Волны на воде. Структура, виды, названия

О чем рассказывает свет Суворов Сергей Георгиевич

Волны на поверхности воды

Волны на поверхности воды

Каждый знает, что водяные волны бывают разные. На поверхности пруда едва заметная зыбь слегка качает пробку рыболова, а на морских просторах огромные водяные валы раскачивают океанские пароходы. Чем же отличаются волны друг от друга?

Посмотрим, как возникают водяные волны.

Рис. 4. Прибор для ритмического возбуждения волн на поверхности воды

Для возбуждения волн на воде возьмем прибор, показанный на рис. 4. Когда моторчик А вращает эксцентрик Б , стерженек В движется вверх и вниз, погружаясь в воду на разную глубину. От него разбегаются круговые волны (рис. 5).

Они представляют собой ряд чередующихся гребней и впадин.

Расстояние между соседними гребнями (или впадинами) называется длиной волны и обычно обозначается греческой буквой ? (лямбда) (рис. 6).

Рис. 5. Волны, создаваемые ритмично колеблющимся стерженьком; буквой? обозначена длина волны

Увеличим число оборотов моторчика, а стало быть, и частоту колебаний стерженька вдвое. Тогда число волн, появившихся за то же время, будет вдвое больше. Но при этом длина волн будет вдвое меньше.

Число волн, образующихся в одну секунду, называется частотой волн. Она обычно обозначается греческой буквой ? (ню).

Рис. 6. Поперечный разрез водяной волны. АБ - амплитуда а, БВ - длина волны?

Пусть на воде плавает пробка. Под влиянием бегущей волны она будет совершать колебания. Подошедший к пробке гребень поднимет ее вверх, а следующая за ним впадина опустит вниз. За одну секунду пробку поднимет столько гребней (и опустит столько впадин), сколько за это время образуется волн. А это число и есть частота волны ? . Значит, пробка будет колебаться с частотой ? . Так, обнаруживая действие волн в любом месте их распространения, мы можем установить их частоту.

Рис. 7. Схема связи длины волны?, скорости v и частоты?. Из рисунка ясно, что v = ??

Ради простоты мы будем считать, что волны не затухают. Частота и длина незатухающих волн связаны друг с другом простым законом. За секунду образуется ? волн. Все эти волны уложатся на некотором отрезке (рис. 7). Первая волна, образовавшаяся в начале секунды, дойдет до конца этого отрезка; она отстоит от источника на расстоянии, равном длине волны, умноженной на число образовавшихся волн, то есть на частоту ? . Но расстояние, пройденное волной за секунду, есть скорость волны v . Таким образом,

? ? ? = v

Длину волны и скорость распространения волн часто узнают из опыта, но тогда частоту v можно определить из вычисления, а именно:

? = v / ?

Частота и длина волн являются их существенными характеристиками; по этим характеристикам одни волны отличают от других.

Кроме частоты (или длины волны), волны отличаются еще и высотой гребней (или глубиной впадин). Высота волны измеряется от горизонтального уровня покоящейся поверхности воды. Она называется амплитудой, или размахом колебаний.

Амплитуда колебаний связана с энергией, которую несет волна. Чем больше амплитуда водяной волны (это относится также и к колебаниям струн, почвы, фундамента и т. д.), тем больше энергия, которая передается волнами, причем больше в квадрат раз (если амплитуда больше в два раза, то энергия больше в 4 раза и т. д.).

Теперь мы можем сказать, чем океанская волна отличается от зыби в пруду: длиной волны, частотой колебаний и амплитудой.

А зная, какими величинами характеризуется каждая волна, нетрудно будет понять и характер взаимодействия волн друг с другом.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги История свечи автора Фарадей Майкл

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

Из книги Капля автора Гегузин Яков Евсеевич

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

ЛЕКЦИЯ II СВЕЧА. ЯРКОСТЬ ПЛАМЕНИ. ДЛЯ ГОРЕНИЯ НЕОБХОДИМ ВОЗДУХ. ОБРАЗОВАНИЕ ВОДЫ На прошлой лекции мы рассмотрели общие свойства и расположение жидкой части свечи, а также и то, каким образом эта жидкость попадает туда, где происходит горение. Вы убедились, что когда свеча

Из книги Для юных физиков [Опыты и развлечения] автора Перельман Яков Исидорович

УСТАНОВКИ ДЛЯ ТЯЖЕЛОЙ ВОДЫ ОПЫТНАЯ УСТАНОВКА ПО МЕТОДУ ЦЕНТРИФУГИРОВАНИЯ 9.36. Следующие две главы посвящены описанию трех методов, применяемых для промышленного разделения изотопов урана. Они имеют наибольшее значение для Проекта в настоящее время. В начале работы

