Уравнение Шредингера для атома водорода. Квантовые числа и их физический смысл

Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze(для атома водорода Z=1)

Где r-расстояние между электроном и ядром

Состояние электрона в атоме водорода описывается волновой функцией ψ, удовлетворяющей стационарному уравнению Шредингера , учитывающие значение U(r):

m-масса электрона, Е- полная энергия электрона в атоме.

В квантовой механике доказывается, что уравнению Шредингера удовлетворяют собственные функции ψ nlm ­(r,θ,φ), определяемые 3 квантовыми числами: главным n,орбитальным l и магнитным m l . Главное квантовое число n определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения n=1,2,3….Орбитальное квантовое число l , при заданном n принимает значения l=0,1,…,(n-1) т.е. всего n значений и определяет момент импульса электрона в атоме. Магнитное квантовое число m l , при заданном l может принимать значения m l =0,±1,±2,…,±l, т.е. всего 2l+1 значений. Т.о. магнитное квантовое число определяет проекцию момента импульса на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентаций. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число m l характеризует ориентацию электронного облака в пространстве.

20.Собственный механический и магнитный момент электрона. Опыт Штерна и Герлаха.

Электрон обладает собственным механическим моментом импульса L s , называемым спином. Спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона соответствует собственный магнитный момент P s , пропорциональный L s и направленный в противоположную сторону: P s =g s L s , g s – гиромагнитное отношение спиновых моментов. Проекция собственного магнитного момента на направление вектора B: P sB =±e`h/2m=±m B , где`h=h/2p, m B =магнетон Бора. Общий магнитный момент атома p a = векторной сумме магнитных моментов входящих в атом электрона: P a =Sp m +Sp ms . Опыт Штерна и Герлаха. Проводя измерения магнитных моментов они обнаружили, что узкий пучек атомов водорода в неоднородном магнитном поле расщепляется на 2 пучка. Хотя в этом состоянии (Атомы находились в S состоянии) момент импульса электрона равен 0, а так же магнитный момент атома равен 0, поэтому магнитное поле не оказывает влияние на движение атома водорода, то есть расщепления быть не должно. Однако, дальнейшие исследования показали что спектральные линии атомов водорода обнаруживают такую структуру даже в отсутствие магнитного поля. В последствии было установлено, что такая структура спектральных линий объясняется тем, что электрон обладает собственным неуничтожимым механическим моментом, названным спином.

21.Орбитальный, спиновый и полный угловой и магнитный момент электрона.

Электрон обладает собственным моментом импульса M S , который называется спином. Его величина определяется по общим законам квантовой механики: M S = ` hÖ= ` hÖ[(1/2)*(3/2)]=(1/2) ` hÖ3, M l = ` hÖ – орбитальный момент. Проекция может принимать квантовые значения, отличающиеся друг от друга на`h. M Sz =m S ` h, (m s =±S), M lz =m l ` h. Чтобы найти значение собственного магнитного момента умножим M s на отношение m s к M s , m s – собственный магнитный момент:

m s =-eM s /m e c=-(е ` h/m e c)Ö=-m Б Ö3, m Б – Магнетон Бора.

Знак (-) потому что M s и m s направлены в разные стороны. Момент Электрона слагается из 2-х: орбитального M l и спинового M s . Это сложение осуществляется по тем же квантовым законам, по которым складываются орбитальные моменты разных электронов: Мj= ` hÖ, j – квантовое число полного момента импульса.

22. Атом во внешнем магнитном поле. Эффект Зеемана .

Эффектом Зеемана называется расщепление энергетических уровней при действии на атомы магнитного поля. Расщепление уровней приводит к расщеплению спектральных линий на несколько компонентов. Расщепление спектральных линий при действии на излучающие атомы магнитного поля так же называется эффектом Зеемана. Зеемановское расщепление уровней обьясняется тем, что атом, обладающий магнитным моментом m j , приобретает в магнитном поле дополнительную энергию DE=-m jB B, m jB - проекция магнитного момента на направление поля. m jB =-m Б gm j , DE=m Б gm j , (m j =0, ±1,…, ±J). Энергетический уровень расщепляется на подуровни, причем величина расщепления зависит от квантовых чисел L,S,J данного уровня.


8) Основные постулаты квантовой механики. Вероятностный характер результатов измерений в квантовой механике.

