Строение бензола. II

УДК 547

ББК 24.23

Рецензенты: кафедра органической химии Ярославского государственного педагогического университета; В.Н.Казин, канд. хим. наук, доцент кафедры общей и биоорганической химии Ярославского государственного университета.

Колпащикова И.С., Кошкин Л.В., Кофанов Е.Р., Обухова Т.А.

К60 Органическая химия. Часть II. Арены. Галогенпроизводные углеводородов: Учебное пособие / Яросл. гос. техн. ун-т.- Ярославль, 1999.- 70 с.

ISBN 5-230-18418-3

Во второй части пособия рассмотрены основные вопросы строения и реакционной способности, типичные реакции и основные способы получения аренов и галогенпроизводных. По указанным разделам приведены контрольные работы.

Предназначено для студентов-заочников химико-технологических специальностей, а также может быть рекомендовано для студентов дневной формы обучения.

Ил. 8. Табл. 4. Библиограф. 6.

ББК 24.23

ISBN 5-230-18418-3 Ó Ярославский государственный

технический университет


АРЕНЫ

Строение бензола. Ароматичность

К аренам относятся соединения, содержащие, по крайней мере, одну бензольную группировку.

В современной химической литературе понятие “соединение ароматического ряда” означает сходство химических свойств соединения со свойствами бензола и не связаны с запахом соединений.

В соответствии с молекулярной формулой С 6 Н 6 бензол является ненасыщенным соединением и можно ожидать, что для него характерна тенденция вступать в типичные для алкенов реакции присоединения. Однако в условиях, в которых алкен быстро вступает в реакции присоединения, бензол не реагирует или реагирует медленно.

Бензол не вступает в реакции присоединения, в которых разрушилась бы p -электронная система бензольного кольца. Такая устойчивость называется кинетической . Она связана со значительной величиной энергии активации. Вместе с тем бензол достаточно легко вступает в реакции замещения. Образующиеся при этом продукты сохраняют специфическую структуру бензола.

Таблица 1.1. Сравнение химических свойств циклогексена и бензола

Вывод об устойчивости ароматической системы следует из сравнения теплот гидрирования одного моля 1,3,5-циклогексатриена, содержащего три независимые двойные и три простые связи. Можно ожидать, что теплота гидрирования 1,3,5-циклогексатриена будет равна утроенной теплоте гидрирования одного моля циклогексена: 120,4 ´ 3 =361,2 кДж.



Однако экспериментальная теплота гидрирования одного моля бензола составляет 209 кДж, что на 152 кДж меньше. Следовательно, бензол беднее энергией, чем гипотетический 1,3,5-циклогексатриен. Эта энергия называется энергией резонанса . Стабилизация за счет энергии резонанса является причиной термодинамической устойчивости .

В бензоле каждый атом углерода находится в sp 2 -состоянии и связан тремя s -связями с двумя атомами углерода и одним атомом водорода. Атомы углерода и водорода лежат в одной плоскости. Четвертый валентный электрон атома углерода находится на 2p -орбитали, перпендикулярной плоскости молекулы. Эти p -орбитали состоят из двух одинаковых долей, одна из которых лежит выше, другая - ниже плоскости кольца. -орбиталь каждого атома углерода перекрывается с -орбиталями обоих соседних атомов углерода. В результате образуется замкнутая шести-p -электронная система в виде двух бубликов, один из которых лежит выше, а другой ниже плоскости правильного шестиугольника (рис. 1.1а).



Благодаря коллективному взаимодействию всех шести p-электронов происходит выравнивание углерод-углеродных связей по длине и кратности: длина всех связей С-С в бензоле (0,1399 нм) является средней между длиной двойной связи в алкенах (0,134 нм) и расчетным значением длины простой связи =С-C=(0,148 нм) (рис. 1.1б). Вторым следствием коллективного p- электронного взаимодействия является электронная и связанная с ней термодинамическая и кинетическая стабилизация.

