Тригонометрические формулы arcsin. Обратные тригонометрические функции и их графики

В ряде задач математики и её приложений требуется по известному значению тригонометрической функции найти соответствующее значение угла, выраженное в градусной или в радианной мере. Известно, что одному и тому же значению синуса соответствует бесконечное множество углов, например, если $\sin α=1/2,$ то угол $α$ может быть равен и $30°$ и $150°,$ или в радианной мере $π/6$ и $5π/6,$ и любому из углов, который получается из этих прибавлением слагаемого вида $360°⋅k,$ или соответственно $2πk,$ где $k$ - любое целое число. Это становится ясным и из рассмотрения графика функции $y=\sin x$ на всей числовой прямой (см. рис. $1$): если на оси $Oy$ отложить отрезок длины $1/2$ и провести прямую, параллельную оси $Ox,$ то она пересечет синусоиду в бесконечном множестве точек. Чтобы избежать возможного разнообразия ответов, вводятся обратные тригонометрические функции, иначе называемые круговыми, или аркфункциями (от латинского слова arcus - «дуга»).

Основным четырем тригонометрическим функциям $\sin x,$ $\cos x,$ $\mathrm{tg}\,x$ и $\mathrm{ctg}\,x$ соответствуют четыре аркфункции $\arcsin x,$ $\arccos x,$ $\mathrm{arctg}\,x$ и $\mathrm{arcctg}\,x$ (читается: арксинус, арккосинус, арктангенс, арккотангенс). Рассмотрим функции \arcsin x и \mathrm{arctg}\,x, поскольку две другие выражаются через них по формулам:

$\arccos x = \frac{π}{2} − \arcsin x,$ $\mathrm{arcctg}\,x = \frac{π}{2} − \mathrm{arctg}\,x.$

Равенство $y = \arcsin x$ по определению означает такой угол $y,$ выраженный в радианной мере и заключенный в пределах от $−\frac{π}{2}$ до $\frac{π}{2},$ синус которого равен $x,$ т. е. $\sin y = x.$ Функция $\arcsin x$ является функцией, обратной функции $\sin x,$ рассматриваемой на отрезке $\left[−\frac{π}{2},+\frac{π}{2}\right],$ где эта функция монотонно возрастает и принимает все значения от $−1$ до $+1.$ Очевидно, что аргумент $y$ функции $\arcsin x$ может принимать значения лишь из отрезка $\left[−1,+1\right].$ Итак, функция $y=\arcsin x$ определена на отрезке $\left[−1,+1\right],$ является монотонно возрастающей, и её значения заполняют отрезок $\left[−\frac{π}{2},+\frac{π}{2}\right].$ График функции показан на рис. $2.$

При условии $−1 ≤ a ≤ 1$ все решения уравнения $\sin x = a$ представим в виде $x=(−1)^n \arcsin a + πn,$ $n=0,±1,± 2,… .$ Например, если

$\sin x = \frac{\sqrt{2}}{2}$ то $x = (−1)^n \frac{π}{4}+πn,$ $n = 0, ±1, ±2, … .$

Соотношение $y=\mathrm{arcctg}\,x$ определено при всех значениях $x$ и по определению означает, что угол $y,$ выраженный в радианной мере, заключей в пределах

$−\frac{π}{2}

и тангенс этого угла равен x, т. е. $\mathrm{tg}\,y = x.$ Функция $\mathrm{arctg}\,x$ определена на всей числовой прямой, является функцией, обратной функции $\mathrm{tg}\,x$, которая рассматривается лишь на интервале

$−\frac{π}{2}

Функция $у = \mathrm{arctg}\,x$ монотонно возрастающая, её график дан на рис. $3.$

Все решения уравнения $\mathrm{tg}\,x = a$ могут быть записаны в виде $x=\mathrm{arctg}\,a+πn,$ $n=0,±1,±2,… .$

Заметим, что обратные тригонометрические функции широко используются в математическом анализе. Например, одной из первых функций, для которых было получено представление бесконечным степенным рядом, была функция $\mathrm{arctg}\,x.$ Из этого ряда Г. Лейбниц при фиксированном значении аргумента $x=1$ получил знаменитое представление числа к бесконечным рядом

На этом уроке мы рассмотрим особенности обратных функций и повторим обратные тригонометрические функции . Отдельно будут рассмотрены свойства всех основных обратных тригонометрических функций: арксинуса, арккосинуса, арктангенса и арккотангенса.

