетического кода.

Для стерилизации наконечников в стоматологии используется масляный стерилизатор с центрифугой, с помощью которой удаляется излишнее масло.

Центрифугирование можно использовать для осаждения частиц, взвешенных в моче; отделения форменных элементов от плазмы крови; разделения биополимеров, вирусов и субклеточных структур; контроля за чистотой препарата.

Задания для самоконтроля знаний.

Задание1 . Вопросы для самоконтроля.

Чем отличается равномерное движение по окружности от равномерного прямолинейного движения? При каком условии тело будет двигаться равномерно по окружности?

Объясните причину того, что равномерное движение по окружности происходит с ускорением.

Может ли криволинейное движение происходить без ускорения?

При каком условии момент силы равен нулю? принимает наибольшее значение?

Укажите границы применимости закона сохранения импульса, момента импульса.

Укажите особенности сепарации под действием силы тяжести.

Почему разделение белков с различными молекулярными массами можно проводить при помощи центрифугирования, а метод фракционной перегонки оказывается неприемлемым?

Задание 2 . Тесты для самоконтроля.

Вставьте пропущенное слово:

Изменение знака угловой скорости свидетельствует об изменении_ _ _ _ _ вращательного движения.

Изменение знака углового ускорения свидетельствует об изменении_ _ _ вращательного движения

Угловая скорость равна _ _ _ _ _производной угла поворота радиус-вектора по времени.

Угловое ускорение равно _ _ _ _ _ _производной угла поворота радиус-вектора по времени.

Момент силы равен_ _ _ _ _, если направление действующей на тело силы совпадает с осью вращения.

Найдите правильный ответ:

Момент силы зависит только от точки приложения силы.

Момент инерции тела зависит только от массы тела.

Равномерное движение по окружности происходит без ускорения.

А. Правильно. В. Неправильно.

Скалярними являются все перечисленные величины, за исключением

А. момента силы;

В. механической работы;

С. потенциальной энергии;

Д. момента инерции.

Векторными величинами являются

А. угловая скорость;

В. угловое ускорение;

С. момент силы;

Д. момент импульса.

Ответы : 1 – направления; 2 – характера; 3 – первой; 4 – второй; 5 – нулю; 6 – В; 7 – В; 8 – В; 9 – А; 10 – А, В, С, Д.

Задание 3 . Получите связь между единицами измерения:

линейной скорости см/мин и м/с;

углового ускорения рад/мин 2 и рад/с 2 ;

момента силы кН×см и Н×м;

импульса тела г×см/с и кг×м/с;

момента инерции г×см 2 и кг×м 2 .

Задание 4 . Задачи медико-биологического содержания.

Задача №1. Почему в полетной фазе прыжка спортсмен не может никакими движениями изменить траекторию движения центра тяжести тела? Совершают ли мышцы спортсмена работу при изменении положения частей тела в пространстве?

Ответ: Движениями в свободном полете по параболе спортсмен может только изменять расположение тела и его отдельных частей относительно своего центра тяжести, который в данном случае является центром вращения. Спортсмен совершает работу по изменению кинетической энергии вращения тела.

Задача №2. Какую среднюю мощность развивает человек при ходьбе, если продолжительность шага 0,5с? Считать, что работа затрачивается на ускорение и замедление нижних конечностей. Угловое перемещение ног около Dj=30 о. Момент инерции нижней конечности равен 1,7кг× м 2 . Движение ног рассматривать как равнопеременное вращательное.

Решение:

1)Запишем краткое условие задачи: Dt= 0,5с; Dj =30 0 =p/ 6; I =1,7кг× м 2

2) Определим работу за один шаг (правая и левая нога): A= 2×Iw 2 / 2=Iw 2 .

Используя формулу средней угловой скорости w ср =Dj/Dt, получим: w= 2w ср = 2×Dj/Dt; N=A/Dt= 4×I×(Dj) 2 /(Dt) 3

3) Подставим числовые значения: N =4× 1,7× (3,14) 2 /(0,5 3 × 36)=14,9(Вт)

Ответ: 14,9 Вт.

