Уронил колбу. Гениальные изобретения, сделанные случайно (16 фото)

Знаете ли вы, что многие открытия в области химии были сделаны совершенно случайно?

Как было изобретено небьющееся стекло


Известно, что небьющееся стекло придумал французский химик Эдуард Бенедиктус в 1903 г. Бенедиктус проводил опыт с нитроцеллюлозой. Наполненная веществом стеклянная колба упала на пол, но не разбилась к большому удивлению ученого. Бенедиктус понял, почему колба не разбилась. До этого в колбе хранился раствор коллодия. И тонкий слой коллодия осел на стенках колбы. Так появилось небьющееся стекло, из которого впоследствии начали изготавливать лобовые стёкла для автомобилей.

Светящийся монах

Семен Исаакович Вольфкович

Известный советский химик академик Семён Исаакович Вольфкович проводил опыты с фосфором. В процессе работы его одежда пропитывалась газообразным фосфором, так как Вольфкович не принимал необходимых мер предосторожности. И когда Вольфкович шел по улицам в темное время суток, его одежда светилась голубоватым светом, и народ думал, что это потустороннее существо. Так в Москве появилась легенда о «светящемся монахе».

Вулканизированная резина

Чарльз Нельсон Гудиер

Натуральный каучук, привезенный Колумбом из Вест-Индии, не находил применения. На холоде он был слишком твердым. В тепле – слишком липким. Через 300 лет американский изобретатель Чарльз Нельсон Гудиер проводил в химической лаборатории опыты, пытаясь смешивать каучук с серой. Но результата не было. Говорят, что случайно Гудиер уронил на горячую печь каучук и серу. И произошло чудо. Была получена резина, которая не становилась мягкой в жару и не была хрупкой на морозе. Впоследствии этот процесс назвали вулканизацией.

Открытие хлора

Карл Вильгельм Шееле

Интересно, что хлор открыл человек, который в тот момент был всего лишь аптекарем. Этого человека звали Карл Вильгельм Шееле. Он обладал поразительной интуицией. Известный французский химик-органик говорил, что Шееле совершает открытие каждый раз, когда прикасается к чему-то. Опыт Шееле был очень прост. Он смешал в специальном аппарате реторте чёрную магнезию и раствор муриевой кислоты. К горлышку реторты присоединил пузырь безвоздуха и подогрел. Вскоре в пузыре появился газ жёлто-зеленого цвета с резким запахом. Так был открыт хлор.

MnO2 + 4HCl = Cl2 + MnCl2 + 2H2O

За открытие хлора Шееле присвоили звание члена Стокгольмской академии наук, хотя до этого он не был учёным. Было Шееле тогда всего 32 года.Но свое название хлор получил только в 1812 г. Автором этого названия был французский химик Гей-Люссак.

Как Балар открыл бром

Антуан Жером Балар

Французский химик Антуан Жером Балар совершил открытие брома, будучи лаборантом. Рассол соляного болота содержал бромид натрия. Во время опыта Балар подействовал на рассол хлором. В результате реакции взаимодействия раствор окрасился в желтый цвет. Балар выделил через некоторое время темно-бурую жидкость и назвал ее муридом. Позже Гей-Люссак назвал новое вещество бромом. А Балар в 1844 г.стал членом Парижской Академии Наук. До открытия брома Балар был почти не известен в научных кругах. После открытия брома Балар стал заведовать кафедрой химии во Французском колледже. Как сказал французский химик Шарль Жерар: "Это не Балар открыт бром, а бром открыл Балара!"

Открытие йода

Бернар Куртуа

Химический элемент йод был открыт французским химиком и фармацевтом Бернаром Куртуа. Причем соавтором этого открытия Куртуа можно считать его любимого кота. Однажды Бернар Куртуа обедал в лаборатории. На его плече сидел кот. Перед этим Куртуа приготовил для будущего опыта бутылки с химическими растворами. В одной бутылке находился иодид натрия. В другой была концентрированная серная кислота. Неожиданно кот прыгнул на пол. Бутылки разбились. Их содержимое смешалось. Образовался сине-фиолетовый пар, который затем осел в виде кристаллов. Так был получен химический элемент йод.

