Все свойства азота. Смотреть что такое "азот" в других словарях

Азо́т - элемент главной подгруппы пятой группы второго периода периодической системы химических элементов , с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот (CAS-номер: 7727-37-9) - достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N 2), из которого на три четверти состоит земная атмосфера.

История открытия

В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.
Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным - не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.
Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.
В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.
В дальнейшем азот был изучен Генри Кавендишем (интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент - инертный газ аргон).

Происхождение названия

Азо́т (от др.-греч. ἄζωτος - безжизненный, лат. nitrogenium), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье, который в то время в составе группы других французских учёных разрабатывал принципы химической номенклатуры. Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках.
Существует и иная версия. Слово «азот» придумано не Лавуазье и не его коллегами по номенклатурной комиссии; оно вошло в алхимическую литературу уже в раннем средневековье и употреблялось для обозначения «первичной материи металлов», которую считали «альфой и омегой» всего сущего. Это выражение заимствовано из Апокалипсиса: «Я есмь Альфа и Омега, начало и конец» (Откр.1:8-10). Слово составлено из начальных и конечных букв алфавитов трёх языков - латинского, греческого и древнееврейского, - считавшихся «священными», поскольку, согласно Евангелиям, надпись на кресте при распятии Христа была сделана на этих языках (а, альфа, алеф и зет, омега, тав - AAAZOTH). Составители новой химической номенклатуры хорошо знали о существовании этого слова; инициатор её создания Гитон де Морво отмечал в своей «Методической энциклопедии» (1786) алхимическое значение термина.
Возможно, слово «азот» произошло от одного из двух арабских слов - либо от слова «аз-зат» («сущность» или «внутреннюю реальность»), либо от слова «зибак» («ртуть»)..
На латыни азот называется «nitrogenium», то есть «рождающий селитру»; английское название производится от латинского. В немецком языке используется название Stickstoff, что означает «удушающее вещество».

Получение

В лабораториях его можно получать по реакции разложения нитрита аммония:
NH 4 NO 2 → N2 + 2H 2 O

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).
Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.
Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.
Ещё один лабораторный способ получения азота - нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:
K 2 Cr 2 O 7 + (NH 4) 2 SO 4 = (NH 4) 2 Cr 2 O 4 + K 2 SO 4 (NH 4) 2 Cr 2 O 7 →(t) Cr 2 O 3 + N 2 + 4H 2 O

Самый чистый азот можно получить разложением азидов металлов:
2NaN 3 →(t) 2Na + 3N 2

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом:
O 2 + 4N 2 + 2C → 2CO + 4N 2

При этом получается так называемый «генераторный», или «воздушный», газ - сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.
Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.
Один из лабораторных способов - пропускание аммиака над оксидом меди (II) при температуре ~700 °C:
2NH 3 + 3CuO → N 2 + 3H 2 O + 3Cu

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700 °C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Физические свойства

При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100г при 0 °C, 0,8 мл/100 г при 80 °C), плотность 1,2506 кг/м³ (при н.у.).
В жидком состоянии (темп. кипения −195,8 °C) - бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.
При −209,86 °C азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.

Азот

Азот — элемент главной подгруппы пятой группы второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот — достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N2), из которого на три четверти состоит земная атмосфера.

Его «открывали» несколько раз и разные люди. Его называли по-разному, приписывая едва ли не мистические свойства — и «флогистированный воздух», и «мефитический воздух», и «атмосферный мофетт», да и просто «удушливое вещество». До сих пор у него несколько названий: английский Nitrogen, французский Azote, немецкий Stickstoff, русский «азот»…

История «испорченного воздуха»

Азот (от греческого слова azoos - безжизненный, по-латыни Nitrogenium) - четвертый по распространенности элемент Солнечной системы (после водорода , гелия и кислорода ). Соединения азота - селитра, азотная кислота, аммиак — были известны задолго до получения азота в свободном состоянии.

В 1777 году Генри Кавендиш многократно пропускал воздух над раскалённым углём, а затем обрабатывал его щёлочью. В результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем реагировал со щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент).