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

ПЕРВАЯ КАПЛЯ ТАЛОЙ ВОДЫ

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Сухим из воды Вам уже известно, что воздух, окружающий нас со всех сторон, давит с значительной силой на все вещи, с которыми он соприкасается. Опыт, о котором сейчас будет рассказано, еще нагляднее покажет вам существование атмосферного давления.Положите на плоскую

Из книги Глаз и Солнце автора Вавилов Сергей Иванович

Волны, идущие по поверхности Подводники не знают морских бурь. В самые сильные штормы на глубине в несколько метров под уровнем моря царит штиль. Морские волны – один из примеров волнового движения, захватывающего лишь поверхность тела.Иногда может показаться, что

Из книги автора

13. Сухим из воды Сейчас вы убедились, что воздух, окружающий нас со всех сторон, давит со значительной силой на все вещи, с которыми он соприкасается. Опыт, который мы собирается описать, еще нагляднее докажет вам существование этого, как физики говорят, «атмосферного

Из книги автора

10 Почему океан не замерзает, или Вымораживание чистой воды Для опыта нам потребуются: пластиковая баночка, соль. Все говорят про экологию. Модное слово такое. Обычно при этом имеют в виду загрязнение окружающего нас мира. Действительно, загрязнить можно все что угодно.

Из книги автора

17 Стоячая волна, или Буря в стакане воды Для опыта нам потребуются: большая пластмассовая миска (можно взять широкую пластиковую бутылку с отрезанным горлышком), миксер. Раз уж мы начали про веревки, подумаем, какие законы физики можно изучить с помощью веревки. Жидкости

Из книги автора

8.3. Выброс струй воды и цунами, вызванные ударами Моря и океаны покрывают большую часть поверхности Земли, поэтому вероятность ударов астероидов и комет по водной поверхности выше, чем по суше.Волны в воде в ближней зоне удара. Волны, вызванные падением метеороидов в

Из книги автора

8.4. Уязвимые объекты на поверхности Земли По мере развития человеческой цивилизации появляются все новые и новые аспекты астероидной опасности. В настоящее время на поверхности Земли построены высокие плотины гидроэлектростанций, крупные химические заводы, мощные


Образование волн на поверхности воды называется волнением.

Волны, наблюдаемые на поверхности воды, делятся на:

  • Волны трения:

    • ветровые, образующиеся в результате действия ветра

    • глубинные


  • Приливные волны.

  • Гравитационные волны:

    • гравитационные волны на мелкой воде

    • гравитационные волны на глубокой воде

    • сейсмические волны (цунами), возникающие в океанах в результате землетрясения (или вулканической деятельности) и достигающие у берегов высоты 10-30 м.

    • корабельные волны


Волны состоят из чередующихся между собой валов и впадин. Верх волны называется гребнем, основание волны - подошвой.
В прибрежных районах моря существенны только ветровые волны (волны трения).

Ветровые волны возникают с ветром, с прекращением ветра эти волны в виде мертвой зыби, постепенно затухая, продолжают двигаться в прежнем направлении. Ветровое волнение зависит от величины водного пространства, открытого для разгона волны, скорости ветра и времени действия его в одном направлении, а также глубины. С уменьшением глубины волна становится крутой.
Ветровые волны несимметричны, наветренный склон их пологий, подветренный - крутой. Так как ветер на верхнюю часть волны действует сильнее, чем на нижнюю, гребень волны рассыпается, образуя «барашки». В открытом море "барашки" образуются при ветре, который называется "свежим" (ветер силой 5 баллов и скоростью 8,0-10,7 м/с, или 33 км/ч).
Зыбь - волнение, продолжающееся после ветра уже затихшего, ослабевшего или изменившего направление. Волнение, распространяющееся по инерции при полном безветрии, называется мертвой зыбью.
При встрече волн с разных румбов на некоторой площади образуется толчея . Хаотическое нагромождение волн, образующихся при встрече прямых волн с отраженными - это тоже толчея .
При прохождении волн над банками, рифами и камнями образуются буруны .
Набегание волн на берег с увеличением по высоте и крутизне и последующим опрокидыванием называется прибоем .

Прибой получает разный характер в зависимости от того, какой берег: отмелый (имеющий малые углы наклона и большую ширину подводного склона) или приглубый (имеющий значительные уклоны подводного склона).