Данный урок поможет Вам подготовиться к одному из типов задания В7 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 9. Обратные тригонометрические функции.

Теория

Конспект урока

Вспомним, когда мы встречаемся с таким понятием как обратная функция. Например, рассмотрим функцию возведения в квадрат. Пусть у нас есть квадратная комната со сторонами по 2 метра и мы хотим вычислить ее площадь. Для этого по формуле пощади квадрата возводим двойку в квадрат и в результате получаем 4 м 2 . Теперь представим себе обратную задачу: мы знаем площадь квадратной комнаты и хотим найти длины ее сторон. Если мы знаем, что площадь равна все тем же 4 м 2 , то выполним обратное действие к возведению в квадрат - извлечение арифметического квадратного корня, который нам даст значение 2 м.

Таким образом, для функции возведения числа в квадрат обратной функцией является извлечение арифметического квадратного корня.

Конкретно в указанном примере у нас не возникло проблем с вычислением стороны комнаты, т.к. мы понимаем, что это положительное число. Однако если оторваться от этого случая и рассмотреть задачу более общим образом: «Вычислить число, квадрат которого равен четырем», мы столкнемся с проблемой - таких чисел два. Это 2 и -2, т.к. тоже равна четырем. Получается, что обратная задача в общем случае решается неоднозначно, и действие определения числа, которое в квадрате дало известное нам число? имеет два результата. Это удобно показать на графике:

А это значит, что такой закон соответствия чисел мы не можем назвать функцией, поскольку для функции одному значению аргумента соответствует строго одно значение функции.

Для того чтобы ввести именно обратную функцию к возведению в квадрат и было предложено понятие арифметического квадратного корня, который дает только неотрицательные значения. Т.е. для функции обратной функцией считается .

Аналогично существуют и функции, обратные к тригонометрическим, их называют обратными тригонометрическими функциями . К каждой из рассмотренных нами функций существует своя обратная, их называют: арксинус, арккосинус, арктангенс и арккотангенс .

Эти функции решают задачу вычисления углов по известному значению тригонометрической функции. Например, с использованием таблицы значений основных тригонометрических функций можно вычислить синус какого угла равен . Находим это значение в строке синусов и определяем, какому углу оно соответствует. Первое, что хочется ответить, что это угол или , но если у вас в распоряжении таблица значений до , вы тут же заметите еще одного претендента на ответ, - это угол или . А если мы вспомним о периоде синуса, то поймем, что углов, при которых синус равен , бесконечное множество. И такое множество значений углов, соответствующих данному значению тригонометрической функции, будет наблюдаться и для косинусов, тангенсов и котангенсов, т.к. все они обладают периодичностью.

Т.е. мы сталкиваемся с той же проблемой, которая была для вычисления значения аргумента по значению функции для действия возведения в квадрат. И в данном случае для обратных тригонометрических функций было введено ограничение области значений, которые они дают при вычислении. Это свойство таких обратных функций называют сужением области значений , и оно необходимо для того, чтобы их можно было называть функциями.

Для каждой из обратных тригонометрических функций диапазон углов, которые она возвращает, выбран свой, и мы их рассмотрим отдельно. Например, арксинус возвращает значения углов в диапазоне от до .

Умение работать с обратными тригонометрическими функциями нам пригодится при решении тригонометрических уравнений.

Сейчас мы укажем основные свойства каждой из обратных тригонометрических функций. Кто захочет познакомиться с ними более подробно, обратитесь к главе «Решение тригонометрических уравнений» в программе 10 класса.

Рассмотрим свойства функции арксинус и построим ее график.

Определение. Арксинусом числа x

Основные свойства арксинуса:

1) при ,

2) при .

Основные свойства функции арксинус:

1) Область определения ;

2) Область значений ;

3) Функция нечетная Эту формулу желательно отдельно запомнить, т.к. она полезна для преобразований. Также отметим, что из нечетности следует симметричность графика функции относительно начала координат;

Построим график функции :

Обратим внимание, что никакой из участков графика функции не повторяется, а это означает, что арксинус не является периодической функцией, в отличие от синуса. То же самое будет относиться и ко всем остальным аркфункциям.