1. Пенициллин

Классика «случайных изобретений» – пенициллин. Александр Флеминг очень любил ставить всякие опыты. Буквально жил в своей лаборатории. Даже ел прямо за рабочим столом. А убираться не было ни времени, ни желания – весь в науке был. Так во время исследования бактерий стафилококка и произошло величайшее открытие – один из образцов был убит спорами плесени, которой у профессора было полно везде – даже на потолке. В 1945-м Флемингу за пенициллин даже Нобелевскую премию дали!

2. Нобелевская премия

Кстати, о «Нобелевке»! По идее, эта премия должна говорить о тонкой и ранимой душе Альфреда Нобеля, олицетворять альтруизм и беззаветную преданность науке и искусству. Ничего подобного! Все было как раз наоборот. Журналисты с перепою что-то напутали, и напечатали некролог на смерть миллионера раньше времени. Тут-то Нобель и узнал всю правду о себе: «торговец смертью», «миллионер на крови» и все в таком духе. Не желая оставаться в памяти людской злодеем, он и завещал все свое состояние на учреждение фонда и премии имени себя.

3. Микроволновка

Американец Перси Спенсер совершенствовал прибор, генерирующий микроволновые радиосигналы, которые использовались в первых радарах. Однажды, стоя у работающего магнетрона (так назывался прибор), инженер полез в карман за «Сникерсом» и вляпался в расплавленный шоколад. Когда закончились все матерные слова, наступило просветление: «Я ж микроволновку изобрел!»

4. Железобетон

Французский садовник Жозеф Монье чуть было не разорился, торгуя пальмами – в дороге глиняные горшки бились, а растения погибали. Появилась идея сделать кадку из цемента, а для прочности – еще каркас из железных прутьев. Так был изобретен железобетон. Тут уже не до пальм стало. Десять лет спустя Монье запатентовал железобетонные шпалы, а еще позже – железобетонные перекрытия, балки, мосты и еще много чего.

5. Шоколадная паста

Пьетро Ферреро делал конфеты и продавал их на местной ярмарке. Однажды он так долго собирался на работу, что из-за жары сладости превратились в бесформенную горку шоколада. Что бы продать хоть что-то, Пьетро намазал получившуюся массу на хлеб и… стал изобретателем шоколадной пасты «Nutella». Сегодня компания, названная по фамилии ее основателя – одна из самых прибыльных в мире. А перед началом особо ответственных дел или переговоров Пьетро всегда молился: «Да поможет нам Святая Нутелла!»

6. Киевский торт

Еще о сладостях. «Киевский торт» тоже появился случайно. Работники бисквитного цеха попросту забыли убрать в холодильник взбитый яичный белок. Утром начальник цеха по фамилии Петренко на свой страх, риск и азарт решил сделать торт из того, что есть. Так появился новый ингредиент – знаменитые хрустящие коржи. Такой торт не стыдно было преподнести самому Брежневу на один из его многочисленных юбилеев!

7. Салат «Цезарь»

Один из самых известных салатов – «Цезарь», впервые был приготовлен случайно. Дело было 4 июля 1924 года. По случаю празднования Дня Независимости США, в ресторанчик Цезаря Кардини нагрянуло столько народа, что закуски на всех не хватало. А магазины по случаю праздника были закрыты. Помогла то ли находчивость, то ли отчаяние: Цезарь решил смешать все, что оставалось на кухне – сыр, яйца, листья салата, чеснок и даже хлеб. Праздник удался. Жизнь ресторатора – тоже.

8. Танец сиртаки

Случайно можно изобрести даже танец! Незадолго до съемок финальной сцены фильма «Грек Зорба» Энтони Куин сломал ногу, а по сценарию там – танец с прыжками. Пришлось придумать что-то другое. Это что-то получило название «сиртаки» и стало одним из символов Греции. Кстати, и музыка для танца никакого отношения к Греции не имеет – она тоже была написана специально для фильма. Хотя все равно хочется думать, что именно так отплясывали древние греки!