Первый постулат квантовой механики. Состояние частицы в квантовой механике описывается заданием волновой функции y(x,y,z,t), являющейся функцией пространственных координат и времени. Вероятностный смысл волновой функции. Квадрат модуля волновой функции y(x,y,z,t) определяет плотность вероятности w того, что в момент времени t³0 частица может быть обнаружена в точке пространства M=M(x,y,z) с координатами x , y и z .w=dP/dV=|y| 2 =y*y. Волновую функцию, удовлетворяющую условию нормировки F ® ¥ ò|y| 2 dV=1, называют нормированной волновой функцией. Условия регулярности волновой функции. 1. Условие конечности волновой функции (волновая функция была квадратично интегрируемой функцией). 2. Условие однозначности волновой функции (плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно). 3. Условие непрерывности волновой функции. Кроме того, непрерывными должны быть также частные производные волновой функции, т.е. функция должна быть гладкой . Принцип суперпозиции. Если частица может находиться в квантовом состоянии, описываемом волновой функцией y 1 , а также в другом квантовом состоянии, описываемом волновой функцией y 2 , и т.д. аналогично до y n , то эта частица может также находиться в состоянии, описываемом волновой функцией y=с 1 y 1 +с 2 y 2 +…+с n y n . В таком состоянии квадрат модуля коэффициента С n определяет вероятность того, что при измерении, проведенном над системой с такой волновой функцией, мы обнаружим ее в квантовом состоянии, описываемом волновой функцией y n . Поэтому для нормированных волновых функций .

12) Частица в трехмерной потенциальной яме с абсолютно непроницаемыми стенками. Энергетический спектр частицы. Понятие о вырождении энергетических уровней.

Потенциальный ящик: G={(x,y,z):0(1/y 1 (x))(d 2 y 1 (x)/dx 2)+ (1/y 2 (y))(d 2 y 2 (y)/dy 2)+(1/y 3 (z)) (d 2 y 3 (z)/dz 2)=-2m 0 E/ħ 2 . Первое слагаемое в левой части зависит только от x, а второе - только отy. Поскольку их сумма равна постоянной величине, то это означает, что каждое из слагаемых также представляет собой постоянную величину. Получаем три одномерных уравнения: d 2 y 1 (x)/dx 2 +2m 0 E 1 y 1 (x)/ ħ 2 =0, d 2 y 2 (y)/dy 2 +2m 0 E 2 y 2 (y)/ ħ 2 =0, d 2 y 3 (z)/dz 2 +2m 0 E 3 y 3 (z)/ ħ 2 =0=> аналогично для y 2 (y) и y 3 (z)=>, а её энергетический спектр Энергетический уровень, которому соответствует не одно, а несколько состояний частицы, называется вырожденным уровнем , а число соответствующих ему состояний называется кратностью вырождения или степенью вырождения уровня.

13) Движение микрочастицы в области одномерного потенциального порога. Надбарьерное отражение частицы в случае низкого порога.

Потенциальный порог : U(x)={0: x<0; U 0 ,x>0}. Пусть E. Обозначив и получим ур-ние Шредингера в виде d 2 y 1 (x)/dx 2 +k 1 2 y 1 =0 и d 2 y 2 (x)/dx 2 -k 2 2 y 2 =0. Решением уравнения являются: y 1 (x)=A 1 exp{ik 1 x}+ B 1 exp{-ik 1 x} и y 2 (x)=A 2 exp{k 2 x}+ B 2 exp{-k 2 x}. Поскольку волновая функция должна быть ограниченной, а первое слагаемое в волновой функции y 2 (x) при x, стремящемся к бесконечности, неограниченно возрастает, то необходимо потребовать A 2 =0 . Из условий сшивки y 1 (0)= y 2 (0) и y 1 ’(0)= y 2 ’(0)=> A 1­ +B 1 =B 2 и ik 1 A 1­ -ik 1 B 1 =-k 2 B 2 . A 1 =1 =>B 1 =(k 1 -ik 2)/(k 1 +ik 2) ; B 2 =2k 1 /(k 1 +ik 2) .=>y 1 (x)=exp{ik 1 x}+(k 1 -ik 2)/(k 1 +ik 2)exp{-ik 1 x} и y 2 (x)= 2k 1 /(k 1 +ik 2)exp{-k 2 x}. Коэф-т отражения R=|B 1 | 2 /|A 1 | 2 =1, коэф-т прохождения D=0. Пусть E>U 0 . Положим

