Свойства кислорода и способы его получения.

ОПРЕДЕЛЕНИЕ

Кислород – элемент второго периода VIA группы Периодической системы химических элементов Д.И. Менделеева, с атомным номером 8. Символ – О.

Атомная масса – 16 а.е.м. Молекула кислорода двухатомна и имеет формулу – О 2

Кислород относится к семейству p-элементов. Электронная конфигурация атома кислорода 1s 2 2s 2 2p 4 . В своих соединениях кислород способен проявлять несколько степеней окисления: «-2», «-1» (в пероксидах), «+2» (F 2 O). Для кислорода характерно проявление явления аллотропии – существования в виде нескольких простых веществ – аллотропных модификаций. Аллотропные модификации кислорода – кислород O 2 и озон O 3 .

Химические свойства кислорода

Кислород является сильным окислителем, т.к. для завершения внешнего электронного уровня ему не хватает всего 2-х электронов, и он легко их присоединяет. По химической активности кислород уступает только фтору. Кислород образует соединения со всеми элементами кроме гелия, неона и аргона. Непосредственно кислород нее вступает в реакции взаимодействия с галогенами, серебром, золотом и платиной (их соединения получают косвенным путем). Почти все реакции с участием кислорода – экзотермические. Характерная особенность многих реакций соединения с кислородом — выделение большого количества теплоты и света. Такие процессы называют горением.

Взаимодействие кислорода с металлами. Со щелочными металлами (кроме лития) кислород образует пероксиды или надпероксиды, с остальными – оксиды. Например:

4Li + O 2 = 2Li 2 O;

2Na + O 2 = Na 2 O 2 ;

K + O 2 = KO 2 ;

2Ca + O 2 = 2CaO;

4Al + 3O 2 = 2Al 2 O 3 ;

2Cu + O 2 = 2CuO;

3Fe + 2O 2 = Fe 3 O 4 .

Взаимодействие кислорода с неметаллами. Взаимодействие кислорода с неметаллами протекает при нагревании; все реакции экзотермичны, за исключением взаимодействия с азотом (реакция эндотермическая, происходит при 3000С в электрической дуге, в природе – при грозовом разряде). Например:

4P + 5O 2 = 2P 2 O 5 ;

С + O 2 = СО 2 ;

2Н 2 + O 2 = 2Н 2 О;

N 2 + O 2 ↔ 2NO – Q.

Взаимодействие со сложными неорганическими веществами. При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов:

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O (t);

4NH 3 + 3O 2 = 2N 2 + 6H 2 O (t);

4NH 3 + 5O 2 = 4NO + 6H 2 O (t, kat);

2PH 3 + 4O 2 = 2H 3 PO 4 (t);

SiH 4 + 2O 2 = SiO 2 + 2H 2 O;

4FeS 2 +11O 2 = 2Fe 2 O 3 +8 SO 2 (t).

Кислород способен окислять оксиды и гидроксиды до соединений с более высокой степенью окисления:

2CO + O 2 = 2CO 2 (t);

2SO 2 + O 2 = 2SO 3 (t, V 2 O 5);

2NO + O 2 = 2NO 2 ;

4FeO + O 2 = 2Fe 2 O 3 (t).

Взаимодействие со сложными органическими веществами. Практически все органические вещества горят, окисляясь кислородом воздуха до углекислого газа и воды:

CH 4 + 2O 2 = CO 2 +H 2 O.

Кроме реакций горения (полное окисление) возможны также реакции неполного или каталитического окисления, в этом случае продуктами реакции могут быть спирты, альдегиды, кетоны, карбоновые кислоты и другие вещества:

Окисление углеводов, белков и жиров служит источником энергии в живом организме.

Физические свойства кислорода

Кислород – самый распространенный элемент на земле (47% по массе). В воздухе содержание кислорода составляет 21% по объему. Кислород – составная часть воды, минералов, органических веществ. В растительных и животных тканях содержится 50 -85 % кислорода в виде различных соединений.

В свободном состоянии кислород представляет собой газ без цвета, вкуса и запаха, плохо растворимый в воде (в 100 л воды при 20С растворяется 3 л кислорода. Жидкий кислород голубого цвета, обладает парамагнитными свойствами (втягивается в магнитное поле).