9. Суперклей

В 1942 году компания «Kodak» искала прозрачный пластик для орудийных прицелов. Один из сотрудников фирмы, Гарри Кувер, получил некую субстанцию, которая клеилась ко всему подряд и портила любые материалы. 15 лет спустя Кувер вспомнил тот неудачный опыт и запатентовал суперклей. Тот самый, что сейчас продается в любом киоске. Причем, поначалу клей выпускал все тот же «Kodak».

10. Небьющееся стекло

Зачастую лень – двигатель прогресса! Так и колесо изобрели, и подъемный кран, и даже триплекс, небьющееся стекло. Но не потому, что французскому химику Эдуарду Бенедиктусу лень было менять разбитые (например, из рогатки) окна. Ему лень было мыть пробирки и колбы. Один такой сосуд однажды упал и… не разбился! Оказалось, в колбе долго был раствор этилового эфира, этанола и нитратов. Жидкость испарилась, а на стенках остался тонкий слой раствора. Кстати, компания Volvo начала применять изобретение Бенедиктуса еще в 1944 году.

11. Кроссворд

На звание изобретателя кроссворда претендуют сразу несколько человек. Например, некий Виктор Орвилл. Изобрел случайно. От безделья и безысходности. В тюрьме. Он складывал буквы в слова на квадратных плитках пола своей камеры. Получалось красиво и необычно. Что и натолкнуло заключенного на высокоинтеллектуальные мысли. Орвилл придумал нехитрые правила и отправил кроссворд в местную газету. На свободу вышел с чистой совестью и с солидной суммой на банковском счету.

Из-за финансового кризиса 30-х годов прошлого столетия датский плотник Оле Кристиансен чуть было не пошел по миру. Народу было не до стремянок, на которых он когда-то во всех смыслах поднялся. А вот конструктор для детей, который смастерил Кристиансен, неожиданно стал пользоваться спросом. Вскоре плотник основал компанию по производству конструкторов Lego. Да-да, поначалу эта известная игрушка была из дерева – плотник-то просто хотел продать остатки древесины, больше у него ничего и не было! А пластиковым Lego стал только в 1947 году.

13. Тефлон

Молодой амбициозный химик Рой Планкетт долго бился над получением разновидностей фреона. Однажды вечером он отправил в морозилку емкость с тетрафторэтиленом и наутро получил вещество, которое не разрушалось под влиянием воды, жиров, кислот и щелочей, а так же обладало высокой тепло- и морозостойкостью. Сперва это открытие оценили военные, а затем новое вещество стали использовать и в быту. Называется оно тефлон.

Капризный клиент одного гостиничного ресторана пожаловался: «Официант, а чего это картошка у вас такими ломтями нарезана?» Шеф-повар Джордж Крам ответил достойно: нарезал картофель так тонко, насколько это было возможно. Как бы сейчас сказали, гость троллинга не понял, даже напротив – пришел в неописуемый восторг от жареных тонюсеньких ломтиков. А дела ресторана быстро пошли в гору. За счет фирменного блюда под названием чипсы. Было это в 1853 году.

15. Портвейн

1678 год, британское правительство прекратило торговлю с Францией, английские торговцы вином оказались на грани банкротства. Правда, был вариант возить алкоголь из Португалии. Но дорога была длинная, вино быстро портилось. Попробовали добавить в бочки бренди. Получилось крепленое вино, которое назвали портвейном – по названию города Порто, где закупали товар.

16. Мадера

Еще история про португальское вино и долгую дорогу. В Индию. Как-то судно, полное вина, застряло на экваторе – штиль, понимаешь ли, ветер молчит… Вино безнадежно испортилось, клиент получать товар отказался. А моряки – крепкие ребята, и не такое пили! – не побрезговали. Раскупорили первый бочонок и – о, чудо! Слава Дионису всемогущему! Это ж – мадера! Ну, в смысле, в этот момент ее, мадеру, и изобрели.