Рис. 1.1.Молекула бензола:

а - перекрывание 2р-орбиталей, образующих p- связи;

б - длины связей и валентные углы в молекуле бензола

Какие свойства должно проявлять вещество для того, чтобы его можно было отнести к ароматическим соединениям? Ароматическими являются соединения с молекулярной формулой, указывающей на высокую степень ненасыщенности, которые, однако, не реагируют как ненасыщенные, а вступают в реакции электрофильного замещения с сохранением термодинамически устойчивой ароматической системы.

Условие ароматичности определяет правило Хюккеля .

Современная точка зрения на строение бензола: плоская молекула, атомы углерода которой находятся в состоянии sp 2 -гибридизации и объединены в правильный шестиугольник.

Изображение молекулы бензола:

Ароматичность - необычайно низкая энергия невозбужденного состояния, вызванная делокализацией π-электронов.

Ароматичность -понятие, характеризующее совокупность структурных, энергетических свойств и особенностей реакционной способности циклических структур с системой сопряженных связей

Признаки ароматичности Любое соединение обладает ароматичностью, если оно имеет: а) плоский замкнутый цикл; б) сопряженную π−электронную систему, охватывающую все атомы цикла; в) если число электронов, участвующих в сопряжении соответствует формуле Хюккеля (4n+2., где n - число циклов).

Изомерия

Номенклатура

орто- , мета- и пара- замещенными:

Физические свойства

Все ароматические соединения имеют запах. Бензол, толуол, ксилолы, этилбензол,

кумол, стирол - жидкости, нафталин, антрацен - твердые вещества.

26. Ароматические углеводороды ряда бензола. Номенклатура. Изомерия. Способы получения бензола и его гомологов: из каменноугольной смолы, ароматизацией и дегидроциклизацией парафинов, по реакции Вюрца-Фиттига, алкилированием по Фриделю-Крафтсу олефинами, галоидными алкилами, спиртами, из солей бензойной кислоты, тримеризацией алкинов.

Арены(ароматические углеводороды) - это циклические соединения, в молекулах которых содержатся одно или несколько ядер бензола. Эмпирическая формула бензола С6Н6

Изомерия

Для ди-, три- и тетразамещенных ароматических углеводородов характерна изомерия положения заместителя и изомерия боковой алкильной цепи.

Моно-, пента- и гексазамещенные арены не имеют изомеров, связанных с положением заместителя в кольце.

Номенклатура

Производные бензола называют замещенными бензолами. Для многих из них либо используют тривиальные названия, либо заместитель обозначается приставкой перед словом «бензол». В случае монозамещенных бензолов в названия не входят цифры, так как все шесть атомов углерода молекулы бензола равноценны, для каждого заместителя возможен только один монозамещенный бензол.

Если в молекуле бензола присутствуют два заместителя, то могут существовать три различных дизамещенных бензола. Они называются соответственно орто- , мета- и пара- замещенными:

Если в бензоле имеется три и более заместителей, то их положение в кольце следует обозначать только цифрами. Во всех случаях названия заместителей перечисляют перед словом «бензол» в алфавитном порядке. Цифра 1 в названии может быть пропущена, заместитель, с которого начинается отсчет, в этом случае входит в основу названия:

Получение:

1.Переработка каменноугольной смолы, перегонка нефти, cухая перегонка

древесины.

2. Ароматизация нефти.

3. Дегидроциклизация гексана и гептана.

C 6 H 14 → С6H6 + 4H 2

C 7 H 16 → С6H5-СН3 + 4H2

4. Вюрца-Фиттига:

Алкилирование по Фриделю – Крафтсу. Принято два возможных механизма протекания реакции. В первом случае электрофильной частицей является карбокатион, образующийся в результате взаимодействия галогеналкана с хлоридом алюминия (кислотой Льюиса):

Во втором случае можно предполагать, что электрофилом служит алкильная группа полярного комплекса AlCl 3 с алкилгалогенидом.

