Уравнение бернулли выражает. Смысл уравнения Бернулли

Очень многое из окружающего нас мира подчиняется законам физики. Этому не стоит удивляться, ведь термин «физика» происходит от греческого слова, в переводе означающего «природа». И одним из таких законов, постоянно работающих вокруг нас, является закон Бернулли.

Сам по себе закон выступает как следствие принципа сохранения энергии. Такая его трактовка позволяет придать новое понимание многим ранее хорошо известным явлениям. Для понимания сути закона просто достаточно вспомнить протекающий ручеек. Вот он течет, бежит между камней, веток и корней. В каких-то местах делается шире, где-то уже. Можно заметить, что там, где ручеек шире, вода течет медленнее, где уже, вода течет быстрее. Вот это и есть принцип Бернулли, который устанавливает зависимость между давлением в потоке жидкости и скоростью движения такого потока.

Правда, учебники физики его формулируют несколько по-другому, и имеет он отношение к гидродинамике, а не к протекающему ручью. В достаточно популярном Бернулли можно изложить в таком варианте - давление жидкости, протекающей в трубе, выше там, где скорость ее движения меньше, и наоборот: там, где скорость больше, давление меньше.

Для подтверждения достаточно провести простейший опыт. Надо взять лист бумаги и подуть вдоль него. Бумага поднимется вверх, в ту сторону, вдоль которой проходит поток воздуха.

Все очень просто. Как говорит закон Бернулли, там, где скорость выше, давление меньше. Значит, вдоль поверхности листа, где проходит поток меньше, а снизу листа, где потока воздуха нет, давление больше. Вот лист и поднимается в ту сторону, где давление меньше, т.е. туда, где проходит поток воздуха.

Описанный эффект находит широкое применение в быту и в технике. Как пример можно рассмотреть краскопульт или аэрограф. В них используются две трубки, одна большего сечения, другая меньшего. Та, которая большего диаметра, присоединена к емкости с краской, по той, что меньшего сечения, проходит с большой скоростью воздух. Благодаря возникающей разности давлений краска попадает в поток воздуха и переносится этим потоком на поверхность, которая должна быть окрашена.

По этому же принципу может работать и насос. Фактически то, что описано выше, и есть насос.

Не менее интересно выглядит закон Бернулли в применении для осушения болот. Как всегда, все очень просто. Заболоченная местность соединяется канавами с рекой. Течение в реке есть, в болоте нет. Опять возникает разность давлений, и река начинает высасывать воду из заболоченной местности. Происходит в чистом виде демонстрация работы закона физики.

Воздействие этого эффекта может носить и разрушительный характер. Например, если два корабля пройдут близко друг от друга, то скорость движения воды между ними будет выше, чем с другой стороны. В результате возникнет дополнительная сила, которая притянет корабли друг к другу, и катастрофа будет неизбежна.

Можно все сказанное изложить в виде формул, но уравнения Бернулли писать совсем не обязательно для понимания физической сути этого явления.

Для лучшего понимания приведем еще один пример использования описываемого закона. Все представляют себе ракету. В специальной камере происходит сгорание топлива, и образуется реактивная струя. Для ее ускорения используется специально суженный участок - сопло. Здесь происходит ускорение струи газов и вследствие этого - рост

Существует еще множество различных вариантов использования закона Бернулли в технике, но все их рассмотреть в рамках настоящей статьи просто невозможно.

Итак, сформулирован закон Бернулли, дано объяснение физической сущности происходящих процессов, на примерах из природы и техники показаны возможные варианты применения этого закона.

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 - 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

- плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .


Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.

Дата: 2009-10-20

Для двух сечений потока 1-1 и 2-2 реальной жидкости (рисунок 1) при установившемся плавно изменяющемся движении уравнение Бернулли имеет вид:

z 1 + p 1 /γ + α 1 υ 1 2 /(2g) = z 2 + p 2 /γ + α 2 υ 2 2 /(2g) + Σh п (1)

где z - ордината, определяющая высоту положения центра выбранного сечения над произвольной горизонтальной плоскостью сравнения 0-0; p/γ - пьезометрическая высота; z + p/γ = H п - гидростатический напор; αυ 2 /(2g) = h v - скоростная высота, или скоростной напор; α - коэффициент Кориолиса, учитывающий неравномерность распределения скоростей в живом сечении потока.

Сумма трех членов:

z + p/γ + αυ 2 /(2g) = H

есть полный напор; Σh п - потеря напора между выбранными сечениями потока. Вместо выражения (1) можно написать:

H 1 = H 2 + Σh п

Все члены уравнения Бернулли в формуле (1) имеют линейную размерность и в энергетическом смысле представляют удельную энергию жидкости, т. е. энергию, отнесенную к единице веса жидкости.

Так, z и p/γ - удельная потенциальная энергия соответственно положения и давления;
z + p/γ - удельная потенциальная энергия жидкости;
αυ 2 /(2g) - удельная кинетическая энергия, выраженная через среднюю скорость потока в данном сечении. Сумма всех трех членов z + p/γ + αυ 2 /(2g) = H представляет полный запас удельной механической энергии жидкости в данном сечении потока;
Σh п - удельная механическая энергия, затрачиваемая на преодоление сопротивления движению жидкости между сечениями потока и переходящая в тепловую энергию, которая состоит из следующих слагаемых:

Σh п = Σh дл + Σh мест

где Σh дл - потери энергии (напора) на трение по длине; Σh мест - местные потери энергии (напора).