17. Набойка на кие

Практически революционное открытие для бильярда – наклеечка на конце кия - было сделано совершенно случайно. Заядлый игрок и теоретик бильярда Франсуа Менго сломал ногу. Играть стало несподручно… точнее, несподножно, но дома он сидеть не мог, поэтому приходил и просто смотрел, как играют другие. Однажды в шутку ударил по шару костылем и… Если ты не в курсе – крутиться на месте, откатываться назад, менять углы и скорость шар может исключительно благодаря этой самой набойке на кие.

18. Стикер

Сотрудники американской компании по производству канцелярских товаров долго и безуспешно пытались усовершенствовать акриловый клей. Новый клей отлично прилипал, но абсолютно не скреплял. Вот тут важно было забыть о цели эксперимента. Спенсер Сильвер и Артур Фрай остановились на достигнутом, в результате чего, компания быстро превратилась в транснациональную корпорацию с годовым оборотом 20 миллиардов долларов! И все благодаря изобретенным этой парочкой стикерам.

19. Элвис Пресли

Один десятилетний мальчик мечтал о велосипеде. Но семья у него была бедная. Отец вообще безработный, а до этого пару лет за решеткой провел. Но как любимое чадо без подарка на день рождения оставить! Решили подарить гитару – она была дешевле. Так ребенок занялся музыкой. Выходит, что совершенно случайно. Освоил инструмент, потом запел. Начал делать успехи и подавать большие надежды. Звали юное дарование Элвисом Пресли.

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Так или иначе все в мире построено на случайностях. Наверняка каждый из нас может найти подтверждение этой мысли и в собственной жизни.

сайт сделал подборку о том, что в мировой истории случайности и ошибки не раз играли решающую и даже роковую роль.

Метеорит и христианство

События, которые описываются как «путь в Дамаск», сыграли колоссальную роль в становлении христианства. И скорее всего, они связаны с падением метеорита.

Апостол Павел направлялся в Дамаск на поимку местных христиан. По дороге он увидел на небесах ярчайший свет, был сбит с ног ударной волной и услышал оглушительный грохот. Он ослеп на 3 дня и прозрел лишь в Дамаске, после встречи с христианином Ананией.

Произошедшее Павел растолковал как Божье знамение и стал активно проповедовать христианство.

Источники: newscientist , ancient-origins

Трудности перевода и атомная бомба

В 1945 года США потребовали от Японии капитуляции. В своем ответе японский премьер Судзуки использовал слово mokusatsu, которое можно перевести как «без комментариев», «остаемся в нейтральном молчании» или «мы подумаем».

При переводе это слово превратилось в «мы игнорируем», а потом по принципу глухого телефона в «мы отвергаем» и «мы рассматриваем ваш вопрос с презрением».

Такой ответ оскорбил президента США Трумэна, что подтолкнуло его сбросить на Японию пару атомных бомб.

Источники: wikipedia , thisjapaneselife , pangeanic

«Титаник» и помощник капитана

Ключи от шкафа, где хранились бинокли команды «Титаника», могли бы спасти жизни всех, кто погиб в крушении лайнера. Если бы не Дэвид Блэр, получивший должность второго офицера на «Титанике» и отстраненный в последний момент перед роковым плаванием.

Уходя с парохода, Блэр забыл выложить из кармана ключи от шкафчика с биноклями. Поэтому часть экипажа была лишена возможности увидеть тот самый айсберг до того, как произошло непоправимое.

Источники: telegraph , wikipedia

Небрежность и пенициллин

Ученый Александр Флеминг не очень-то следил за порядком. Он забыл убраться в своей лаборатории, оставил стафилококки в чашке Петри и ушел в отпуск на 2 недели.

Все это время в лабораторию никто не входил, и когда Флеминг вернулся, перед ним предстала удивительная картина. Чашки были заполнены плесенью, а стафилококки умерли.

Так был открыт антибиотик пенициллин и люди перестали погибать от целого ряда бактериальных инфекций.

Источники: pbs ,

Падение Берлинской стены и рассеянность политика

В 1989 году восточногерманский политик Гюнтер Шабовски созвал пресс-конференцию, чтобы объяснить незначительные изменения в законе о пересечении Берлинской стены. В его речи проскользнул намек на то, что какие-либо ограничения по выездам будут вообще сняты. Журналист, услышавший именно такой подтекст, спросил, когда же изменения вступят в силу.