Алкилирование бензола (реакция Фриделя-Крафтса)

C 6 H 6 + C 2 H 5 Cl → С 6 H 5 -C 2 H 5 + HCl

27.Электрофильное замещение в ароматическом ряду (нитрование, сульфирование, галогенирование, алкилирование и ацилирование по Фриделю-Крафтсу). Понятие о - и -комплексах. Механизм реакций электрофильного замещения

Электронное и пространственное
строение бензола

10 класс (профильный уровень)

Цель. Cформировать понятие об ароматической связи, особенностях электронного строения и обусловленных ими химических свойствах бензола.

Задачи. Всесторонне рассмотреть строение бензола как наиболее важного представителя ароматических углеводородов; выяснить природу ароматичности.

Тип урока. Проблемная лекция.

Для того чтобы повысить мотивацию обучающихся для более успешного усвоения новой темы, можно заранее подготовить карточки с фамилиями учеников, перемешать их и объявить, что в конце урока нескольким школьникам из присутствующих достанутся вопросы, а вот кому, ребята узнают позже.

ХОД ЗАНЯТИЯ

Учитель. Как вы думаете, откуда произошло название «ароматические углеводороды»?

Первые представители класса ароматических углеводородов (аренов), выделенные из природных объектов, обладали своеобразным приятным запахом и получили название «ароматических». Однако сегодня в понятие «ароматический углеводород» вкладывают совсем другой смысл.

Урок целесообразно начать с рассмотрения химических свойств, сравнения и анализа полученных результатов и их обобщения.

Демонстрационные опыты

1) Горение бумаги, смоченной бензолом: указывает на возможную непредельность молекулы бензола, поскольку пламя коптящее, подобно пламени ацетилена.

2) Приливание бромной воды и раствора перманганата калия к бензолу: не подтверждает непредельный характер молекулы бензола.

Исходя из этого, обучающиеся приходят к выводу о специфичности химических свойств бензола, а следовательно, и строении молекулы.

Вопросы ученикам

1) Охарактеризуйте химические свойства бензола.

2) От чего зависят свойства вещества?

3) На что указывает коптящее пламя?

4) На что указывает отсутствие реакции с перманганатом калия и бромной водой?

Учитель записывает брутто-формулу бензола (С 6 Н 6) и предлагает составить возможные варианты структурных формул линейного и циклического строения.

Историческая справка

Может быть заранее подготовлена одним из обучающихся, а может быть сделана несколькими учениками в форме презентации.

В 1825 г. М.Фарадей выделил из светильного газа углеводород и исследовал его состав и свойства. Э.Митчерлих в 1835 г. нагреванием бензойной кислоты с негашеной известью получил углеводород, который оказался тождественным веществу, полученному Фарадеем. Митчерлих установил его формулу – С 6 Н 6 , Либих позднее назвал бензолом.

Особое внимание к этому углеводороду на протяжении уже более полутора столетий объясняется его специфическими свойствами.

Первая попытка объяснения таких свойств бензола была предпринята в 1865 г. А.Кекуле (рис. 1).

Наряду с формулой Кекуле были предложены и другие формулы бензола (рис. 2).

Учитель рассказывает о взаимодействии бензола с тремя молекулами водорода с образованием циклогексана и о получении бензола пропусканием ацетилена через нагретые до 500 °С стружки железа, отмечает, что структурная формула бензола должна соответствовать шестиугольнику с чередующимися двойными и одинарными связями.

Уравнения записываются на доске:

С 6 Н 6 + 3Н 2 -> С 6 Н 12 ,

3С 2 Н 2 -> С 6 Н 6 .

Далее учитель сообщает некоторые данные о циклическом строении бензола, акцентирует внимание на следующих моментах: на расположение всех атомов в одной плоскости и одинаковое расстояние между ядрами соседних атомов углерода. Благодаря открытию метода рентгеноструктурного анализа стало возможным объяснить строение молекулы бензола: при sp 2 -гибридизации из одной s -орбитали и двух p -орбиталей образуются три гибридные орбитали и остается одна негибридная р -орбиталь.

Гибридные орбитали образуют три -связи, а негибридные располагаются перпендикулярно плоскости и образуют единое -электронное облако.