и => d 2 y 1 (x)/dx 2 +k 1 2 y 1 =0 и d 2 y 2 (x)/dx 2 +k 2 2 y 2 =0=> y 1 (x)= A 1 exp{ik 1 x}+B 1 exp{-ik 1 x} и y 2 (x)=A 2 exp{ik 2 x}+ B 2 exp{-ik 2 x}. Поскольку отраженная волна в области II отсутствует, то B 2 =0 . Условие сшивки: A 1­ +B 1 =A 2 и k 1 A 1­ -k 1 B 1 =k 2 B 2 . Полагая A 1 =1 =>B 1 =(k 1 -k 2)/(k 1 +k 2) ; A 2 =2k 1 /(k 1 +k 2) =>y 1 (x)=exp{ik 1 x}+(k 1 -k 2)/(k 1 +k 2)exp{-ik 1 x} и y 2 (x)= 2k 1 /(k 1 +ik 2)exp{ik 2 x}. R=|B 1 | 2 /|A 1 | 2 , D=|A 2 | 2 /|A 1 | 2 .

Решение уравнения Шрёдингера для водородного атома использует факт, что кулоновский потенциал является изотропным, то есть не зависит от направления в пространстве, другими словами обладает сферической симметрией. Хотя конечные волновые функции не обязательно сферически симметричны непосредственно, их зависимость от угловой координаты следуют полностью из этой изотропии основного потенциала: собственные значения оператора Гамильтона можно выбрать в виде собственных состояний оператора углового момента. Это соответствует тому факту, что угловой момент сохраняется при орбитальном движении электрона вокруг ядра. Отсюда следует, что собственные состояния гамильтониана задаются двумя квантовыми числами углового момента l и m. Квантовое число углового момента l может принимать значения 0, 1, 2… и определяет величину углового момента. Магнитное квантовое число может принимать m = −l, .., +l определяет проекцию углового момента на ось z.

В дополнение к математическим выражениям для волновых функций полного углового момента и проекции углового момента, нужно найти выражение для радиальной зависимости волновой функции. В потенциале 1/r радиальные волновые функции записываются с использованием полиномов Лагерра). Это приводит к третьему квантовому числу, которое называется основное квантовое число n и может принимать значения 1, 2, 3… Основное квантовое число в атоме водорода связано с полной энергией атома. Заметим, что максимальное значение квантового числа углового момента ограничена основным квантовым числом: оно может изменяться только до n − 1, то есть l = 0, 1, …, n−1.

Из-за сохранения углового момента, состояния с тем же l, но различными m имеют ту же самую энергию. Однако, это — определенная особенность атома водорода и не верно для более сложных атомов, которые имеют потенциал, отличающийся от кулоновского.

Если мы примем во внимание спин электрона, то появится последнее квантовое число, проекция углового момента собственного вращения электрона на ось Z, которая может принимать два значения. Поэтому, любое собственное состояние электрона в водородном атоме описывается полностью четырьмя квантовыми числами. Согласно обычным правилам квантовой механики, фактическое состояние электрона может быть любой суперпозицией этих состояний. Это объясняет также, почему выбор оси Z для квантования направления вектора углового момента является несущественным: орбиталь для данных l и m ", полученных для другой выделенной оси Z ", всегда представляется как подходящая суперпозиция различных состояний с разными m, которые были получены для Z.

Рассмотрим сейчас решение уравнения Шредингера для атома водорода. Так как потенциальная функция электрона в атоме водорода имеет вид , где e — заряд электрона, r — радиус вектор, уравнение Шредингера запишется следующим образом:

Здесь ψ — волновая функция электрона в системе отсчёта протона, m — масса электрона, где , — постоянная Планка, E — полная энергия электрона, — оператор Лапласа. Так как потенциальная функция зависит от r, а не от координат по отдельности, удобно будет записать лапласиан в сферической системе координат. В ней он выглядит следующим образом:

И уравнение Шредингера в сферических координатах:

В этом уравнении ψ — функция трех переменных. Разделим его на три более простых уравнения. Для этого представим функцию ψ как произведение трех функций: ψ = RΘΦ. Эти функции будем обозначать просто R,Θ,Φ. Тогда

.

После подстановки значений частных производных в уравнение Шредингера получим:

Умножим уравнение на :

Второе слагаемое тут зависит только от . Перенесем его в правую часть равенства.

Равенство возможно, когда обе части равны какой-то постоянной величине. Обозначим ее . Следовательно,

Решением этого уравнения являются функции

Угол может изменяться от 0 до 2π. Функция Φ должна быть периодической с периодом 2π. Это возможно только если Таким образом, из решения уравнения Шредингера получаем значение одного из квантовых чисел. Число m l называется магнитным квантовым числом.

Разделим уравнение на sinθ:

После аналогичного вышеуказанному перенесению второго слагаемого в правую часть и обозначения величины, которой равны эти части, через β, получаем

Решение этих двух последних уравнений приводит к значениям и n соответственно. 3 квантовых числа в совокупности полностью описывают состояния электрона в атоме водорода.