Получение кислорода

Различают промышленные и лабораторные способы получения кислорода. Так, в промышленности кислород получают перегонкой жидкого воздуха, а к основным лабораторным способам получения кислорода относят реакции термического разложения сложных веществ:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

4K 2 Cr 2 O 7 = 4K 2 CrO 4 + 2Cr 2 O 3 +3 O 2

2KNO 3 = 2KNO 2 + O 2

2KClO 3 = 2KCl +3 O 2

Примеры решения задач

ПРИМЕР 1

Задание При разложении 95 г оксида ртути (II) образовалось 4,48 л кислорода (н.у.). Вычислите долю разложившегося оксида ртути (II) (в мас. %).
Решение Запишем уравнение реакции разложения оксида ртути (II):

2HgO = 2Hg + O 2 .

Зная объем выделившегося кислорода, найдем его количество вещества:

моль.

Согласно уравнению реакции n(HgO):n(O 2) = 2:1, следовательно,

n(HgO) = 2×n(O 2) = 0,4 моль.

Вычислим массу разложившегося оксида. Количество вещества связано с массой вещества соотношением:

Молярная масса (молекулярная масса одного моль) оксида ртути (II), рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 217 г/моль. Тогда масса оксида ртути (II) равна:

m (HgO) = n (HgO) ×M (HgO) = 0,4×217 = 86,8 г.

Определим массовую долю разложившегося оксида:

Химический элемент кислород может существовать в виде двух аллотропных модификаций, т.е. образует два простых вещества. Оба этих вещества имеют молекулярное строение. Одно из них имеет формулу O 2 и имеет название кислород, т.е. такое же, как и название химического элемента, которым оно образовано.

Другое простое вещество, образованное кислородом, называется озон. Озон в отличие от кислорода состоит из трехатомных молекул, т.е. имеет формулу O 3 .
Поскольку основной и наиболее распространенной формой кислорода является молекулярный кислород O 2 , прежде всего мы рассмотрим именно его химические свойства.

Химический элемент кислород находится на втором месте по значению электроотрицательности среди всех элементов и уступает лишь фтору. В связи с этим логично предположить высокую активность кислорода и наличие у него практически только окислительных свойств. Действительно, список простых и сложных веществ, с которыми может реагировать кислород огромен. Однако, следует отметить, что поскольку в молекуле кислорода имеет место прочная двойная связь, для осуществления большинства реакций с кислородом требуется прибегать к нагреванию. Чаще всего сильный нагрев требуется в самом начале реакции (поджиг) после чего многие реакции идут далее уже самостоятельно без подвода тепла извне.

Среди простых веществ не окисляются кислородом лишь благородные металлы (Ag, Pt, Au), галогены и инертные газы.

Сера сгорает в кислороде с образованием диоксида серы:

Фосфор в зависимости от избытка или недостатка кислорода может образовать как оксида фосфора (V), так и оксид фосфора (III):

Взаимодействие кислорода с азотом протекает в крайне жестких условиях, в виду того что энергии связи в молекулах кислорода и особенно азота очень велики. Также свой вклад в сложность протекания реакции делает высокая электроотрицательность обоих элементов. Реакция начинается лишь при температуре более 2000 o C и является обратимой:

Не все простые вещества, реагируя с кислородом образуют оксиды. Так, например, натрий, сгорая в кислороде образует пероксид:

а калий – надпероксид:

Чаще всего, при сгорании в кислороде сложных веществ образуется смесь оксидов элементов, которыми было образовано исходное вещество. Так, например:

Однако, при сгорании в кислороде азотсодержащих органических веществ вместо оксида азота образуется молекулярный азот N2. Например:

При сгорании в кислороде хлорпроизводных вместо оксидов хлора образуется хлороводород:

Химические свойства озона:

Озон является более сильным окислителем, чем кислород. Обусловлено это тем, что одна из кислород-кислородных связей в молекуле озона легко рвется и в результате образуется чрезвычайно активный атомарный кислород. Озон в отличие от кислорода не требует для проявления своих высоких окислительных свойств нагревания. Он проявляет свою активность при обычной и даже низкой температурах:

PbS + 4O 3 = PbSO 4 + 4O 2

Как было сказано выше, серебро с кислородом не реагирует, однако, реагирует с озоном:

2Ag + O 3 = Ag 2 O + O 2

Качественной реакцией на наличие озона является то, что при пропускании исследуемого газа через раствор иодида калия наблюдается образование йода:

2KI + O 3 + H 2 O = I 2 ↓ + O 2 + 2KOH

Химические свойства серы

Сера как химический элемент может существовать в нескольких аллотропных модификациях. Различают ромбическую, моноклинную и пластическую серу. Моноклинная сера может быть получена при медленном охлаждении расплава ромбической серы, а пластическая напротив получается при резком охлаждении расплава серы, предварительно доведенного до кипения. Пластическая сера обладает редким для неорганических веществ свойством эластичности – она способна обратимо растягиваться под действием внешнего усилия, возвращаясь в исходную форму при прекращении этого воздействия. Наиболее устойчива в обычных условиях ромбическая сера и все иные аллотропные модификации со временем переходят в нее.