Опрокидывание гребня идущей волны на крутой берег образует взбросы , имеющие большую разрушительную силу.

© Юрий Данилевский: Ноябрьский шторм. Севастополь

Когда прибой случается у приглубого берега, круто поднимающегося из воды, то рассыпание волны происходит только при ударе о берег. При этом образуется обратная волна, встречающаяся со следующей за ней и уменьшающая ее силу удара, а затем набегает новая волна и снова ударяет в берег.
Такие удары волн в случае большой зыби или сильного волнения сопровождаются нередко взбросами волн на значительную высоту.

© Шторм в Севастополе, 11 ноября 2007г.

На берегах Черного моря сила удара волны может достигать 25 т на 1 м 2 .
При взбросе волна получает огромную силу. На Шетландских островах, к северу от Шотландии, встречаются обломки гнейсовых скал, доходящие до 6-13 т весом, выброшенные прибоем на высоту до 20 м над уровнем моря.

Бурное продвижение волн и зыби на берег называется накат .

Волны бывают правильные, когда их гребни ясно различимы, и неправильные, когда волны не имеют ясно выраженных гребней и образуются без всякой видимой закономерности.
Гребни волн перпендикулярны направлению ветра в открытом море, озере, водохранилище, но у берега они принимают положение, параллельное береговой черте , набегая на берега.
Направление распространения волны в открытом море обозначается на поверхности воды семейством параллельных полос пены - следа разрушающихся гребней волны.

Попробуйте при случае подсчитать, сколько цветов в в радуге. Эту задачу выполнить невозможно. Между полосами красной и оранжевой, синей и голубой, как и между любыми соседними полосами, нет резких границ: между ними имеется много переходных тонов. Не все оттенки цветов способен различать глаз. Часто трудно и определить: то ли цвет «ближе к синему», то ли «ближе к голубому».

Нельзя ли в таком случае для каждого луча найти характери­стику более точную, чем его цвет? Физики нашли такую харак­теристику - и очень точную.

Это произошло благо­даря тому, что были откры­ты волновые свойства света.

Что такое волны и ка­ковы их свойства?

Ради наглядности мы познакомимся сначала с вол­нами на поверхности воды.

Каждый знает, что во­дяные волны бывают раз­ные. По пруду проносится едва заметная зыбь, слегка качающая пробку рыболова; на морских просторах огромные во­дяные валы раскачивают океанские пароходы. Чем же отличают­ся волны друг от друга? Чтобы ответить на этот во­прос, рассмотрим, как воз­никают водяные волны.

В качестве возбудителя волн на воде мы возьмём прибор, показанный на рис. 3. Когда моторчик А вращает эксцентрик Б, стерженёк В ритмично движется вверх и вниз, погружаясь в воду на разную глубину. От него разбегаются волны в виде кругов с одним центром (рис. 4). Они представляют собой ряд чередующихся гребней и впадин.

Расстояние между со­седними гребнями или впади­нами называется длиной волны и обычно обозначается грече­ской буквой X (лямбда). Увеличим число оборотов моторчика, а стало быть и частоту колебаний стерженька, вдвое. Тогда число волн, появляющихся за то же время, будет вдвое больше. Но длина волн будет теперь вдвое меньше. Число волн, образующихся в одну секунду, называется частотой волн. Она обычно обозначается греческой буквой V (ню).

Пусть на воде плавает пробка. Под влиянием бегущей волны она будет совершать колебания. Подошедший к пробке гребень поднимет её вверх, а последующая впадина опустит вниз. За секунду пробку поднимет столько гребней (и опустит столько впадин), сколько за это время образуется волн. А это число и есть частота волны V. Значит, пробка будет колебаться с частотой V, Так, обнаруживая действие волн, мы можем установить их частоту в любом месте их распро­странения.

Ради простоты мы будем считать, что волны не затухают. Частота и длина незатухающих волн связаны друг с другом простым законом. За секунду образуется V волн. Все эти волны уложатся на некотором отрезке. Первая волна, обра­зовавшаяся в начале секунды, дойдёт до конца этого отрезка; она отстоит от источника на расстоянии, равном длине волны, умноженной на частоту. Но расстояние, пройденное волной за секунду, есть скорость волны V. Итак, = Если известна длина волны и скорость распространения волн, то

Можно определить частоту V, а именно: V - у.

Частота и длина волн являются их существенными харак­теристиками; по этим характеристикам одни волны отличают от других.