Понятие об электронном строении бензола подкрепляется таблицами, моделями с диска «Электронный учебник. Открытая химия 2,5»; объемными моделями с диска «Учебное электронное издание. Виртуальная лаборатория. Химия. 8–11 классы».

Учитель. Давайте подумаем, если в молекуле присутствует -связь, то почему же не происходят характерные для алкенов реакции (присоединение брома и окисление перманганатом калия)?

О т в е т. Сочетание шести -связей с единой -электронной системой называется ароматической связью. Электронная плотность распределена равномерно. Следовательно, в молекуле бензола нет ни простых, ни двойных связей. Все связи между атомами углерода в бензоле равноценны, чем и обусловлены характерные для бензола свойства. Цикл из шести атомов углерода, связанных шестью -cвязями и единым -электронным облаком, называют бензольным кольцом или бензольным ядром.

Физические методы исследования показали следующее (см. таблицу).

Таблица

Строение молекулы бензола

Напоминаю, что валентный угол 120 ° соответствует sp 2 -гибридизации атомов углерода.

Итак, давайте подведем итог изучения строения молекулы бензола.

Здесь можно воспользоваться заготовленными карточками с фамилиями, а можно попробовать задать вопрос по адресу. Заранее на подготовленных карточках пишется адрес, например: «улица 1, дом 3, квартира 1», где улица – номер ряда, дом – номер парты, квартира – вариант. Вытаскивается карточка, определяется ученик, «живущий» по этому адресу, и ему задается вопрос, затем вытаскивается следующая карточка.

Примеры вопросов

1) Какова формула молекулы бензола?

2) Какой тип гибридизации у атомов углерода в этой молекуле?

3) Что такое ароматичность?

4) Как влияет строение молекулы на свойства вещества?

5) В каком году и кем был впервые получен бензол?

Ароматические углеводороды (арены)

Представители ароматических углеводородов - бензол С 6 Н 6 и его гомологи -имеют циклическое строение. Οʜᴎ могут иметь насыщенные или ненасыщенные боковые цепи. Некоторые из производных бензола обладают приятным запахом. По этой причине сохранилось их прежнее историческое название - ароматические углеводороды. Сегодня известны многие вещества, которые по строению и химическим свойствам следует отнести к ароматическим углеводородам. Бензол является самым типичным представителœем ароматических углеводородов, в молекуле которого шесть атомов углерода.

Экспериментальные данные показывают, что в молекуле бензола 92,3 % углерода, как и в молекуле ацетилена. Следовательно, простейшая формула бензола должна быть такая же, как у ацетилена, - СН. Но плотность паров бензола по водороду равна 39, а масса его моля - 78 г (2D H = 2‣‣‣39). В случае если формула бензола действительно была бы СН, то масса его моля должна быть 13 г, а не 78 ᴦ. Следовательно, молекула бензола состоит из шести атомов углерода и шести атомов водорода (78: 13 = 6), а его молекулярная формула С 6 Н б.

Эксперименты показали, что при повышенной температуре и в присутствии катализаторов к каждой молекуле бензола присоединяются три молекулы водорода и образуется циклогексан. Этим доказывается, что бензол имеет циклическое строение. При этом эксперименты показали, что всœе связи в молекуле бензола равноценны.

Согласно современным представлениям, в молекуле бензола у каждого атома углерода одно s- и два р-электронных облака гибридизованы (sp 2 -гибридизация), а одно р-электронное облако негибридизованное. Все три гибридизованных электронных облака, перекрываясь с гибридизованными облаками сосœедних атомов углерода и s-облаками атомов водорода, образуют три σ-связи, которые находятся в одной плоскости. Негибридизованные р-электронные облака атомов углерода расположены перпендикулярно плоскости направления σ -связей. Эти облака тоже перекрываются друг с другом (рис. 40).