Рассмотрим свойства функции арккосинус и построим ее график.

Определение. Арккосинусом числа x называют такое значение угла y, для которого . Причем как ограничения на значения синуса, а как выбранный диапазон углов.

Основные свойства арккосинуса:

1) при ,

2) при .

Основные свойства функции арккосинус:

1) Область определения ;

2) Область значений ;

3) Функция не является ни четной ни нечетной, т.е. общего вида . Эту формулу тоже желательно запомнить, она пригодится нам позже;

4) Функция монотонно убывает.

Построим график функции :

Рассмотрим свойства функции арктангенс и построим ее график.

Определение. Арктангенсом числа x называют такое значение угла y, для которого . Причем т.к. ограничений на значения тангенса нет, а как выбранный диапазон углов.

Основные свойства арктангенса:

1) при ,

2) при .

Основные свойства функции арктангенс:

1) Область определения ;

2) Область значений ;

3) Функция нечетная . Эта формула тоже полезна, как и аналогичные ей. Как в случае с арксинусом, из нечетности следует симметричность графика функции относительно начала координат;

4) Функция монотонно возрастает.

Построим график функции :

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y
Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .
Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .
Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

См. также: Вывод формул обратных тригонометрических функций

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при


при

при

при


при

при

при

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Определение и обозначения

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y -1 ≤ x ≤ 1 и множество значений -π/2 ≤ y ≤ π/2 .
sin(arcsin x) = x ;
arcsin(sin x) = x .

Арксинус иногда обозначают так:
.

График функции арксинус

График функции y = arcsin x

График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арксинуса.

Арккосинус, arccos

Определение и обозначения

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ). Он имеет область определения -1 ≤ x ≤ 1 и множество значений 0 ≤ y ≤ π .
cos(arccos x) = x ;
arccos(cos x) = x .

Арккосинус иногда обозначают так:
.

График функции арккосинус


График функции y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Четность

Функция арксинус является нечетной:
arcsin(- x) = arcsin(-sin arcsin x) = arcsin(sin(-arcsin x)) = - arcsin x

Функция арккосинус не является четной или нечетной:
arccos(- x) = arccos(-cos arccos x) = arccos(cos(π-arccos x)) = π - arccos x ≠ ± arccos x

Свойства - экстремумы, возрастание, убывание

Функции арксинус и арккосинус непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства арксинуса и арккосинуса представлены в таблице.

y = arcsin x y = arccos x
Область определения и непрерывность - 1 ≤ x ≤ 1 - 1 ≤ x ≤ 1
Область значений
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы
Минимумы
Нули, y = 0 x = 0 x = 1
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2

Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

x arcsin x arccos x
град. рад. град. рад.
- 1 - 90° - 180° π
- - 60° - 150°
- - 45° - 135°
- - 30° - 120°
0 0 90°
30° 60°
45° 45°
60° 30°
1 90° 0

≈ 0,7071067811865476
≈ 0,8660254037844386

Формулы

См. также: Вывод формул обратных тригонометрических функций

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при

Выражения через логарифм, комплексные числа

См. также: Вывод формул

Выражения через гиперболические функции

Производные

;
.
См. Вывод производных арксинуса и арккосинуса > > >

Производные высших порядков :
,
где - многочлен степени . Он определяется по формулам:
;
;
.

См. Вывод производных высших порядков арксинуса и арккосинуса > > >

Интегралы

Делаем подстановку x = sin t . Интегрируем по частям, учитывая что -π/2 ≤ t ≤ π/2 , cos t ≥ 0 :
.

Выразим арккосинус через арксинус:
.

Разложение в ряд

При |x| < 1 имеет место следующее разложение:
;
.

Обратные функции

Обратными к арксинусу и арккосинусу являются синус и косинус , соответственно.

Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x
cos(arccos x) = x .

Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
arcsin(sin x) = x при
arccos(cos x) = x при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

Функции sin, cos, tg и ctg всегда сопровождаются арксинусом, арккосинусом, арктангенсом и арккотангенсом. Одно является следствием другого, а пары функций одинаково важны для работы с тригонометрическими выражениями.

Рассмотрим рисунок единичной окружности, на котором графически отображено значений тригонометрических функций.