На это Шабовски сказал: «Немедленно». Пресса моментально напечатала о том, что запретов больше нет. Это повлекло за собой столпотворение людей у стены, которые требовали разрешения пройти. Власти, чтобы избежать бунта, позволили стене пасть.

Почему Шабовски ответил именно так? Вероятно, он просто все перепутал. Но он стал человеком, фактически разрушившим Берлинскую стену.
Источник: independent , nytimes

Неуклюжесть ученого и небьющееся стекло

В 1903 году ученый Эдуард Бенедиктус уронил на пол колбу. К его удивлению, она не разлетелась на осколки, а лишь растрескалась. Ученый вспомнил, что после предыдущего опыта на стенках колбы сохранился тонкий слой нитрата целлюлозы.

Бенедиктус сделал «бутерброд» из двух стекол, склеенных слоем нитрата целлюлозы. Такое стекло можно было бить молотком - оно трескалось, но не распадалось на осколки.

Так появилось стекло «триплекс», которое используется по сей день. Благодаря ему во время аварии водитель и пассажиры точно не погибнут от ранений осколками.

Источники:

В один из дней 1903-го года французский химик Эдуард Бенедикт готовился к очередному эксперименту в лаборатории – он не глядя протянул руку за чистой колбой, стоявшей на полке в шкафу, и уронил ее.

Взяв метлу и совок чтобы убрать осколки, Эдуард подошел к шкафу и обнаружил с удивлением, что колба хоть и разбилась, но все ее фрагменты остались на месте, их соединяла друг с другом какая-то пленка.

Химик позвал лаборанта – тот был обязан мыть стеклянную посуду после опытов и попытался выяснить, что было в колбе. Оказалось, что эта емкость использовалась несколько дней назад в ходе экспериментов с нитратом целлюлозы (нитроцеллюлозой) – спиртовым раствором жидкого пластика, небольшое количество которого после испарения спирта осталось на стенках колбы и застыло пленкой. А поскольку слой пластика был тонок и достаточно прозрачен, лаборант решил, что емкость пуста.

Спустя пару-тройку недель после истории с не разлетевшейся на осколки колбой, Эдуарду Бенедикту попалась на глаза заметка в утренней газете, в которой описывались последствия лобовых столкновений нового в те годы вида транспорта – автомобилей. Ветровое стекло разлеталось осколками, нанося водителям множественные порезы, лишая зрения и нормальной внешности. Фотографии пострадавших произвели на Бенедикта тягостное впечатление и тут он вспомнил о «небьющейся» колбе. Бросившись в лабораторию, следующие 24 часа своей жизни французский химик посвятил созданию небьющегося стекла. Он наносил нитроцеллюлозу на стекло, сушил слой пластика и бросал композит на каменный пол – снова, снова и снова. Так Эдуард Бенедикт изобрел первое стекло-триплекс.

Многослойное стекло

Стекло, образованное несколькими слоями из силикатного или органического стекла, соединенными особой полимерной пленкой, называется триплексом. В качестве полимера, соединяющего стекла, обычно используется поливинилбутираль (PVB). Существует два основных способа производства многослойного стекла триплекс – заливной и ламинационный (автоклавный или вакуумный).

Технология заливного триплекса. Листы флоат-стекла нарезаются по размерам, при необходимости им придается изогнутая форма (выполняется моллирование). После тщательно очистки поверхностей стекла укладываются друг на друга с тем, чтобы между ними оставался просвет (полость) высотой не более 2 мм – дистанция фиксируется с помощью особой резиновой полосы. Совмещенные листы стекла выставляются под углом к горизонтальной поверхности, в полость между ними заливается поливинилбутираль, резиновая вставка по периметру препятствует его вытеканию. Чтобы достичь равномерности полимерного слоя, стекла помещают под пресс. Окончательное соединение листов стекла за счет отверждения поливинилбутираля происходит под ультрафиолетовым излучением в специальной камере, внутри которой поддерживается температура в диапазоне от 25 до 30 о С. После формирования триплекса, из него извлекается резиновая лента и производится обточка кромки.