В том же году Кавендиш сообщил об этом опыте Джозефу Пристли. Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным).

Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота. Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.

Еще до того времени, в 1772 г., Даниэль Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, увидел, что остающийся после сгорания газ, названный им «удушливым воздухом», не поддерживает дыхания и горения. Лишь в 1787 г. Антуан Лавуазье установил, что «жизненный» и «удушливый» газы, входящие в состав воздуха, это простые вещества, и предложил название «азот».

Ранее, в 1784 г. Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота (от позднелатинского nitrum — селитра и греческого genna — рождаю, произвожу). К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

«Не поддерживающий жизни» жизненно необходим

Хотя название «азот » означает «не поддерживающий жизни», на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16-17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота. В результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными.

Дефицит азота характерен для земледелия почти всех стран. Наблюдается дефицит азота и в животноводстве («белковое голодание»). На почвах, бедных доступным азотом, растения плохо развиваются. В прошлом веке довольно богатый источник связанного азота был обнаружен в природе. Это - чилийская селитра, натриевая соль азотной кислоты. Долгое время селитры были главным поставщиком азота для промышленности. Ее месторождение в Южной Америке уникально, практически оно единственное в мире. И не удивительно, что в 1879 году за обладание богатой селитрой пограничной провинцией Тарапака вспыхнула война между Перу, Боливией и Чили. Победителем оказалась Чили. Однако удовлетворить мировую потребность в азотных удобрениях чилийское месторождение, конечно, не могло.

«Азотное голодание» планеты

В атмосфере Земли содержится почти 80% азота, в земной коре - всего 0,04%. Проблема «как связать азот» старая, она — ровесник агрохимии. Возможность связывания азота воздуха кислородом в электрическом разряде первым увидел англичанин Генри Кавендиш. Это было еще в XVIII веке. Но осуществить процесс управляемого синтеза окислов азота удалось лишь в 1904 году. В 1913 году немцы Фриц Габер и Карл Бош предложили аммиачный метод связывания азота. Сейчас, пользуясь этим принципом, сотни заводов всех континентов вырабатывают из воздуха более 20 миллионов тонн связанного азота в год. Три четверти его идет на производство азотных удобрений. Однако дефицит азота на посевных площадях земного шара составляет более 80 миллионов тонн в год. Азота Земле явно не хватает. Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д.

Применение азота

Свободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д.

Жидкий азот применяется как хладагент и для криотерапии. Промышленные применения газообразного азота обусловлены его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению.

В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы.

В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот , таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

Заблуждения: азот — не Дед Мороз

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент. Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённая ошибка. Даже для замораживания цветка необходимо достаточно продолжительное время, что связано отчасти с весьма низкой теплоёмкостью азота .

По этой же причине весьма затруднительно охлаждать, скажем, замки до −180 °C и раскалывать их одним ударом. Литр жидкого азота , испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине не стоит хранить азот в закрытых сосудах, не приспособленных для больших давлений. На этом же факте основан принцип тушения пожаров жидким азотом . Испаряясь, азот вытесняет воздух, необходимый для горения, и пожар прекращается.

Так как азот , в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров. Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом , в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота .

Как уже было сказано выше, азот жидкий и газообразный получают из атмосферного воздуха способом глубокого охлаждения.

Показатели качества азота газообразного ГОСТ 9293-74

Наименование показателя Особая Повышенная Повышенная
2 сорт 1 сорт
2 сорт
Объёмная доля азота, не менее 99,996
99,99
99,95
Кислород, не более 0,001
0,001
0,05
Водяной пар в газообразном азоте, не более 0,0007
0,0015
0,004
Водород, не более 0,001 Не нормируется
Не нормируется
Сумма углеродосодержащихся соединений в пересчете на СН 4 , не более 0,001 Не нормируется

ОПРЕДЕЛЕНИЕ

Азот - седьмой элемент Периодической таблицы. Обозначение - N от латинского «nitrogenium». Расположен во втором периоде, VА группе. Относится к неметаллам. Заряд ядра равен 7.