Если вычислить arcs OA, arcos OC, arctg DE и arcctg MK, то все они будут равны значению угла α. Формулы, приведенные ниже, отражают взаимосвязь основных тригонометрических функций и соответствующих им арков.

Чтобы больше понять о свойствах арксинуса, необходимо рассмотреть его функцию. График имеет вид асимметричной кривой, проходящей через центр координат.

Свойства арксинуса:

Если сопоставить графики sin и arcsin , у двух тригонометрических функций можно найти общие закономерности.

Арккосинус

Arccos числа а — это значение угла α, косинус которого равен а.

Кривая y = arcos x зеркально отображает график arcsin x, с той лишь разницей, что проходит через точку π/2 на оси OY.

Рассмотрим функцию арккосинуса более подробно:

  1. Функция определена на отрезке [-1; 1].
  2. ОДЗ для arccos — .
  3. График целиком расположен в I и II четвертях, а сама функция не является ни четной, ни нечетной.
  4. Y = 0 при x = 1.
  5. Кривая убывает на всей своей протяженности. Некоторые свойства арккосинуса совпадают с функцией косинуса.

Некоторые свойства арккосинуса совпадают с функцией косинуса.

Возможно, школьникам покажется излишним такое «подробное» изучение «арков». Однако, в противном случае, некоторые элементарные типовые задания ЕГЭ могут ввести учащихся в тупик.

Задание 1. Укажите функции изображенные на рисунке.

Ответ: рис. 1 – 4, рис.2 — 1.

В данном примере упор сделан на мелочах. Обычно ученики очень невнимательно относятся к построению графиков и внешнему виду функций. Действительно, зачем запоминать вид кривой, если ее всегда можно построить по расчетным точкам. Не стоит забывать, что в условиях теста время, затраченное на рисунок для простого задания, потребуется для решения более сложных заданий.

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = — arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

Арккотангенс

Arcctg числа a — принимает такое значение α из интервала (0; π), что его котангенс равен а.

Свойства функции арккотангенса:

  1. Интервал определения функции – бесконечность.
  2. Область допустимых значений – промежуток (0; π).
  3. F(x) не является ни четной, ни нечетной.
  4. На всем своем протяжении график функции убывает.

Сопоставить ctg x и arctg x очень просто, нужно лишь сделать два рисунка и описать поведение кривых.

Задание 2. Соотнести график и форму записи функции.

Если рассуждать логически, из графиков видно, что обе функции возрастающие. Следовательно, оба рисунка отображают некую функцию arctg. Из свойств арктангенса известно, что y=0 при x = 0,

Ответ: рис. 1 – 1, рис. 2 – 4.

Тригонометрические тождества arcsin, arcos, arctg и arcctg

Ранее нами уже была выявлена взаимосвязь между арками и основными функциями тригонометрии. Данная зависимость может быть выражена рядом формул, позволяющих выразить, например, синус аргумента, через его арксинус, арккосинус или наоборот. Знание подобных тождеств бывает полезным при решении конкретных примеров.

Также существуют соотношения для arctg и arcctg:

Еще одна полезная пара формул, устанавливает значение для суммы значений arcsin и arcos, а также arcctg и arcctg одного и того же угла.

Примеры решения задач

Задания по тригонометрии можно условно разделить на четыре группы: вычислить числовое значение конкретного выражения, построить график данной функции, найти ее область определения или ОДЗ и выполнить аналитические преображения для решения примера.

При решении первого типа задач необходимо придерживаться следующего плана действий:

При работе с графиками функций главное – это знание их свойств и внешнего вида кривой. Для решения тригонометрических уравнений и неравенств необходимы таблицы тождеств. Чем больше формул помнит школьник, тем проще найти ответ задания.

Допустим в ЕГЭ необходимо найти ответ для уравнения типа:

Если правильно преобразовать выражение и привести к нужному виду, то решить его очень просто и быстро. Для начала, перенесем arcsin x в правую часть равенства.

Если вспомнить формулу arcsin (sin α) = α , то можно свести поиск ответов к решению системы из двух уравнений:

Ограничение на модель x возникло, опять таки из свойств arcsin: ОДЗ для x [-1; 1]. При а ≠0, часть сиcтемы представляет собой квадратное уравнение с корнями x1 = 1 и x2 = — 1/a. При a = 0, x будет равен 1.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....