Модуль полной энергии электрона в стационарном состоянии в атоме водорода обратно пропорционален n. Число n называется главным квантовым числом. Оно может иметь значения от 1 до . Его связь с энергией см. ниже.

Число называется азимутальным квантовым числом и определяет момент количества движения электрона и форму электронного облака; может иметь значения от 0 до n − 1.

Магнитное квантовое число m l определяет проекцию момента количества движения на выбранную ось в магнитном поле. Эта проекция равна .

Решение уравнения Шрёдингера для водородного атома использует факт, что кулоновский потенциал является изотропным, то есть не зависит от направления в пространстве, другими словами, обладает сферической симметрией. Хотя конечные волновые функции (орбитали ) не обязательно сферически симметричны, их зависимость от угловой координаты следуют полностью из изотропии основного потенциала: собственные значения оператора Гамильтона можно выбрать в виде собственных состоянийоператора углового момента. Это соответствует тому факту, что угловой момент сохраняется при орбитальном движении электрона вокруг ядра. Отсюда следует, что собственные состояния гамильтониана задаются двумя квантовыми числами углового момента l и m (целые числа). Квантовое число углового момента l может принимать значения 0, 1, 2… и определяет величину углового момента. Магнитное квантовое число может принимать m = −l , …, +l ; оно определяет проекцию углового момента на (произвольно выбранную) ось z .

В дополнение к математическим выражениям для волновых функций полного углового момента и проекции углового момента, нужно найти выражение для радиальной зависимости волновой функции. В потенциале 1/r радиальные волновые функции записываются с использованием полиномов Лагерра). Это приводит к третьему квантовому числу, которое называется основным квантовым числом n и может принимать значения 1, 2, 3… Основное квантовое число в атоме водорода связано с полной энергией атома. Заметим, что максимальное значение квантового числа углового момента ограничено основным квантовым числом: оно может изменяться только до n − 1, то есть l = 0, 1, …, n −1.

Из-за сохранения углового момента состояния с одинаковыми l , но различными m в отсутствие магнитного поля имеют одну и ту же энергию (это выполняется для всех задач с аксиальной симметрией). Кроме того, для водородного атома состояния с одинаковыми n , но разными l также вырождены (то есть имеют одинаковую энергию). Однако это свойство - особенность лишь атома водорода (и водородоподобных атомов), оно не выполняется для более сложных атомов, которые имеют (эффективный) потенциал, отличающийся от кулоновского (из-за присутствия внутренних электронов, экранирующих потенциал ядра).

Если мы примем во внимание спин электрона, то появится последнее, четвёртое квантовое число, определяющее состояния атома водорода - проекция углового момента собственного вращения электрона на ось Z . Эта проекция может принимать два значения. Любое собственное состояние электрона в водородном атоме полностью описывается четырьмя квантовыми числами. Согласно обычным правилам квантовой механики, фактическое состояние электрона может быть любой суперпозицией этих состояний. Это объясняет также, почему выбор оси Z для квантования направления вектора углового момента является несущественным: орбиталь для данных l и полученных для другой выделенной оси всегда представляется как подходящая суперпозиция различных состояний с разными m (но тем же самым l ), которые были получены для Z .

Рассмотрим сейчас решение уравнения Шрёдингера для атома водорода. Так как потенциальная функция электрона в атоме водорода имеет вид где e - заряд электрона (и протона), r - радиус-вектор, то уравнение Шрёдингера запишется следующим образом:

Здесь ψ - волновая функция электрона в системе отсчёта протона, m - масса электрона, - постоянная Планка,E - полная энергия электрона, - оператор Лапласа. Так как потенциальная функция зависит от r , а не от координат по отдельности, удобно будет записать лапласиан в сферической системе координат В ней он выглядит следующим образом:

Уравнение Шрёдингера в сферических координатах:

В этом уравнении - функция трёх переменных Разделим его на три более простых уравнения. Для этого представим функцию как произведение трех функций: Эти функции будем обозначать просто Тогда:

После подстановки значений частных производных в уравнение Шрёдингера получим:

Умножим уравнение на

Второе слагаемое тут зависит только от φ. Перенесём его в правую часть равенства.

Равенство возможно, когда обе части равны какой-то постоянной величине. Обозначим её Следовательно:

Решением этого уравнения являются функции

Угол φ может изменяться от 0 до 2π. Функция должна быть периодической с периодом 2π. Это возможно, только если Таким образом, из решения уравнения Шрёдингера получаем значение одного из квантовых чисел (конечно, из него можно получить их все). Число называется магнитным квантовым числом .