Большая часть азота находится в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78,2% (об.) азота. Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру NaNO 3 , образующую мощные пласты на побережье Тихого океана в Чили. Почва содержит незначительные количества азота, преимущественно в виде солей азотной кислоты. Но в виде сложных органических соединений - белков - азот входит в состав всех живых организмов.

В виде простого вещества азот - это бесцветный газ, не имеющий запаха и весьма мало растворимый в воде. Он немного легче воздуха: масса 1 л азота равна 1,25 г.

Атомная и молекулярная масса азота

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы атома углерода. Относительная атомная масса безразмерна и обозначается A r (индекс «r» — начальная буква английского слова relative, что в переводе означает «относительный»). Относительная атомная масса атомарного азота равна 14,0064 а.е.м.

Массы молекул, также как массы атомов выражаются в атомных единицах массы. Молекулярной массой вещества называется масса молекулы, выраженная в атомных единицах массы. Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы атома углерода, масса которого равна 12 а.е.м. Известно, что молекула азота двухатомна - N 2 . Относительная молекулярная масса молекулы азота будет равна:

M r (N 2) = 14,0064× 2 ≈ 28.

Изотопы азота

В природе азот существует в виде двух стабильных изотопов 14 N (99,635%) и 15 N (0,365%). Их массовые числа равны 14 и 15 соответственно. Ядро атома изотопа азота 14 N содержит семь протонов и семь нейтронов, а изотопа 15 N - такое же количество протонов и шесть нейтронов.

Существует четырнадцать искусственных изотопов азота с массовыми числами от 10-ти до 13-ти и от 16-ти до 25-ти, из которых наиболее стабильным является изотоп 13 Nс периодом полураспада равным 10 минут.

Ионы азота

На внешнем энергетическом уровне атома азота имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 3 .

Схема строения атома азота представлена ниже:

В результате химического взаимодействия азот может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

N 0 -5e → N 2+ ;

N 0 -4e → N 4+ ;

N 0 -3e → N 3+ ;

N 0 -2e → N 2+ ;

N 0 -1e → N 1+ ;

N 0 +1e → N 1- ;

N 0 +2e → N 2- ;

N 0 +3e → N 3- .

Молекула и атом азота

Молекула азота состоит из двух атомов - N 2 . Приведем некоторые свойства, характеризующие атом и молекулу азота:

Примеры решения задач

ПРИМЕР 1

Задание Для образования хлорида аммония было взято 11,2 л (н.у.) газообразного аммиака и 11,4 л (н.у.) хлороводорода. Какова масса образовавшегося продукта реакции?
Решение Запишем уравнение реакции получения хлорида аммония из аммиака и хлороводорода:

NH 3 + HCl = NH 4 Cl.

Найдем количество молей исходных веществ:

n(NH 3) = V(NH 3) / V m ;

n(NH 3) = 11,2 / 22,4 = 0,5 моль.

n(HCl) = V(NH 3) / V m ;

n(HCl) = 11,4 / 22,4 = 0,51 моль.

n(NH 3)

n(NH 4 Cl) = n(NH 3) = 0,5 моль.

Тогда, масса хлорида аммония будет равна:

M(NH 4 Cl) = 14 + 4×1 + 35,5 = 53,5г/моль.

m(NH 4 Cl) = n(NH 4 Cl) × M(NH 4 Cl);

m(NH 4 Cl) = 0,5×53,5 = 26,75 г.

Ответ 26,75 г

ПРИМЕР 2

Задание 10,7 г хлорида аммония смешали с 6 г гидроксида кальция и смесь нагрели. Какой газ и сколько его по массе и объему выделилось (н.у.)?
Решение Запишем уравнение реакции взаимодействия хлорида аммония с гидроксидом кальция:

2NH 4 Cl + Ca(OH) 2 = CaCl 2 + 2NH 3 - + 2H 2 O.