Если уравнение (1) умножить на γ, то получим:

γz 1 + p 1 + γα 1 υ 1 2 /(2g) = γz 2 + p 2 + γα 2 υ 2 2 /(2g) + γΣh п (2)

Члены уравнения (2) имеют размерность давления и представляют энергию, отнесенную к единице объема.

Если уравнение (1) умножить на g, то получим

gz 1 + p 1 /ρ + α 1 υ 1 2 /2 = gz 2 + p 2 /ρ + α 2 υ 2 2 /2 + gΣh п (3)

Члены уравнения (3) имеют размерность м 2 /с 2 и представляют энергию, отнесенную к единице массы.

РИСУНОК 1

На рисунке 1 приведена диаграмма уравнения Бернулли для потока реальной жидкости. Здесь 0-0 - плоскость сравнения; N-N - плоскость начального напора; Н-Н - напорная линия, или линия полной удельной энергии. Падение ее на единицу длины представляет гидравлический уклон J ; Р-Р - пьезометрическая линия, или линия удельной потенциальной энергии. Падение ее на единицу длины представляет пьезометрический уклон J п .

Так как общий запас удельной энергии вдоль потока непрерывно уменьшается, линия Н-Н всегда нисходящая, а гидравлический уклон всегда положительный (J>0 ). Пьезометрическая линия может быть и нисходящей, и восходящей (последнее имеет место на расширяющихся участках, когда средняя скорость потока уменьшается), поэтому пьезометрический уклон может быть и положительным (J>0 ), и отрицательным(J).

На участках с равномерным движением жидкости, где имеют место только потери напора на трение по длине, линии Н-Н и Р-Р представляют взаимно параллельные прямые, поэтому J = J п =h дл /L . В этом случае потеря напора может быть определена по разности гидростатических напоров:

h дл = (z 1 + p 1 /γ) - (z 2 + p 2 /γ)

РИСУНОК 2

Для горизонтальных участков потоков (z 1 =z 2 ) или в случае, если плоскость сравнения 0-0 проведена по оси потока (z 1 =z 2 = 0) (рисунок 2), потеря напора на трение по длине может быть определена непосредственно по разности показаний пьезометров:

h дл = (p 1 - p 2)/γ

На рисунке 3 показаны линия энергии Н-Н и пьезометрическая линия P-P для трубопровода переменного сечения, соединяющего два открытых резервуара.

РИСУНОК 3

Источник: Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.

Комментарии к этой статье!!

Что хорошо то? типо вы что то из этого поняли! Люди уже отупели а это всё было выведено еще в 1697 году! Сейчас бы никто до этого не додумался!

вьезжаю но медленно столько всего интересного

уравнение бернулли и в 23 веке таким же и останется справедливым

Дифференциальное уравнение вида , где , называется уравнением Бернулли.

Предполагая, что , разделим обе части уравнения Бернулли на . В результате получим: (8.1) Введем новую функцию . Тогда . Домножим уравнение (8.1) на и перейдем в нем к функции z(x) : , т.е. для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем параграфе. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительно y . При добавляется решение y(x)=0 . Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путем подстановки , а применяя метод Бернулли.

Дифференциальные уравнения в полных дифференциалах.

Определение. Если в уравнении M(x,y)dx+N(x,y)dy=0 (9.1) левая часть есть полный дифференциал некоторой функции U(x,y) , то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде du(x,y)=0 , следовательно, его общий интеграл есть u(x,y)=c.

Например, уравнение xdy+ydx=0 есть уравнение в полных дифференциалах, так как его можно переписать в виде d(xy)=0. Общим интегралом будет xy=c.

Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x . Тогда, для того, чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество (9.2).

Доказательство. Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2). Покажем, что может быть найдена такая функция u(x,y) , что и .

Действительно, поскольку , то (9.3) , где - произвольная дифференцируемая функция. Продифференцируем (9.3) по y: . Но , следовательно, .Положим и тогда .Итак, построена функция , для которой , а .

Интегрирующий множитель.

Если уравнение M(x,y)dx + N(x,y)dy = 0 не является уравнением в полных дифференциалах и существует функция µ = µ(x,y) , такая что после умножения на нее обеих частей уравнения получается уравнение

µ(Mdx + Ndy) = 0 в полных дифференциалах, т. е. µ(Mdx + Ndy)du , то функция µ(x,y) называется интегрирующим множителем уравнения. В случае, когда уравнение уже есть уравнение в полных дифференциалах, полагают µ = 1 .

Если найден интегрирующий множитель µ , то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.

Если µ есть непрерывно дифференцируемая функция от x и y , то .

Отсюда следует, что интегрирующий множитель µ удовлетворяет следующему уравнению с частными производными 1-го порядка: (10.1). Если заранее известно, что µ= µ(ω) , где ω – заданная функция от x и y , то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной ω : (10.2), где , т. е. дробь является функцией только от ω .

Решая уравнение (10.2), находим интегрирующий множитель , с = 1. В частности уравнение M(x,y)dx + N(x,y)dy = 0 имеет интегрирующий множитель, зависящий только от x (ω = x ) или только от y (ω = y ), если выполнены соответственно следующие условия: , или , .

10. Свойства решений ЛДУ II-го порядка (с док-вом). Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид: , (2.1)

где , , и – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a 0 (x) ≠ 0, поделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде: (2.2)

Примем без доказательства, что (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям , , если на рассматриваемом промежутке функции , и непрерывны. Если , то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае. Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решение лоду , (2.3) то их линейная комбинация также будет решением этого уравнения.

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 - 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

- плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .


Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...