Кроме частоты (или длины волны), вблны отличаются ещё и высотой гребней (или глубиной впадин). Высота волны измеряется от горизонтального уровня покоящейся поверхно­сти воды. Она называется амплитудой.

Эволюция света Современный мир светится яркими красками даже с космоса: космические станции и экипаж на борту могут лицезреть удивительную картину ночью: светящаяся паутина из ярких городских огней. Это – продукт …

Н Аш рассказ подходит к концу. Мы узнали теперь, какое мощное теоретическое и практическое оружие получил человек, изучая законы возникновения и распространения света, и как сложен был путь познания этих …

Современная промышленность предъявляет исключительно высокие требования к качеству металлов. Современные маши­ны и инструменты работают в самых разнообразных режимах температур, давлений, скоростей, электрических и магнит­ных полей. Возьмём, к примеру, режущий инструмент. …

Мы уже упоминали о волнах, образование которых обусловлено не силой упругости, а силой тяжести. Именно поэтому нас не должно удивлять, что волны, распространяющиеся по поверхности жидкости, не являются продольными. Однако они не являются и поперечными: движение частиц жидкости здесь более сложное.

Если в какой-либо точке поверхность жидкости опустилась (например, в результате прикосновения твердым предметом), то под действием силы тяжести жидкость начнет сбегать вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем крае кольца частицы жидкости вновь «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т. д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся и вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.

На рис. 76 темными кружками показано положение частиц поверхности жидкости в некоторый момент, а светлыми кружками - положение этих частиц немного времени спустя, когда каждая из них прошла часть своей круговой траектории. Эти траектории показаны штриховыми линиями, пройденные участки траекторий - стрелками. Линия, соединяющая темные кружки, даст нам профиль волны. В изображенном на рисунке случае большой амплитуды (т. с. радиус круговых траектории частиц не мал по сравнению с длиной волны) профиль волны совсем не похож на синусоиду: у него широкие впадины и узкие гребни. Линия, соединяющая светлые кружки, имеет ту же форму, но сдвинута вправо (в сторону запаздывания фазы), т, е. в результате движения частиц жидкости по круговым траекториям волна переместилась.

Рис. 76. Движение частиц жидкости в волне на ее поверхности

Следует заметить, что в образовании поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения (см. том I, § 250), которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точке поверхности жидкости происходит деформация этой поверхности - выпуклость становится плоской и затем сменяется вогнутостью, и обратно, в связи с чем меняется площадь поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде волны тем больше, чем больше искривлена поверхность, т. е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (высоких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около , т. е. для более капиллярных волн преобладают силы поверхностного натяжения, а для более длинных – сила тяжести.

Несмотря на сложный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса, и очень удобны для наблюдения многих таких закономерностей. Поэтому мы остановимся несколько подробнее на способе их получения и наблюдения.

Для опытов с такими волнами можно взять неглубокую ванну, дном которой служит стекло, площадь которого около . Под стеклом на расстоянии можно поместить яркую лампочку, позволяющую спроецировать этот «пруд» на потолок или экран (рис. 77). На тени в увеличенном виде можно наблюдать все явления, происходящие на поверхности воды. Для ослабления отражения волн от бортов ванны поверхность последних делается рифленой и сами борта - наклонными.

Рис. 77. Ванна для наблюдения волн на поверхности воды

Наполним ванну водой примерно на глубину и коснемся поверхности воды концом проволоки или острием карандаша. Мы увидим, как от точки прикосновения разбегается кольцевая морщинка. Скорость ее распространения невелика (10-30 см/с), поэтому можно легко следить за ее перемещением.

Укрепим проволоку на упругой пластинке и заставим ее колебаться, причем так, чтобы при каждом колебании пластинки конец проволоки ударял по поверхности воды. По воде побежит система кольцевых гребней и впадин (рис. 78). Расстояние между соседними гребнями или впадинами , т. е. длина волны, связано с периодом ударов уже известной нам формулой ; - скорость распространения волны.

Рис. 78. Кольцевые волны

Рис. 79. Прямолинейные волны

Линии, перпендикулярные к гребням и впадинам, показывают направления распространения волны. У кольцевой волны направления распространения изображаются, очевидно, прямыми линиями, расходящимися из центра волны, как это показано на рис. 78 штриховыми стрелками. Заменив конец проволоки ребром линейки, параллельным поверхности воды, можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных гребней и впадин (рис. 79). В этом случае перед средней частью линейки мы имеем одно-единственное направление распространения.

Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев. Участок сферической волны, малый по сравнению с расстоянием до ее источника, можно приближенно считать плоским. Это относится, конечно, к волнам любой физической природы - и к механическим, и к электромагнитным. Так, например, любой участок (в пределах земной поверхности) световых воли, приходящих от звезд, можно рассматривать как плоскую волну.

Мы неоднократно будем далее пользоваться опытами с описанной выше водяной ванной, так как волны на поверхности воды делают очень наглядными и удобными для наблюдения основные черты многих волновых явлений, включая и такие важные явления, как дифракция и интерференция. Мы используем волны в водяной ванне для получения ряда общих представлений, сохраняющих значение и для упругих (в частности, акустических), и для электромагнитных волн. Там, где можно осуществить наблюдение более тонких особенностей волновых процессов (в частности, в оптике), мы остановимся более подробно на истолковании этих особенностей.

> Волны воды

Изучите волны на воде и перемещение элементов по кругу. Узнайте, что такое фазовая и групповая скорость, плоская волна, пример движения по окружности.

Обычно водные волны (поперечное и продольное движения) можно рассмотреть в реальной жизни.

Задача обучения

  • Охарактеризовать перемещение частичек в водных волнах.

Основные пункты

  • Частички в водных волнах перемещаются по кругу.
  • Если волны перемещаются медленнее расположенного над ними ветра, то энергия передается от ветра к волнам.
  • На поверхности колебания набирают максимальную силу и теряют ее по мере погружения.

Термины

  • Фазовая скорость – темп распространения чистой синусоидальной волны бесконечной протяжности и крошечной амплитуды.
  • Групповая скорость – темп распространения огибающей модулированный волны. Ее рассматривают в качестве скорости передачи информации или энергии.
  • Плоская волна – волновые фотоны выступают бесконечными параллельными плоскостями постоянной амплитуды от пика до пика, расположенных перпендикулярно вектору фазовой скорости.

Пример

Проще всего отправиться к морю, озеру или даже зайти в ванную. Просто подуйте в чашку с водой и заметите, что создаете волны.

Волны воды представляют богатую площадь для изучения физиками. Причем их описание выходит далеко за рамки вводного курса. Мы часто наблюдаем за волнами в 2D, но здесь обсудим 1D.

Поверхностные волны в воде

Уникальность этих явлений заключается в том, что им удается включать в себя поперечное и продольное движения. Из-за этого частички совершают круговые движения (по часовой стрелке). Максимально высоким осцилляторное перемещение выступает на поверхности и ослабевает с углублением.

Волны генерируются ветром, проходящим по морской поверхности. Если скорость распространения волн уступает ветру, то энергия переносится от ветра к волнам.

Если мы сталкиваемся с монохроматическими линейными плоскими волнами на глубине, то частички возле поверхности перемещаются по кругу, формируя продольное (назад и вперед) и поперечное (вверх и вниз) волновые движения. Когда волновое распространение происходит на мелководье, траектории частичек сжимаются в эллипсы. Чем выше амплитуда, тем слабее замкнутая орбита. После прохождения по гребням частички смещаются от предыдущей позиции и формируют стоксовый дрейф.

Перед вами волна, распространяющая в сторону фазовой скорости

Водные волны транспортируют энергию, поэтому используют физическое движение, чтобы генерировать ее. Мощность волны зависит от крупности, длины и плотности воды. Глубокая волна соответствует глубине воды, превышающей половину длины волны. Чем глубже волна, тем стремительнее распространяется. В мелководье групповая скорость достигает фазовой. Сейчас они не обеспечивают устойчивой формы, чтобы использовать как стабильные возобновляемые источники энергии.

Движение воды заставляет частички путешествовать по круговой траектории (по часовой стрелке). Все дело в том, что волна обладает одновременно поперечными и продольными свойствами

Последние материалы раздела:

Кто такой Клод Шеннон и чем он знаменит?
Кто такой Клод Шеннон и чем он знаменит?

Клод Элвуд Шеннон – ведущий американский учёный в сфере математики, инженерии, криптоаналитики. Он приобрёл мировую известность, благодаря своим...

Английский с носителем языка по skype Занятия английским по скайпу с носителем
Английский с носителем языка по skype Занятия английским по скайпу с носителем

Вы могли слышать о таком замечательном сайте для языкового обмена, как SharedTalk. К сожалению, он закрылся, но его создатель возродил проект в...

Исследовательская работа
Исследовательская работа " Кристаллы" Что называется кристаллом

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь),...