Задача №3. Какова роль движения рук при ходьбе?

Ответ : Движение ног, перемещающихся в двух параллельных плоскостях, находящихся на некотором расстоянии друг от друга, создает момент сил, стремящийся повернуть корпус человека вокруг вертикальной оси. Руками человек размахивает «навстречу» движению ног, создавая тем самым момент сил противоположного знака.

Задача №4. Одним из направлений усовершенствования бормашин, применяемых в стоматологии, является увеличение скорости вращения бора. Скорость вращения борного наконечника в ножных бормашинах составляет 1500 оборотов в минуту, в стационарных электробормашинах – 4000 об/мин, в турбинных бормашинах – уже достигает 300000 об/мин. Зачем разрабатываются новые модификации бормашин с большим числом оборотов в единицу времени?

Ответ: Дентин в несколько тысяч раз более восприимчив к болевым ощущениям, чем кожа: на 1мм 2 кожи приходится 1-2 болевые точки, а на 1мм 2 дентина резцов – до 30000 болевых точек. Увеличение числа оборотов по данным физиологов уменьшает боль при обработке кариозной полости.

Задание 5 . Заполните таблицы:

Таблица №1 . Проведите аналогию между линейными и угловыми характеристиками вращательного движения и укажите связь между ними.

Таблица №2.

Задание 6. Заполните ориентировочную карту действия:

Основные задания Указания Ответы
Для чего в начальной стадии исполнения сальто гимнаст сгинает колени и прижимает их к груди, а в конце вращения выпрямляет тело? Используйте для анализа процесса понятие момента импульса и закон сохранения момента импульса.
Объясните, почему стоять на цыпочках (или держать тяжелый груз) так тяжело? Рассмотрите условия равновесия сил и их моментов.
Как изменится угловое ускорение при увеличении момента инерции тела? Проанализируйте основное уравнение динамики вращательного движения.
Как зависит эффект центрифугирования от разности в плотностях жидкости и частиц, которые сепарируются? Рассмотрите силы, действующие при центрифугировании и соотношения между ними

Глава 2. Основы биомеханики.

Вопросы.

Рычаги и сочленения в опорно-двигательном аппарате человека. Понятие о степенях свободы.

Виды сокращения мышц. Основные физические величины, описывающие мышечные сокращения.

Принципы двигательной регуляции у человека.

Методы и приборы для измерения биомеханических характеристик.

2.1. Рычаги и сочленения в опорно-двигательном аппарате человека.

Анатомия и физиология двигательного аппарата человека обладают следующими особенностями, которые необходимо учитывать при биомеханических расчетах: движения тела определяются не только мышечными силами, но и внешними силами реакции, силой тяжести, инерционными силами, а также упругими силами и трением; структура двигательного аппарата допускает исключительно вращательные движения. С помощью анализа кинематических цепей поступательные движения могут быть сведены к вращательным движениям в суставах; движения управляются с помощью очень сложного кибернетического механизма, так что происходит постоянное изменение ускорений.

Опорно-двигательный аппарат человека состоит из сочлененных между собой костей скелета, к которым в определенных точках прикрепляются мышцы. Кости скелета действуют как рычаги, которые имеют точку опоры в сочленениях и приводятся в движение силой тяги, возникающей при сокращении мышц. Различают три вида рычага :

1) Рычаг, к которому действующая сила F и сила сопротивления R приложены по разные стороны от точки опоры. Примером такого рычага является череп, рассматриваемый в сагиттальной плоскости.