Разделим уравнение на

После аналогичного вышеуказанному перенесению второго слагаемого в правую часть и обозначения величины, которой равны эти части, через получаем

Решение этих двух последних уравнений приводит к значениям l и n соответственно. Три квантовых числа в совокупности полностью описывают состояния электрона в атоме водорода.

Уровни энергии и вид -функций атома водорода. В атоме водорода электростатически взаимодействуют ядро с зарядом и электоон с зарядом -е и массой т. Потенциальную энергию их взаимодействияподставим в уравнение Шредингера (II.8):

Потенциальное поле, создаваемое взаимодействием электрона и протона, сферически симметрично относительно ядра, как начала координат. Важные квантово-механические характеристики атома можно найти, рассматривая движение электрона в полярной сферической системе координат. Как известно, прямоугольные координаты связаны со сферическими соотношениями:

Угол, образованный радиусом-вектором г - угол, образованный осью х с проекцией радиус-вектора на плоскость Воспользуемся этими соотношениями и напишем уравнение Шредингера (II.9) в полярных сферических координатах *:

собой оператор Лапласа"выраженный в сферических полярных координатах.

Решение этого уравнения сопряжено с большими трудностями. Для упрощения задачи искомую собственную волновую функциюв уравнении (II. 10), называемую атомной орбиталью (АО), представляют в виде произведения трех функций:

Функция R (г) называется радиальной;- азимутальной,i - широтной.

Обычно угловая часть волновой функции обозначается. Не приводя подробного решения уравнения 11.10 *, рассмотрим лишь результаты определения радиальной и угловой частей волновой функции F.

Решением уравнения Шредингера относительно радиальной функции является выражение:-величины,

называемые полиномами Ляггера, представляют собой решения дифференциального уравнения:причем должно быть положительным целым числом или нулем.

Так как / целые числа, то

Решенияугловой функции (так называемые сферические гармоники) удовлетворяют дифференциальному уравнению:

Для этих функций выполнены периодические граничные условия, которые вытекают из требования неизменности волновой функциипри замене

Если выразить функцию ¥ в зависимости от радиуса г, то уравнение (11.9) приводится к виду:

Для этого линейного дифференциального уравнения второго порядка решением является(с точностью до некоторого множителя), где постоянная а подбирается так, чтобы после подстановкив (11.11) получить тождество. Дифференцированиемнайдеми вместе сподставим в (II. 11).

После сокращения на член е~аг

Уравнение (11.13) выражает наименьший (основной) уровень энергии в атоме водорода (п = 1). Знак минус означает, что для разведения электрона и протона на бесконечно большое расстояние требуется затрата энергии. Величина совпадает с радиусом аналогичной орбиты в теории Бора.

Можно показать, что уравнение Шредингера имеет и другие решения, в которых

энергия уровня,тринимает дискретные значения при п= 2, 3,

4... . Эти новые уровни энергии свойственны возбужденному атому водорода. Число п, определяющее энергетический уровень электрона, называется главным квантовым числом.

Отсюда вытекает, что вид волновой функции определяется заданной совокупностью чисел п, I, т. эту функцию означают символомЧтобы различать конкретные орбитали, справа внизу у символа V

вписывают цифрами 1, 2, 3... значения пи буквами s, р, d, f... значенияI = 0,1,

12, 3 соответственно. Например, орбиталь с п = 2 и I = 0 записывается орбиталь имеет п = 2, 1-1.

Таким образом, решение уравнения Шредингера для атома водорода приводит к трем взаимно связанным квантовым числам п = 1, 2, 3, 4, ..., = 0, 1, 2, 3, ...,

п - 1 (всего п значений для каждого I); т = 0,.±1, ±2, ±3 ±1 (всего 21 + 1

значений от -I до -И), которые характеризуют уровни энергиии соответствующие им орбитали

Угловые части волновой функциии р-атомных орбиталей представлены в табл. 1 в зависимости от значений квантовых чисел I и т. Здесь же приведены полные волновые функцииполученные с учетом радиальных частей R (г) для тех же АО.

Таблица 1 Нормированные волновые функции водородоподобных атомов;

Квантовые числа, выводимые формально в ходе решения уравнения Шредингера, имеют конкретный физический смысл. Уже говорилось, что главное квантовое число п характеризует возможные уровни электронной энергии атома. Что касается орбитального квантгтого числа /, то теоретический анализ позволяет рассматривать его как величинуорбитального момента количества движения электрона относительно оси г

Магнитное квантовое число т имеет смысл проекции орбитального момента на некоторое направление. Кактак и его проекция могут принимать лишь дискретные значения, т. е. квантуются. С числом I связывается форма электронного облака, а с числом т - ориентация облака в пространстве. Главное квантовое число п определяет не только энергию, но и размер электронного облака: увеличение п соответствует увеличению энергии и размера облака.