Автоклавная ламинация триплекса. После резки листов стекла,
обработки кромок и моллирования, они очищаются от загрязнений. По окончании подготовки листов флоат-стекла, между ними укладывается PVB пленка, сформированный «сэндвич» помещается в пластиковую оболочку – в вакуумной установке из пакета полностью выводится воздух. Окончательное соединение слоев «сэндвича» происходит в автоклаве, под давлением 12,5 бар и температурой 150 о С.

Вакуумная ламинация триплекса. По сравнению с автоклавной технологией, вакуумная триплексация выполняется при меньших давлении и температуре. Последовательность рабочих операций у них схожа: нарезка стекла, придание изогнутой формы в моллирующей печи, обточка кромок, тщательная чистка и обезжиривание поверхностей. При формировании «сэндвича» между стеклами помещается этиленвинилацетатная (EVA) или PVB пленка, затем их помещают в вакуумную машину, предварительно уложив в пластиковый мешок. Спаивание стеклянных листов происходит именно в этой установке: откачивается воздух; «сэндвич» нагревается до максимальных 130 о С, происходит полимеризация пленки; триплекс охлаждается до 55 о С. Полимеризация выполняется в разреженной атмосфере (- 0,95 бар), при снижении температуры до 55 о С давление в камере выравнивается до атмосферного и, как только температура многослойного стекла составит 45 о С, формирование триплекса завершается.

Многослойное стекло, созданное по заливной технологии, более прочное, но менее прозрачное, чем ламинированный триплекс.

Из стеклянных сэндвичей, выполненных по одной из триплекс-технологий, создаются лобовые стекла автомашин, они необходимы для остекления высотных зданий, в построении перегородок внутри офисов и жилых домов. Триплекс популярен у дизайнеров – изделия из него являются неотъемлемым элементом стиля модерн.

Но, несмотря на отсутствие осколков при ударе по многослойному «сэндвичу» из силикатного стекла и полимера, пулю он не остановит. А вот рассмотренные ниже триплекс-стекла сделают это вполне успешно.

Бронированное стекло – история создания

В 1928 году немецкие химики создают новый материал, немедленно заинтересовавший авиаконструкторов – плексиглас. В 1935 году руководителю НИИ «Пластмасс» Сергею Ушакову удалось достать в Германии образец «гибкого стекла», советские ученые занялись его исследованием и разработкой технологии серийного производства. Спустя год производство органического стекла из полиметилметакрилата было начало на заводе «К-4» в Ленинграде. Одновременно были начаты эксперименты, направленные на создание бронированного стекла.

Закаленное стекло, созданное в 1929 году французской компанией SSG, в середине 30-х годов под названием «сталинит» выпускалось в СССР. Технология закалки заключалась в следующем – листы самого обычного силикатного стекла нагревались до температур в диапазоне от 600 до 720 о С, т.е. выше температуры размягчения стекла. Затем лист стекла подвергался быстрому охлаждению – потоки холодного воздуха за несколько минут понижали его температуру до 350-450 о С. Благодаря закалке стекло получало высокие прочностные свойства: сопротивляемость удару возрастала в 5-10 раз; прочность на изгиб – не менее чем в два раза; термостойкость – в три-четыре раза.

Однако, несмотря на высокую прочность, «сталинит» не годился для моллирования с целью формиров
ания фонаря кабины самолета – закалка не позволяла его гнуть. Кроме того закаленное стекло содержит в себе значительное количество зон внутреннего напряжения, легкий удар по ним приводил к полному разрушению всего листа. «Сталинит» нельзя резать, обрабатывать и сверлить. Тогда советские конструкторы решили комбинировать пластичное оргстекло и «сталинит», превратив их недостатки в достоинство.

Предварительно формованный фонарь самолета покрывался небольшими плитками из закаленного стекла, клеем служил поливинилбутираль.