Определим, какое из двух реагирующих веществ находится в избытке. Для этого рассчитаем их количество молей:

M(NH 4 Cl) = A r (N) + 4×A r (H) + A r (Cl);

M(NH 4 Cl) = 14 + 4×1 + 35,5 = 53,5 г/моль.

n(NH 4 Cl) = m (NH 4 Cl) / M(NH 4 Cl);

n(NH 4 Cl) = 10,7 / 53,5 = 0,1 моль.

M(Ca(OH) 2) = A r (Ca) + 2×A r (H) + 2×A r (O);

M(Ca(OH) 2) = 40 + 2×1 + 2×16 = 42 + 32 = 74 г/моль.

n(Ca(OH) 2) = m (Ca(OH) 2) / M(Ca(OH) 2);

n(Ca(OH) 2) = 6 / 74 = 0,08 моль.

n(Ca(OH) 2)

n(NH 3) = 2×n(Ca(OH) 2) = 2×0,08 = 0,16 моль.

Тогда, масса аммиака будет равна:

M(NH 3) = A r (N) + 3×A r (H) = 14 + 3×1 = 17 г/моль.

m(NH 3) = n(NH 3) ×M(NH 3) = 0,16 × 17 = 2,72 г.

Объем аммиака равен:

V(NH 3) = n(NH 3) ×V m ;

V(NH 3) = 0,16× 22,4 = 3,584 л.

Ответ В результате реакции образовался аммиак объемом 3,584 л и массой 2,72 г.

Азот (N 2) был открыт Дж. Пристли в 1774 г. Название "азот" в переводе с греческого означает "безжизненный". Оно обусловлено тем, что азот не поддерживает процессы горения и дыхания. Но для всех основных процессов жизнедеятельности растительных и живых оргнизмов азот крайне важен.


Характеристика элемента

7 N 1s 2 2s 2 2p 3



Изотопы: 14 N (99,635%); 15 N (0,365%)


Кларк в земной коре 0,01 % по массе. В атмосфере 78,09 % по объему (75,6 % по массе). Азот входит в состав живой материи (белки, нуклеиновые кислоты и др. ОВ). В гидросфере азот присутствует в виде нитратов (NО 3). Атомы азота занимают 5-е место по распространенности во Вселенной.

Важнейшие N-содержащие неорганические вещества.

Свободный (молекулярный) азот


Атомы азота связаны между собой тремя ковалентными неполярными связями: одна из них - сигма-связь, 2 - пи-связи. Энергия разрыва связи очень велика

Физические свойства

При обычной температуре и атмосферном давлении N 2 - бесцветный газ, без запаха и вкуса, немного легче воздуха, очень плохо растворяется в воде. В жидкое состояние переводится с большим трудом (Ткип -196"С). Жидкий азот имеет большую теплоту испарения и применяется для создания низких температур (хладагент).

Способы получения

Азот присутствует в воздухе в свободном состоянии, поэтому промышленный способ получения заключается в разделении воздушной смеси (ректификация жидкого воздуха).


В лабораторных условиях небольшие количества азота можно получить следующими способами:


1. Пропускание воздуха над раскаленной медью, которая поглощает кислород за счет реакции: 2Cu + О 2 = 2СиО. Остается азот с примесями инертных газов.


2. Окислительно-восстановительное разложение некоторых солей аммония:


NH 4 NО 2 = N 2 + 2Н 2 О


(NH 4) 2 Cr 2 О 7 = N 2 + Cr 2 О 3 + 4Н 2 О


3. Окисление аммиака и солей аммония:


4NH 3 + 3О 2 = 2N 2 + 6Н 2 О


8NH 3 + ЗВr 2 = N 2 + 6NH 4 Br


NH 4 Cl + NaNO 2 = N 2 + NaCl + 2Н 2 О

Химические свойства

Молекулярный азот - химически инертное вещество вследствие исключительно высокой устойчивости молекул N 2 . Только реакции соединения с металлами протекают более или менее легко. Во всех остальных случаях для инициирования и ускорения реакций необходимо применять высокие температуры, искровые электрические разряды, ионизирующее излучение, катализаторы (Fe, Cr, V, Ti и их соединения).