Квантовые числа п, I, т недостаточны для полной характеристики энергии и состояния электрона в атоме. Изучение атомных спектров, снятых в магнитном поле, показало, что кроме трех степеней свободы движения (г, О и <р) электрон должен иметь еще и четвертую - вращение вокруг собственной оси. Проекция углового момента количества движения электрона на ось г может иметь два значенияи

которые называются спиновыми квантовыми числами и обозначаются буквой ms.

Спиновое квантовое число не определяет форму, размер, ориентацию, энергию (при обычных условиях) электронного облака, однако оно имеет важное значение для теории электронной структуры атома, объяснения природы ковалентной связи, парамагнетизма и т. д.

Стационарное уравнение Шредингера для водородоподобного атома (один электрон около ядра с зарядом Ze ) имеет вид

Это уравнение удобно записать в сферических координатах:

Разумеется, мы не станем решать это уравнение, но просто внимательно на него посмотрим.

Заметим, что та часть уравнения (5.6), которая зависит от углов, входит только в состав оператора квадрата момента импульса (5.3). Довольно ясен физический смысл этого члена. Представим себе, что в поле центральных сил по орбите радиусом r движется классическая частица с импульсом . Ее момент количества движения равен

где - проекция импульса на направление, ортогональное радиусу-вектору . Обозначим

кинетическую энергию «ортогонального» движения. Ее можно выразить через квадрат момента количества движения:

Этот член добавляется к потенциальной энергии кулоновского притяжения к ядру, и его можно интерпретировать как потенциальную энергию в поле центробежных сил. Действительно, если - потенциальная энергия, то ее производная по r должна дать соответствующие силы:

В конечном выражении легко узнать известную из классической механики формулу для центробежной силы. Квантовая механика, как это и должно быть, воспроизводит на новом уровне результаты классической: теперь момент импульса стал оператором, но вошел на прежних правах в выражение для оператора полной энергии (гамильтониана).

Любой оператор коммутирует сам с собой, и так как оператор квадрата момента (5.3) вообще не зависит от радиальной переменной r, то

коммутирует с гамильтонианом (5.6). Кроме того, оператор проекции момента импульса

коммутирует c

и, стало быть, с гамильтонианом. Следовательно, выполняются классические законы сохранения квадрата и одной проекции момента импульса. Эти законы сохранения справедливы для любого центрально-симметричного поля: специфика кулоновского взаимодействия пока нами не использовалась. Поэтому проекция и квадрат момента могут быть определены одновременно с энергией, и волновая функция стационарного состояния будет зависеть от квантовых чисел l и m . Однако в уравнении Шредингера (5.6) гамильтониан вовсе не зависит от оператора проекции момента импульса. Это значит, что энергия состояния не будет зависеть от магнитного квантового числа m . Иными словами, в любом центрально-симметричном поле имеется вырождение по n, кратность которого равна 21 + 1 . Мы уже знаем, что источником вырождения должна служить та или иная симметрия. В классической физике движение частицы в центрально-симметричном поле всегда происходит по орбите, лежащей в одной плоскости. Но сама эта плоскость может быть произвольной в зависимости от начального положения и скорости частицы. Ясно, что значение полной энергии частицы не зависит при этом от ориентации плоскости орбиты в пространстве. Это и есть искомая симметрия, приводящая к вырождению по магнитному квантовому числу.

В кулоновском поле (равно как и в гравитационном) имеется еще одно специфическое вырождение, приводящее к тому, что энергия системы не зависит и от квантового числа l .

Вспомним опять классическую физику. В кулоновском поле финитное движение частицы совершается только по эллипсу. Возьмем в качестве аналогии искусственный спутник. Поместим его на каком-то расстоянии от Земли (то есть зададим потенциальную энергию) и придадим ему какую-то скорость (зададим кинетическую энергию). Таким образом, мы задали полную энергию спутника. Но определена ли его орбита? Разумеется, нет! При той же полной энергии направление скорости влияет на форму орбиты - от прямой линии (вертикальное падение) при нулевом моменте импульса до окружности максимально возможного радиуса при данной полной энергии. Нулевой момент соответствует чисто радиальным колебаниям сквозь центр притяжения, когда вовсе нет кругового движения, и эллипс вырождается в прямую линию (для спутника такое колебание невозможно, но микрочастицы - иное дело). Максимально возможный момент импульса достигается в обратном случае чисто круговой орбиты, когда совсем нет радиального движения. Важно, что его (максимального момента импульса) величина зависит от полной энергии спутника.