Молекулы ромбической серы состоят из восьми атомов, т.е. ее формулу можно записать как S 8 . Однако, поскольку химические свойства всех модификаций достаточно схожи, чтобы не затруднять запись уравнений реакций любую серу обозначают просто символом S.

Сера может взаимодействовать и с простыми и со сложными веществами. В химических реакциях проявлет как окислительные, так и восстановительные свойства.

Окислительные свойства серы проявляются при ее взаимодействии с металлами, а также неметаллами, образованными атомами менее электроотрицательного элемента (водород, углерод, фосфор):




Как восстановитель сера выступает при взаимодействии с неметаллами, образованными более электроотрицательными элементами (кислород, галогены), а также сложными веществами с ярко выраженной окислительной функцией, например, серной и азотной концентрированной кислотами:

Также сера взаимодействует при кипячении с концентрированными водными растворами щелочей. Взаимодействие протекает по типу диспропорционирования, т.е. сера одновременно и понижает, и повышает свою степень окисления.

Введение

Каждый день мы вдыхаем такой необходимый нам воздух. А вы никогда не задумывались о том, из чего, точнее из каких веществ, состоит воздух? Больше всего в нем азота (78%), далее идет кислород (21%) и инертные газы (1%). Хоть кислород и не составляет самую основную часть воздуха, но без него атмосфера была бы непригодной для жизни. Благодаря ему на Земле существует жизнь, ведь азот и вместе и по отдельности губительны для человека. Давайте рассмотрим свойства кислорода.

Физические свойства кислорода

В воздухе кислород просто так не различишь, так как в обычных условиях он является газом без вкуса, цвета и запаха. Но кислород можно искусственным путем перевести в другие агрегатные состояния. Так, при -183 о С он становится жидким, а при -219 о С твердеет. Но твердый и жидкий кислород может получить только человек, а в природе он существует лишь в газообразном состоянии. выглядит так (фото). А твердый похож на лед.

Физические свойства кислорода - это еще и строение молекулы простого вещества. Атомы кислорода образуют два таких вещества: кислород (О 2) и озон (О 3). Ниже показана модель молекулы кислорода.

Кислород. Химические свойства

Первое, с чего начинается химическая характеристика элемента - его положение в периодической системе Д. И. Менделеева. Итак, кислород находится во 2 периоде 6 группе главной подгруппе под номером 8. Его атомная масса - 16 а.е.м, он является неметаллом.

В неорганической химии его бинарные соединения с другими элементами объединили в отдельный - оксиды. Кислород может образовывать химические соединения как с металлами, так и с неметаллами.

Поговорим о его получении в лабораториях.

Химическим путем кислород можно получить с помощью разложения перманганата калия, пероксида водорода, бертолетовой соли, нитратов активных металлов и оксидов тяжелых металлов. Рассмотрим уравнения реакций при применении каждого из этих способов.

1. Электролиз воды:

Н 2 О 2 = Н 2 О + О 2

5. Разложение оксидов тяжелых металлов (например, оксида ртути):

2HgO = 2Hg + O 2

6. Разложение нитратов активных металлов (например, нитрата натрия):

2NaNO 3 = 2NaNO 2 + O 2

Применение кислорода

С химическими свойствами мы закончили. Теперь пора поговорить о применении кислорода в жизни человека. Он нужен для сжигания топлива в электрических и тепловых станциях. Его используют для получения стали из чугуна и металлолома, для сварки и резки металла. Кислород нужен для масок пожарных, для баллонов водолазов, применяется в черной и цветной металлурги и даже в изготовлении взрывчатых веществ. Также в пищевой промышленности кислород известен как пищевая добавка Е948. Кажется, нет отрасли, где бы он не использовался, но самую важную роль он играет в медицине. Там он так и называется - "кислород медицинский". Для того чтобы кислород был пригоден для использования, его предварительно сжимают. Физические свойства кислорода способствуют тому, что его можно сжать. В подобном виде он хранится внутри баллонов, похожих на такие.