Реакции с восстановителями (N 2 - окислитель)

1. Взаимодействие с металлами:


Реакции образования нитридов щелочных и щелочноземельных Me протекают как с чистым азотом, так и при горении металлов на воздухе


N 2 + 6Li = 2Li 3 N


N 2 + 6Cs = 2Cs 3 N


N 2 + 3Mg = Mg 3 N 2


2. Взаимодействие с водородом (реакция имеет большое практическое значение):


N 2 + ЗН 2 = 2NH 3 аммиак


3. Взаимодействие с кремнием и углеродом


2N 2 + 3Si = Si 3 N 4 нитрид кремния (IV)


N 2 + 2C = (CN) 2 дициан


2N 2 + 5C + 2Na 2 CО 3 = 4NaCN + 3CО 2 цианид натрия

Реакции с окислителями (N 2 - восстановитель)

Эти реакции в обычных условиях не протекают. С фтором и другими галогенами азот непосредственно не взаимодействует, а с кислородом реакция происходит при температуре электрических искровых разрядов:


N 2 + О 2 = 2NO


Реакция сильно обратимая; прямая протекает с поглощением тепла (эндотермичная).

В садовой аптечке опытных садоводов-огородников обязательно присутствует кристаллический железный купорос, или сульфат железа. Как и многие другие химические препараты, он обладает свойствами, которые защищают садово-ягодные культуры от многочисленных болезней и насекомых-вредителей. В этой статье поговорим об особенностях использования железного купороса для обработки растений сада от болезней и вредителей и о других вариантах его применения на участке.

Были времена, когда понятий «дерево-сад», «семейное дерево», «коллекционное дерево», «мульти дерево» просто не существовало. И увидеть такое чудо можно было лишь в хозяйстве «мичуринцев» – людей, которым дивились соседи, заглядываясь на их сады. Там на одной яблоне, груше или сливе поспевали не просто сорта разных сроков созревания, но и разнообразных цветов и размеров. Отчаивались на такие опыты не многие, а лишь те, кто не боялся многочисленных проб и ошибок.

Климатические условия нашей страны, к сожалению, не подходят для выращивания многих культур без рассады. Здоровая и крепкая рассада – это залог качественного урожая, в свою очередь качество рассады зависит от нескольких факторов: Даже здоровые на вид семена могут быть заражены патогенами, которые длительное время сохраняются на поверхности семени, а после посева, попадая в благоприятные условия, активируются и поражают молодые и неокрепшие растения

В нашей семье очень любят помидоры, поэтому большинство грядок на даче отданы именно под эту культуру. Каждый год мы стараемся попробовать новые интересные сорта, и какие-то из них приживаются и становятся любимыми. Вместе с тем за много лет огородничества у нас уже сформировался набор любимых сортов, которые обязательны к посадке в каждом сезоне. Такие помидоры мы, шутя, называем сортами «специального назначения» - для свежиж салатов, сока, засолки и хранения.

Снег еще не успел полностью растаять, а беспокойные владельцы загородных участков уже спешат оценить фронт работ в саду. А заняться тут и правда, есть чем. И, пожалуй, самое главное, о чём необходимо подумать ранней весной – как защитить свой сад от болезней и вредителей. Опытные садоводы знают, что пускать на самотёк эти процессы нельзя, а промедление и откладывание на потом сроков обработки могут существенно снизить урожай и качество плодов.

Если вы самостоятельно готовите почвенные смеси для выращивания комнатных растений, то стоит присмотреться к относительно новому, интересному и, на мой взгляд, нужному компоненту - кокосовому субстрату. Все, наверное, видели хоть раз в жизни кокосовый орех и его «лохматую» покрытую длинными волокнами скорлупу. Из кокосовых орехов (на самом деле это костянка) делают много вкусных изделий, но вот скорлупа и волокна раньше были просто отходами производства.