Подчеркнем, что ограничение сверху на возможную величину момента импульса - при заданной полной механической энергии - имеет чисто классическое происхождение. Убедиться в этом можно следующим образом. Запишем классическое (не квантовое) выражение для в виде

.

Здесь - кинетическая энергия радиального движения: – радиальная составляющая скорости, - эффективная потенциальная энергия, включающая в себя потенциальную энергию в поле центробежных сил. Ясно, что . Учитывая, что энергия связанных состояний меньше нуля, перепишем это неравенство в виде


или
.

Эффективная потенциальная энергия при отличном от нуля моменте импульса L имеет минимум в точке , её минимальное значение равно

.

Поскольку неравенство должно выполняться и в точке минимума, получаем

или .

Если в последнее неравенство подставить боровское выражение (3.3) для энергии водородоподобного иона и выражение (5.5) для квадрата момента, то получим неравенство

которое имеет решение

Здесь n - боровский номер стационарной орбиты, или главное квантовое число (см. ниже). Основанная на решении уравнения Шредингера (5.6) строгая квантовая теория дает тот же результат.

Итак, классическая физика подсказывает нам следующие свойства решений уравнения Шредингера :

Вооружившись знанием классической механики, мы можем смело приступать к изучению квантовой. Теперь станут понятны свойства решений уравнения Шредингера для атома водорода. Его решениями являются волновые функции, нумеруемые тремя квантовыми числами: . Про l и n уже много говорилось, а n - знакомое нам по атому Бора главное квантовое число, принимающее целые положительные значения. Разным наборам чисел отвечают разные волновые функции, общий вид которых - для любых возможных наборов чисел – нам сейчас не важен.


Рис. 5.6. Волновые функции трех первых состояний атома водорода с l = 0

Пример 1. Волновая функция основного состояния электрона в атоме водорода имеет вид

Найдем вероятности и обнаружить электрон внутри сфер с радиусами и .

Вероятность обнаружить электрон в элементе объема dV равна

Так как волновая функция основного состояния не зависит от направления радиуса-вектора , а лишь от его модуля r, то можно написать выражение для вероятности обнаружить электрон в шаровом слое радиусом r и толщиной dr . Объем этого слоя равен (площадь поверхности, умноженная на толщину). Тогда

Теперь надо проинтегрировать вероятность no всем значениям r от 0 до R, получив вероятность W(R) найти электрон внутри сферы радиусом R:

Интеграл берется точно, и в результате получаем

откуда находим

Здесь e - основание натурального логарифма. Разность дает вероятность найти электрон между сферами с радиусами и . Видно, что численно эта вероятность близка к вероятности . Зато вероятность обнаружить электрон за пределами сферы радиусом заметно меньше: она равна, как нетрудно догадаться,

Иными словами, с вероятностью более 76% электрон в основном состоянии пребывает на расстоянии не более двух радиусов Бора от ядра.

Пример 2. Найдем электростатический потенциал, создаваемый атомом водорода в основном состоянии.

Возьмем любую точку на расстоянии R от ядра. Электростатический потенциал в ней создается, во-первых, положительным зарядом е ядра и, во-вторых, той частью заряда электрона, которая находится внутри сферы радиусом R. Хорошо известно, что сферически симметричное распределение заряда не создает поля во внутренних областях. Поэтому часть электронного облачка, находящаяся дальше выбранной точки, не внесет вклада в потенциал. Поскольку в уравнении (5.7) вычислена вероятность W(R) нахождения электрона внутри сферы радиусом R, то отрицательный заряд внутри этой сферы равен –eW(R). Поэтому потенциал в точке R, создаваемый эффективным зарядом

имеет вид

На больших расстояниях потенциал (5.8) убывает экспоненциально, то есть гораздо быстрее обычного кулоновского потенциала точечного заряда. Это - так называемый эффект экранировки: отрицательный заряд электрона компенсирует положительный заряд ядра. При

потенциал (5.8) переходит в обычный кулоновский потенциал: мы проникли внутрь электронного облачка, где оно уже не экранирует заряд ядра.

Для энергии из уравнения Шредингера получается в точности такая же формула, что и из теории Бора:

Как видно, энергия действительно не зависит от квантовых чисел l , m . При этом, как следует из свойств решений уравнения (5.6), азимутальное квантовое число l принимает целые значения от 0 до n – 1 . И это свойство, угаданное нами на основе классической физики, воспроизвелось в квантовой механике.