Его используют в реанимации и на операциях в аппаратуре для поддержания жизненных процессов в организме больного пациента, а также при лечении некоторых болезней: декомпрессионной, патологий желудочно-кишечного тракта. С его помощью врачи каждый день спасают множество жизней. Химические и физические свойства кислорода способствуют тому, что его используют так широко.

Атомы Кислорода могут образовывать два типа молекул: O 2 - кислород и O 3 - озон.

Явление существования нескольких простых веществ, образованных атомами одного химического элемента, называется алотропією. А простые вещества, образованные одним элементом, называют алотропними модификациями.

Следовательно, озон и кислород - это аллотропные модификации элемента Кислорода.

Свойства

Кислород

Озон

Формула соединения

O 2

O 3

Внешний вид в обычных условиях

Газ

Газ

Цвет

В парах кислород бесцветный. Жидкий - бледно-голубого цвета, а твердый - синего

Пары озона светло-синего цвета. Жидкий - синего цвета, а твердый представляет собой темно-фиолетовые кристаллы

Запах и вкус

Без запаха и вкуса

Резкий характерный запах (в малых концентрациях придает воздуху запах свежести)

Температура плавления

219 °С

192 °С

Температура кипения

183 °С

112 °С

Плотность при н. у.

1,43 г/л

2,14 г/л

Растворимость уводі

4 объемы кислорода в 100 объемах воды

45 объемов озона в 100 объемах воды

Магнитные свойства

Жидкий и твердый кислород - парамагнитные вещества, т.е. втягиваются в магнитное поле

Имеет диамагнитные свойства, то есть не взаимодействует с магнитным полем

Биологическая роль

Необходим для дыхания растений и животных (в смеси с азотом или инертным газом). Вдыхание чистого кислорода приводит к сильному отравлению

В атмосфере образует так называемый озоновый слой, который защищает биосферу от вредного воздействия ультрафиолетового излучения. Ядовитый

Химические свойства кислорода и озона

Взаимодействие кислорода с металлами

Молекулярный кислород - довольно сильный окислитель. Он окисляет практически все металлы (кроме золота и платины). Много металлов медленно окисляются на воздухе, но в атмосфере чистого кислорода сгорают очень быстро, при этом образуется оксид:

Однако некоторые металлы при горении образуют не оксиды, а пероксиды (в таких соединениях степень окисления Кислорода равна -1) или надпероксиди (степень окисления атома Кислорода - дробная). Примером таких металлов могут быть барий, натрий и калий:

Взаимодействие кислорода с неметаллами

Оксиген проявляет степень окисления -2 в соединениях, которые образованы со всеми неметаллами, кроме Фтора, Гелия, Неона и Аргона. Молекулы кислорода при нагревании непосредственно вступают во взаимодействие со всеми неметаллами, кроме галогенов и инертных газов. В атмосфере кислорода фосфор самовоспламеняется и некоторые другие неметаллы:

При взаимодействия кислорода с фтором образуется кислород фторид, а не фтор оксид, поскольку атом Фтора имеет большую электроотрицательности, чем атом Кислорода. Оксиген фторид - это газ бледно-желтого цвета. Его используют как очень сильный окислитель и фторувальний агент. В этой соединении степень окисления Кислорода равна +2.

В избытка фтора может образовываться диоксиген дифторид, в котором степень окисления Кислорода равна +1. По строению такая молекула похожа на молекулу водород пероксида.

Применение кислорода и озона. Значение озонового слоя

Кислород используют все аэробные живые существа для дыхания. В процессе фотосинтеза растения выделяют кислород и поглощают углекислый газ.

Молекулярный кислород применяют для так называемой интенсификации, то есть ускорение окислительных процессов в металлургической промышленности. А еще кислород используют для добывания пламени с высокой температурой. При горении ацетилена (С 2 Н 2) в кислороде температура пламени достигает 3500 °С. В медицине кислород применяют для облегчения дыхания больных. Его также используют в дыхательных аппаратах для работы людей в трудной для дыхания атмосфере. Жидкий кислород применяют как окислитель ракетного топлива.

Озон используют в лабораторной практике как очень сильный окислитель. В промышленности с его помощью дезинфицируют воду, поскольку ему присуща сильная окислительная действие, которая уничтожает различные микроорганизмы.