2) Рычаг, у которого действующая сила F и сила сопротивления R приложены по одну сторону от точки опоры, причем, сила F приложена к концу рычага, а сила R - ближе к точке опоры. Данный рычаг дает выигрыш в силе и проигрыш в расстоянии, т.е. является рычагом силы . Пример - действие свода стопы при подъеме на полупальцы, рычаги челюстно-лицевого отдела (рис. 2.1). Движения жевательного аппарата очень сложны. При закрывании рта поднимание нижней челюсти из положения максимального опускания до положения полного смыкания ее зубов с зубами верхней челюсти осуществляется движением мышц, поднимающих нижнюю челюсть. Эти мышцы действуют на нижнюю челюсть как на рычаг второго рода с точкой опоры в суставе (дающий выигрыш при жевании в силе).

3) Рычаг, у которого действующая сила приложена ближе к точке опоры, чем сила сопротивления. Данный рычаг является рычагом скорости , т.к. дает проигрыш в силе, но выигрыш в перемещении. Пример - кости предплечья.

Рис. 2.1. Рычаги челюстно-лицевого отдела и свода стопы.

Большинство костей скелета находится под действием нескольких мышц, развивающих усилия по различным направлениям. Равнодействующая их находится путем геометрического сложения по правилу параллелограмма.

Кости опорно-двигательного аппарата соединяются между собой в сочленениях или суставах. Концы костей, образующих сустав, удерживаются вместе с помощью плотно охватывающей их суставной сумки, а также прикрепленных к костям связок. Для уменьшения трения соприкасающиеся поверхности костей покрыты гладким хрящом и между ними имеется тонкий слой клейкой жидкости.

Первой ступенью биомеханического анализа двигательных процессов является определение их кинематики. На основе такого анализа строятся абстрактные кинематические цепи, подвижность или устойчивость которых может быть проверена исходя из геометрических соображений. Различают замкнутые и разомкнутые кинематические цепи, образуемые суставами и расположенными между ними жесткими звеньями.

Состояние свободной материальной точки в трехмерном пространстве задается тремя независимыми координатами – х, y, z . Независимые переменные, которые характеризуют состояние механической системы, называются степенями свободы . У более сложных систем количество степеней свободы может быть выше. Вообще, количество степеней свободы определяет не только количество независимых переменных (что характеризует состояние механической системы), но и количество независимых перемещений системы.

Число степеней свободы является основной механической характеристикой сустава, т.е. определяет число осей , вокруг которых возможно взаимное вращение сочленненых костей. Обусловлено оно главным образом геометрической формой поверхности костей, соприкасающихся в суставе.

Максимальное число степеней свободы в суставах – 3.

Примерами одноосного (плоского) сочленения в организме человека являются плечелоктевое, надпяточное и фаланговые соединения. Они допускают только возможность сгибания и разгибания с одной степенью свободы. Так, локтевая кость с помощью полукруглой выемки охватывает цилиндрический выступ на плечевой кости, который и служит осью сустава. Движения в суставе – сгибание и разгибание в плоскости, перпендикулярной оси сустава.

Лучезапястный сустав, в котором осуществляется сгибание и разгибание, а также приведение и отведение, можно отнести к суставам с двумя степенями свободы.

К суставам с тремя степенями свободы (пространственное сочленение) относятся тазобедренное и лопаточно-плечевое сочленение. Например, в лопаточно-плечевом сочленении шаровидная головка плечевой кости входит в сферическую впадину выступа лопатки. Движения в суставе – сгибание и разгибание (в сагиттальной плоскости), приведение и отведение (в фронтальной плоскости) и вращение конечности вокруг продольной оси.

Замкнутые плоские кинематические цепи обладают числом степеней свободы f F , которое вычисляется по числу звеньев n следующим образом:

Ситуация для кинематических цепей в пространстве более сложная. Здесь выполняется соотношение

(2.2)

гдеf i - число ограничений степеней свободы i- го звена.