Удивительно, как квантовая механика, низвергнувшая столько классических представлений, дает аналогичные результаты там, где в дело вступают свойства симметрии системы. Отсюда вывод: симметрия играет более важную роль, чем конкретные физические законы. Когда-нибудь будут открыты новые законы, которые обобщат и квантовую механику, и все теории, которые ныне находятся на переднем крае науки. Но свойства симметрии системы так или иначе проявят себя.

Отличие квантовой механики от теории Бора - более богатая структура состояний: состояние определяется тремя квантовыми числами, как и в трехмерном потенциальном ящике. Кстати, это не случайно. Три квантовых числа в потенциальной яме и в атоме водорода - отражение трехмерности нашего пространства. Подсчитаем кратность вырождения, то есть число различных состояний с одной и той же энергией (главным квантовым числом n ). При данном значении n число l пробегает все целые числа от 0 до n – 1 , и каждому из них соответствует 2l + 1 значение n . Поэтому кратность вырождения N определяется соотношением

При n = 1 имеем N = 1 , то есть основной уровень не вырожден. При n=2 кратность вырождения равна 4 : один уровень с l = 0 и три уровня с l = 1 и различными проекциями момента импульса n = –1, 0, +1 . При n = 3 кратность вырождения N = 9 : один уровень с l = 0 , три уровня с l = 1 и пять уровней (по числу проекций) с l = 2. Для классификации состояний энергии по значению квантового числа l применяют условные обозначения, позаимствованные из спектроскопии, где они появились еще до создания теории атома:

символ

Главное квантовое число ставится впереди символа. Примеры возможных состояний:

1s, 2s, 2p, 3s, 3p, 3d, 4s, 4р, 4d, 4f и т. д.

Рис. 5.7. Собственные функции гамильтониана для атома водорода. Показаны поперечные сечения плотности вероятностей, величина которой отражена цветом (чёрный цвет соответствует минимальной плотности вероятности, а белый ̶ максимальной). Каждому столбцу отвечает определённое значение квантового числа l. Главное квантовое число n отмечено справа от каждого ряда. Для всех картин квантовое число m = 0. Проекция момента импульса берётся на вертикальную ось z. Сечение взято в плоскости x, z. Плотность вероятности в трёхмерном пространстве получается при вращении картинки вокруг оси z

Во избежание недоразумений отметим, что указанный здесь порядок следования состояний - исключительно «алфавитный». Если расположить состояния в порядке возрастания их энергий, то в многоэлектронных атомах список будет выглядеть иначе, например, начиная с калия (Z = 19), состояния 3 d и 4 s поменяются местами. Причины таких «инверсий» обсуждаются в соответствующих разделах далее.

При переходе электрона с более высокого уровня энергии на более низкий излучается фотон, уносящий собственный угловой момент, равный ħ (авторы просят принять это на веру). Следовательно, разрешены только переходы с изменением l на единицу: возникает правило отбора

Это значит, что в атоме водорода допустимы переходы

и т. д., приводящие к тем же спектральным сериям, что и теория Бора. Более богатая структура состояний не проявляется пока в большем разнообразии атомных уровней и, соответственно, спектров из-за вырождения.

Рис. 5.8. Схема уровней энергии и возможных переходов между уровнями в атоме водорода

Говоря о вырождении уровней, мы имели в виду водородоподобный атом. В более сложных атомах или в присутствии внешних электромагнитных полей вырождение, как говорят, снимается и появляется зависимость энергии от чисел . Любая не кулоновская центрально-симметричная поправка к потенциальной энергии приведет к зависимости уровней энергии от l (наблюдается, например, в щелочных металлах). В классической физике такая поправка к обычному закону притяжения (например, планеты к Солнцу) превращает эллиптические орбиты в незамкнутые кривые. Обращаясь по таким орбитам, планета как бы движется по обычному эллипсу, который дополнительно вращается как целое, прецессирует в той же плоскости. Подобный эффект - вращение перигелия Меркурия - предсказала общая теория относительности. Новое движение приводит к дополнительной энергии вращения, зависящей от l . В результате энергия уровня 2s перестанет совпадать с энергией уровня 2p p и т. д.

Любое не центрально-симметричное поле (например, магнитное) снимет вырождение по m m . В классической физике магнитное поле вызывает прецессию плоскости вращения вокруг направления поля и также появление из-за этого вращения дополнительной энергии. Сказанное можно сформулировать в виде общего вывода.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...