Пероксиды, надпероксиди и озонидов щелочных металлов применяют для регенерации кислорода в космических кораблях и на подводных лодках, Такое применение основано на реакции этих веществ с углекислым газом СО 2:

В природе озон содержится в высоких слоях атмосферы на высоте около 20-25 км, в так называемом озоновом слое, который защищает Землю от жесткого солнечного излучения. Уменьшение концентрации озона в стратосфере хотя бы на 1 может привести к тяжелым последствиям, таким рост числа онкологических заболеваний кожи в людей и животных, увеличение числа заболеваний, связанных с угнетением иммунной системы человека, замедление роста наземных растений, снижение скорости роста фитопланктона и т.д.

Без озонового слоя жизнь на планете было бы невозможным. Тем временем загрязнение атмосферы различными промышленными выбросами приводят к разрушению озонового слоя. Самыми опасными веществами для озона являются фреоны (их используют как хладагенты в холодильных машинах, а также как наполнители для баллончиков с дезодорантами) и отходы ракетного топлива.

Мировое сообщество очень обеспокоено в связи с образованием дыры в озоновом слое на полюсах нашей планеты, в связи с чем в 1987 г. был принят «Монреальский протокол по веществам, разрушающим озоновый слой», который ограничил использование веществ, вредных для озонового слоя.

Физические свойства веществ, образованных элементом Сульфуром

Атомы Серы, так же, как и Кислорода, могут образовывать различные аллотропные модификации (S ∞ ; S 12 ; S 8 ; S 6 ; S 2 и другие). При комнатной температуре сера находится в виде α -серы (или ромбической серы), что представляет собой желтые хрупкие кристаллы, без запаха, не растворимые в воде. При температуре свыше +96 °С происходит медленный переход α -серы в β -серу (или моноклінну серу), что представляет собой почти белые пластинки. Если расплавленную серу перелить в воду, происходит переохлаждение жидкой серы и образования желто-коричневой резино-подобной пластической серы, которая погодя снова превращается в а-серу. Сера кипит при температуре, равной +445 °С, образуя пары темно-бурого цвета.

Все модификации серы не растворяются в воде, зато достаточно хорошо растворяются в сероуглероде (CS 2 ) и некоторых других неполярных растворителях.

Применение серы

Главный продукт серной промышленности - это сульфатная кислота. На ее производство приходится около 60 % серы, которую добывают. В гумотехнічній промышленности серу используют для превращения каучука в высококачественную резину, то есть для вулканизации каучука. Сера - важнейший компонент любых пиротехнических смесей. Например, в спичечных головках содержится около 5 %, а в намазці на коробке - около 20 % серы по массе. В сельском хозяйстве серу используют для борьбы с вредителями виноградников. В медицине серу применяют при изготовлении различных мазей для лечения кожных заболеваний.


Пожалуй, среди всех известных химических элементов, именно кислород занимает ведущее значение, ведь без него попросту было бы невозможным возникновение жизни на нашей планете. Кислород – самый распространенный химический элемент на Земле, на его долю приходится 49% от общей массы земной коры. Также он входит в состав земной атмосферы, состав воды и состав более 1400 различных минералов, таких как базальт, мрамор, силикат, кремнезем и т. д. Примерно 50-80% общей массы тканей, как животных, так и растений состоит из кислорода. И, разумеется, общеизвестна его роль для дыхания всего живого.

История открытия кислорода

Люди далеко не сразу постигли природу кислорода, хотя первые догадки о том, что в основе воздуха лежит некий химический элемент, появились еще в VIII веке. Однако в то далекое время не было ни подходящих технических инструментов для его изучения, ни возможности доказать существования кислорода, как газа, отвечающего в том числе за процессы горения.

Открытие кислорода состоялось лишь спустя тысячелетие, в ХVIII веке, благодаря совместной работе нескольких ученых.

  • В 1771 шведский химик Карл Шееле опытным путем исследовал состав воздуха, и определил, что воздух состоит из двух основных газов: одним из этих газов был азот, а вторым, собственно кислород, правда на то время само название «кислород» еще не появилось в науке.
  • В 1775 году французский ученый А. Лувазье дал название открытому Шееле газу – кислород, он же оксиген в латыни, само слово «оксиген» означает «рождающий кислоты».
  • За год до официальных «именин кислорода», в 1774 году английский химик Пристли путем разложение ртутного оксида впервые получает чистый кислород. Его опыты подкрепляют открытие Шееле. К слову сам Шееле также пытался получить кислород в чистом виде путем нагревания селитры, но у него не получилось.
  • Более чем через столетия в 1898 году английский физик Джозеф Томпсон впервые заставил общественность задуматься, о том, что запасы кислорода могут закончиться вследствие интенсивных выбросов углекислого газа в атмосферу.
  • В этом же году русский биолог Климент Тимирязев, исследователь , открывает свойство растений выделять кислород.