В любом теле можно выбрать такие оси, направление которых при вращении будет сохраняться без любых специальных устройств. Они имеют название свободные оси вращения

  • А)Общественно-политические движения в России во второй половине XIX в. зарождение политических партий в России и их программы
  • Александр Лоуэн ПРЕДАТЕЛЬСТВО ТЕЛА. сгибая их в коленях. Я всегда сталкивался с тем, что шизоиды, выполняя эти движения, напрягают живот и задерживают дыхание

  • В этой главе твердое тело рассматривается как совокупность материальных точек, не смещающихся друг относительно друга. Такое не поддающееся деформации тело называется абсолютно твердым.

    Пусть твердое тело произвольной формы вращается под действием силы вокруг неподвижной оси 00 (рис. 30). Тогда все его точки описывают окружности с центрами на этой оси. Понятно, что все точки тела имеют одинаковую угловую скорость и одинаковое угловое ускорение (в данный момент времени).

    Разложим действующую силу на три взаимно перпендикулярные составляющие: (параллельную оси), (перпендикулярную оси и лежащую на линии, проходящей через ось) и (перпендикулярную Очевидно, что вращение тела вызывает только составляющая являющаяся касательной к окружности, описываемой точкой приложения силы. Составляющие вращения не вызывают. Назовем вращающей силой. Как известно из школьного курса физики, действие силы зависит не только от ее величины, но и от расстояния точки ее приложения А до оси вращения, т. е. зависит от момента силы. Моментом вращающей силы (вращающим моментом) называется произведение вращающей силы на радиус окружности описываемой точкой приложения силы:

    Мысленно разобьем все тело на очень малые частицы - элементарные массы. Хотя сила приложена к одной точке А тела, ее вращающее действие передается всем частицам: к каждой элементарной массе будет приложена элементарная вращающая сила (см. рис. 30). Согласно второму закону Ньютона,

    где линейное ускорение, сообщаемое элементарной массе. Умножая обе части этого равенства на радиус окружности, описываемой элементарной массой, и вводя вместо линейного угловое ускорение (см. § 7), получим

    Учитывая, что вращающий момент, приложенный к элементарной массе, и обозначая

    где момент инерции элементарной массы (материальной точки). Следовательно, моментом инерции материальной точки относительно некоторой оси вращения называется произведение массы материальной точки на квадрат ее расстояния до этой оси.

    Суммируя вращающие моменты приложенные ко всем элементарным массам, составляющим тело, получим

    где вращающий момент, приложенный к телу, т. е. момент вращающей силы момент инерции тела. Следовательно, моментом инерции тела называется сумма моментов инерции всех материальных точек, составляющих тело.

    Теперь можно переписать формулу (3) в виде

    Формула (4) выражает основной закон динамики вращения (второй закон Ньютона для вращательного движения):

    момент вращающей силы, приложенной к телу, равен произведению момента инерции тела на угловое ускорение.

    Из формулы (4) видно, что угловое ускорение, сообщаемое телу вращающим моментом, зависит от момента инерции тела; чем больше момент инерции, тем меньше угловое ускорение. Следовательно, момент инерции характеризует инерционные свойства тела при вращательном движении подобно тому, как масса характеризует инерционные свойства тела при поступательном движении, Однако в отличие от массы момент инерции данного тела может иметь множество значений в соответствии с множеством возможных осей вращения. Поэтому, говоря о моменте инерции твердого тела, необходимо указывать, относительно какой оси он рассчитывается. На практике обычно приходится иметь дело с моментами инерции относительно осей симметрии тела.

    Из формулы (2) следует, что единицей измерения момента инерции является килограмм-квадратный метр

    Если вращающий момент и момент инерции тела то формулу (4) можно представить в виде

    В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

    Основные понятия кинематики вращательного движения

    Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

    Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

    Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

    Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

    За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

    φ = φ(t).

    Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

    ΔS = Δφr.

    Основные элементы кинематики равномерного вращательного движения

    Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

    Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

    ω = dφ/dt.

    Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

    ω = φ/t.

    Согласно предварительной формуле размерность угловой скорости

    [ω] = 1 рад/с.

    Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

    ω = 2π/T,

    поэтому период вращения определим следующим образом:

    T = 2π/ω.

    Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

    ν = 1/T.

    Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

    Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

    ω = 2πν.

    Основные элементы кинематики неравномерного вращательного движения

    Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

    Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

    ε = dω/dt.

    Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

    Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

    Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

    Связь величин, характеризующих поступательное и вращательное движение

    Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

    ΔS = Δφ r.

    Тогда линейная скорость материальной точки, выполняющей вращательное движение

    υ = ΔS/Δt = Δφr/Δt = ωr.

    Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

    a = υ 2 /r = ω 2 r 2 /r.

    Итак, в скалярном виде

    a = ω 2 r.

    Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

    a = ε r.

    Момент импульса материальной точки

    Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

    Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

    В скалярной форме

    L = m i υ i r i sin(υ i , r i).

    Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

    sin(υ i , r i) = 1.

    Так что момент импульса материальной точки для вращательного движения примет вид

    L = m i υ i r i .

    Момент силы, которая действует на i-ю материальную точку

    Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

    В скалярной форме

    M i = r i F i sin(r i , F i).

    Считая, что r i sinα = l i , M i = l i F i .

    Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

    Динамика вращательного движения

    Уравнение динамики вращательного движения записывается так:

    M = dL/dt.

    Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

    Момент импульса и момент инерции

    Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

    L i = m i υ i r i .

    Если вместо линейной скорости подставить ее выражение через угловую:

    υ i = ωr i ,

    то выражение для момента импульса примет вид

    L i = m i r i 2 ω.

    Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

    L i = I i ω.

    Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

    L = Iω.

    Момент силы и момент инерции

    Закон вращательного движения гласит:

    M = dL/dt.

    Известно, что представить момент импульса тела можно через момент инерции:

    L = Iω.

    M = Idω/dt.

    Учитывая, что угловое ускорение определяется выражением

    ε = dω/dt,

    получим формулу для момента силы, представленного через момент инерции:

    M = Iε.

    Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

    Теорема Штейнера. Закон сложения моментов инерции

    Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
    I = I 0 + ma 2 ,

    где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

    Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

    Момент силы

    Вращающее действие силы определяется ее моментом. Моментом силы относительно какой-либо точки называется векторное произведение

    Радиус-вектор, проведенный из точки в точку приложения силы (рис.2.12). Единица измерения момента силы .

    Рисунок 2.12

    Величина момента силы

    или можно записать

    где - плечо силы (кратчайшее расстояние от точки до линии действия силы).

    Направление вектора определяется по правилу векторного произведения или по правилу «правого винта» (векторы и параллельным переносом совмещаем в точке О, направление вектора определяется так, чтобы из его конца поворот от вектора к был виден против часовой стрелки – на рис 2.12 вектор направлен перпендикулярно плоскости чертежа «от нас» (аналогично по правилу буравчика – поступательное движение соответствует направлению вектора , вращательное соответствует повороту от к )).

    Момент силы относительно какой-либо точки равен нулю, если линия действия силы проходит через эту точку.

    Проекция вектора на какую-либо ось, например, ось z, называется моментом силы относительно этой оси. Чтобы определить момент силы относительно оси, сначала проецируют силу на плоскость, перпендикулярную оси (рис. 2.13), а затем находят момент этой проекции относительно точки пересечения оси с перпендикулярной ей плоскостью. Если линия действия силы параллельна оси, или пересекает ее, то момент силы относительно этой оси равен нулю.


    Рисунок 2.13

    Момент импульса

    Моментомимпульса материальной точки массой , движущейся со скоростью , относительно какой-либо точки отсчета , называют векторное произведение

    Радиус-вектор материальной точки (рис. 2.14), - ее импульс.

    Рисунок 2.14

    Величина момента импульса материальной точки

    где -кратчайшее расстояние от линии вектора до точки .

    Направление момента импульса определяется аналогично направлению момента силы.