Пирог с рыбными консервами и сыром - идея простого обеда или ужина для ежедневного или воскресного меню. Пирог рассчитан на небольшую семью из 4-5 человек с умеренным аппетитом. В этой выпечке есть сразу все - и рыба, и картошка, и сыр, и хрустящая корочка из теста, в общем, почти как закрытая пицца-кальцоне, только вкуснее и проще. Рыбные консервы могут быть любыми - скумбрия, сайра, горбуша или сардины, выбирайте по своему вкусу. Такой пирог также готовят с вареной рыбой.

Инжир, фига, смоковница - это всё названия одного и того же растения, которое у нас стойко ассоциируется со средиземноморской жизнью. Кто хоть раз пробовал на вкус плоды инжира, знает, какая это вкуснятина. Но, кроме нежного сладкого вкуса, они ещё и очень полезны для здоровья. И вот какая интересная деталь: оказывается, инжир - совершенно неприхотливое растение. К тому же, его с успехом можно выращивать на участке в средней полосе или в доме - в контейнере.

Вкусный крем-суп с морепродуктами готовится чуть меньше часа, он получается нежным и кремовым. Морепродукты выбирайте по своему вкусу и кошельку, это может быть и морской коктейль, и королевские креветки, и кальмары. Я готовила суп с крупными креветками и мидиями в раковинах. Во-первых, это очень вкусно, во-вторых, красиво. Если готовите для праздничного ужина или обеда, то мидии в раковинах и большие неочищенные креветки выглядят в тарелке аппетитно и симпатично.

Довольно часто сложности по выращиванию рассады томатов возникают даже у бывалых дачников. У кого-то вся рассада получается вытянутая и слабая, у кого-то - внезапно начинает падать и гибнет. Все дело в том, что в квартире трудно поддерживать идеальные условия для выращивания рассады. Сеянцам любых растений нужно обеспечить много света, достаточную влажность и оптимальную температуру. Что еще нужно знать и соблюдать при выращивании рассады томатов в квартире?

Сорта томатов серии «Алтайский» пользуются большой популярностью у огородников по причине своего сладкого нежного вкуса, больше напоминающего вкус фрукта, нежели овоща. Это крупные помидоры, вес каждого плода равняется в среднем 300 граммов. Но это не предел, есть томаты крупнее. Мякоть этих томатов характеризуется сочностью и мясистостью с незначительной приятной маслянистостью. Вырастить отличные томаты серии «Алтайский» можно из семян «Агроуспех».

Долгие годы алоэ оставалось самым недооцененным комнатным растением. И это не удивительно, ведь широкое распространение алоэ обыкновенного в прошлом столетии привело к тому, что о других видах этого удивительного суккулента все забыли. Алоэ – растение, в первую очередь, декоративное. И при правильном выборе вида и сорта способно затмить любого конкурента. В модных флорариумах и в обычных горшках алоэ – выносливое, красивое и удивительно долговечное растение.

Вкусный винегрет с яблоком и квашеной капустой - вегетарианский салат из сваренных и охлажденных, сырых, квашеных, солёных, маринованных овощей и фруктов. Название произошло от французского соуса из уксуса, оливкового масла и горчицы (vinaigrette). Винегрет появился в русской кухне не так давно, примерно в начале 19 века, возможно рецепт позаимствовали в австрийской или немецкой кухне, так как ингредиенты для австрийского селёдочного салата весьма похожи.

Когда мы мечтательно перебираем в руках яркие пакетики с семенами, то порой подсознательно уверены, что обладаем прототипом будущего растения. Мысленно выделяем ему место в цветнике и предвкушаем заветный день появления первого бутона. Однако покупка семян далеко не всегда гарантирует, что в конечном итоге вы получите желанный цветок. Мне хотелось бы обратить внимание на причины, вследствие которых семена могут не взойти или погибнуть в самом начале прорастания.

Последние материалы раздела:

Страна с трагической судьбой
Страна с трагической судьбой

Апофеозом гражданской войны в Анголе и Войны за независимость Намибии стала оборона ангольскими правительственными войсками, кубинскими...

Все, что нужно знать о бактериях
Все, что нужно знать о бактериях

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10...

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

© Справочники. Учебная литература EVGENPOL.RU, 2024

Все статьи, расположенные на сайте, несут лишь ознакомительный характер.