Хотя растения и выделяют кислород в атмосферу, но проблема поставленная Томпсоном о возможной нехватки кислорода в будущем, остается актуальной и в наше время, особенно в связи с интенсивной вырубкой лесов (поставщиков кислорода), загрязнением окружающей среды, сжиганием отходов и прочая. Больше об этом мы писали в прошлой об экологических проблемах современности.

Значение кислорода в природе

Именно наличие кислорода, в сочетании с водой привело к тому, что на нашей планете стало возможным возникновение жизни. Как мы заметили выше, основными поставщиками этого уникального газа являются различные растения, в том числе наибольшее количество выделяемого кислорода приходится на подводные водоросли. Выделяют кислород и некоторые виды бактерий. Кислород в верхних слоях атмосферы образует озоновый шар, который защищает всех жителей Земли от вредного ультрафиолетового солнечного излучения.

Строение молекулы кислорода

Молекула кислорода состоит из двух атомов, химическая формула имеет вид О 2 . Как образуется молекула кислорода? Механизм ее образования неполярный, другими словами за счет обобществления электроном каждого атома. Связь между молекулами кислорода также ковалентная и неполярная, при этом она двойная, ведь у каждого из атомов кислорода есть по два неспаренных электрона на внешнем уровне.

Так выглядит молекула кислорода, благодаря своим характеристикам она весьма устойчива. Для многих с ее участием нужны специальные условия: нагревание, повышенное давление, применение катализаторов.

Физические свойства кислорода

  • Прежде всего, кислород является газом, из которого состоит 21% воздуха.
  • Кислород не имеет ни цвета, ни вкуса, ни запаха.
  • Может растворяться в органических веществах, поглощаться углем и порошками .
  • - Температура кипения кислорода составляет -183 С.
  • Плотность кислорода равна 0,0014 г/см 3

Химические свойства кислорода

Главным химическим свойством кислорода является, конечно же, его поддержка горения. То есть в вакууме, где нет кислорода, огонь не возможен. Если же в чистый кислород опустить тлеющую лучину, то она загорится с новой силой. Горение разных веществ это окислительно-восстановительный химический процесс, в котором роль окислителя принадлежит кислороду. Окислители же это вещества, «отбирающие» электроны у веществ восстановителей. Отличные окислительные свойства кислорода обусловлены его внешней электронной оболочкой.

Валентная оболочка у кислорода расположена близко к ядру и как следствие ядро притягивает к себе электроны. Также кислород занимает второе место после фтора по шкале электроотрицательности Полинга, по этой причине вступая в химические реакции со всеми другими элементами (за исключением фтора) кислорода выступает отрицательным окислителем. И лишь вступая в реакции со фтором кислород имеет положительное окислительное воздействие.

А так как кислород второй окислитель по силе среди всех химических элементов таблицы Менделеева, то это определяет и его химические свойства.

Получение кислорода

Для получения кислорода в лабораторных условиях применяют метод термической обработки либо пероксидов либо солей кислосодержащих кислот. Под действием высокой температуры они разлагаются с выделением чистого кислорода. Также кислород можно получить с помощью перекиси водорода, даже 3% раствор перекиси под действие катализатор мгновенно разлагается, выделяя кислород.

2KC l O 3 = 2KC l + 3O 2 — вот так выглядит химическая реакция получения кислорода.

Также в промышленности в качестве еще одного способа получения кислорода применяют электролиз воды, во время которого молекулы воды раскладываются, и опять таки выделяется чистый кислород.

Использование кислорода в промышленности

В промышленности кислород активно применяется в таких сферах как:

  • Металлургия (при сварке и вырезке металлов).
  • Медицина.
  • Сельское хозяйство.
  • Как ракетное топливо.
  • Для очищения и обеззараживания воды.
  • Синтеза некоторых химических соединений, включая взрывчатые вещества.

Кислород, видео

И в завершение образовательное видео про кислород.

Последние материалы раздела:

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...