    Если выражение для L 0 умножить и разделить на l получим:

    Где - момент инерции материальной точки - аналог массы во вращательном движении.

    Угловая скорость.

    Момент инерции твердого тела

    Видно, что получающиеся формулы очень похожи на выражения для импульса и для второго закона Ньютона соответственно, только вместо линейной скорости и ускорения используются угловые скорость и ускорение, а вместо массы – величина I=mR 2 , именуемая моментом инерции материальной точки .

    Если тело нельзя считать материальной точкой, но можно считать абсолютно твердым, то его момент инерции можно считать суммой моментов инерции бесконечно малых его частей, поскольку угловые скорости вращения этих частей одинаковы (рис. 2.16). Сумма бесконечно малых – интеграл:

    Для любого тела существуют оси, проходящие через его центр инерции, обладающие таким свойством: при вращении тела вокруг таких осей в отсутствии внешних воздействий оси вращения не меняют своего положения. Такие оси называются свободными осями тела . Можно доказать, что для тела любой формы и с любым распределением плотности существуют три взаимно перпендикулярные свободные оси, именуемые главными осями инерции тела. Моменты инерции тела относительно главных осей именуются главными (собственными) моментами инерции тела.

    Главные моменты инерции некоторых тел приведены в табл.:

    Теорема Гюйгенса-Штейнера.

    Это выражение носит название теоремы Гюйгенса-Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями .

    Основное уравнение динамики вращательного движения

    Основной закон динамики вращательного движения можно получить из второго закона Ньютона для поступательного движения твердого тела

    Где F – сила, приложенная к телу массой m ; а – линейное ускорение тела.

    Если к твердому телу массой m в точке А (рис. 2.15) приложить силу F , то в результате жесткой связи между всеми материальными точками тела все они получат угловое ускорение ε и соответственные линейные ускорения, как если бы на каждую точку действовала сила F 1 …F n . Для каждой материальной точки можно записать:

    Где поэтому

    Где m i – масса i- й точки; ε – угловое ускорение; r i – ее расстояние до оси вращения.

    Умножая левую и правую части уравнения на r i , получаем

    Где – момент силы – это произведение силы на ее плечо.

    Рис. 2.15. Твердое тело, вращающееся под действием силы F около оси “ОО”

    – момент инерции i -й материальной точки (аналог массы во вращательном движении).

    Выражение можно записать так:

    Просуммируем левую и правую части по всем точкам тела:

    Уравнение – основной закон динамики вращательного движения твердого тела. Величина – геометрическая сумма всех моментов сил, то есть момент силы F , сообщающий всем точкам тела ускорение ε. – алгебраическая сумма моментов инерции всех точек тела. Закон формулируется так: «Момент силы, действующий на вращающееся тело, равен произведению момента инерции тела на угловое ускорение».

    С другой стороны

    В свою очередь - изменение момента импульса тела.

    Тогда основной закон динамики вращательного движения можно переписать в виде:

    Или - импульс момента силы , действующий на вращающееся тело, равен изменению его момента импульса .

    Закон сохранения момента импульса

    Аналогично ЗСИ.

    Согласно основному уравнению динамики вращательного движения момент силы относительно оси Z: . Отсюда в замкнутой системе и, следовательно, – суммарный момент импульса относительно оси Z всех тел, входящих в замкнутую систему есть величина неизменная . Это выражает закон сохранения момента импульса . Этот закон действует только в инерциальных системах отсчёта.

    Проведем аналогию между характеристиками поступательного движения и вращательного.

    Последние материалы раздела:

    Презентация на тему
    Презентация на тему "квадратный корень из произведения" Разложение на простые множители

    Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без...

    Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г
    Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г

    история создания песни "Марш Буденного", презентация,фонограмма и текст песни. Скачать:Предварительный просмотр:Конкурс «Военная песня» «Марш...

    Бактерии- древние организмы
    Бактерии- древние организмы

    Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...