Прозрачная броня

Современное бронестекло, также называемое прозрачной броней, представляет собой многослойный композит, образованный листами силикатного стекла, оргстекла, полиуретана и поликарбоната. Также в состав бронированного триплекса могут входить кварцевое и керамическое стекло, синтетический сапфир.

Европейские производители бронестекол выпускают в основном триплекс, состоящий из нескольких «сырых» флоат-стекол и поликарбоната. К слову, незакаленное стекло в среде компаний, выпускающих прозрачную броню, называется «сырым» - в триплексе с поликарбонатом применяется именно «сырое» стекло.

Лист поликарбоната в таком многослойном стекле устанавливается на сторону, обращенную внутрь защищаемого помещения. Задача пластика заключается в гашении колебаний, вызванных ударной волной при столкновении пули с бронестеклом, чтобы избежать образования новых осколков в листах «сырого» стекла. Если поликарбонат в составе триплекса отсутствует, то ударная волна, движущаяся перед пулей, разобьет стекла еще до фактического ее соприкосновения с ними и пуля беспрепятственно пройдет через такой «сэндвич». Недостатки бронестекол с поликарбонатной вставкой (равно, как и с любым полимером в составе триплекса): значительный вес композита, особенно по классам 5-6а (достигает 210 кг за м 2); низкая стойкость пластика к абразивному износу; отслоение поликарбоната со временем из-за температурных перепадов.

Другое, перспективное направление в создании прозрачной бронибазируется на ином пр
инципе. Лист прозрачного пластика устанавливается в триплекс все также последним, а первыми монтируются вставки из лейкосапфира, керамического или кварцевого стекла – именно они должны встретить пулю. Лицевой слой триплекса, образованный перечисленными сверхтвердыми материалами, ломает либо плющит пулю, средний слой из термически или химически упрочненного стекла удержит поврежденную внутри стеклянного «сэндвича», а последний, пластиковый слой – погасит ударную волну и импульс от первичных осколков, не позволяя образовываться вторичным осколкам. Для защиты поликарбоната от абразивного износа, на него наносится пленка типа stop shield. Преимущества такого бронированного многослойного стекла – в 3-4 раза меньший вес и толщина, чем у триплекса из «сырого» стекла. Недостаток – высокая стоимость.

Кварцевое стекло. Производится из оксида кремния (кремнезема) природного происхождения (кварцевого песка, горного хрусталя, жильного кварца) или искусственно синтезированной двуокиси кремния. Обладает высокой термостойкостью и светопропусканием, его прочность выше, чем у силикатного стекла (50 H/мм 2 против 9,81 H/мм 2).

Керамическое стекло. Выполняется из оксинитрида алюминия, разработано в США для нужд армии, запатентованное название – ALON. Плотность этого прозрачного материала выше, чем у кварцевого стекла (3,69 г/см 3 против 2,21 г/см 3), прочностные характеристики также высоки (модуль Юнга – 334 ГПа, средний предел напряжения при изгибе – 380 МПа, что практически в 7-9 раз превышает аналогичные показатели стекол из оксида кремния).

Искусственный сапфир (лейкосапфир). Представляет собой монокристалл из оксида алюминия, в составе бронестекла придает триплексу максимальные прочностные свойства из возможных. Некоторые его характеристики: плотность – 3,97 г/см 3 ; средний предел напряжения при изгибе – 742 МПа; модуль Юнга – 344 ГПа. Недостаток лейкосапфира заключается в его значительной стоимости из-за высоких производственных энергозатрат, потребностей в сложной механической обработке и полировке.

Химически упрочненное стекло. «Сырое» силикатное стекло погружают в ванну с водным раствором фтороводородной (плавиковой) кислоты. После химической закалки стекло становится в 3-6 прочнее, его ударная вязкость возрастает шестикратно. Недостаток – прочностные характеристики упрочненного стекла ниже, чем у термически закаленного.

В настоящее время для защиты жилых домов в основном используются многослойные стекла типа "триплекс".

Наша фирма также производит установку многослойных небьющихся стекол в жилые и другие помещения.

Последние материалы раздела:

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...