Рис. 40. Строение молекулы бензола

В цикле молекулы бензола нет трех отдельных двойных связей: негибридизованное р-электронное облако первого атома углерода перекрывается с негибридизованными р-электронными облаками второго и шестого атомов углерода, а р-электронное облако второго атома углерода перекрывается с негибридизованными р-электронными облаками первого и третьего атомов углерода

Так как электронная плотность в молекуле бензола распределœена равномерно, то правильнее структурную формулу бензола изображать в виде шестиугольника с окружностью внутри. Известно много сходных с бензолом ароматических углеводородов - гомологов бензола. Соединœения углерода и водорода, в молекулах которых имеется бензольное кольцо, или ядро, относятся кароматическим углеводородам. Сегодня используют формулу I (Фридриха Кекуле (1829-1896) 1865 ᴦ.) или III. Радикал –С 6 Н 5 принято называть фенилом.

Строение молекулы бензола - понятие и виды. Классификация и особенности категории "Строение молекулы бензола" 2017, 2018.

Цели урока:

  • дать понятие об ароматической связи, её особенностях, установить взаимосвязь между строением бензола и его свойствами;
  • закрепить умение сравнивать состав и строение углеводородов различных рядов;
  • познакомить с физическими свойствами бензола;
  • показать токсическое воздействие аренов на здоровье человека.

План лекции

  1. Вывод молекулярной и структурной формулы бензола.
  2. История открытия бензола.
  3. Формула Кекуле.
  4. Строение бензола.
  5. Понятие “ароматичности”.
  6. Возникновение термина “ароматические соединения”.
  7. Физические свойства бензола.
  8. Токсическое воздействие аренов на организм человека.
  9. Закрепление пройденного материала.
  10. Домашнее задание.

В начале урока предлагаю учащимся решить задачу на вывод формулы вещества.

Задача. При сжигании 2,5 г вещества выделилось 8,46 г углекислого газа и 1,73 г воды. Масса 1 л вещества составляет 3,5 г. Определите молекулярную и возможную структурную формулы вещества.

Решая задачу, учащиеся выводят молекулярную формулу вещества – С 6 Н 6 . Возникает проблемная ситуация: “Какое строение может иметь молекула бензола?” Опираясь на знание о непредельных углеводородах, учащиеся предлагают возможные структурные формулы для него:

НС С-СН 2 -СН 2 - С СН

Н 2 С = СН -С С-СН = СН 2 и другие.

Учащиеся делают вывод о том, что бензол является сильно ненасыщенным соединением, вспоминают качественные реакции на непредельность.

Предлагаю учащимся проверить гипотезу о непредельности бензола в ходе выполнения эксперимента. Проведя реакции бензола с бромной водой и раствором перманганата калия, ученики приходят к выводу, что бензол, являясь ненасыщенной системой, не даёт качественных реакций на непредельность, следовательно, его нельзя отнести к классу непредельных углеводородов.

Какое же строение имеет молекула бензола, и к какому классу углеводородов его можно отнести?

Прежде, чем ответить на этот вопрос, знакомлю учеников с историей открытия бензола, которая весьма интересна. В 1812 – 1815 годах в Лондоне впервые появилось газовое освещение. Светильный газ, добывавшийся из жира морских животных, доставлялся в железных баллонах. Эти баллоны помещались обычно в подвале дома, из них газ по трубкам распределялся по всему помещению. Вскоре было замечено крайне неприятное обстоятельство – в сильные холода газ терял способность давать при горении яркий свет. Владельцы газового завода в 1825 г. обратились за советом к Фарадею, который нашёл, что те составные части, которые способны гореть ярким пламенем, собираются на дне баллона в виде прозрачного жидкого слоя. При исследовании этой жидкости Фарадей открыл новый углеводород – бензол. Название этому веществу дал Либих – (суффикс –ол указывает на его маслянистый характер, от латинского oleum – масло).

В 1865 г. немецким учёным Кекуле была предложена структура молекулы бензола, которая приснилась ему в виде змеи, укусившей себя за хвост:

Но эта формула, соответствуя элементарному составу бензола, не отвечает многим его особенностям:

  • бензол не даёт качественных реакций на непредельность;
  • для бензола характерны реакции замещения, а не присоединения;
  • формула Кекуле не в состоянии объяснить равенства расстояний между углеродными атомами, что имеет место в реальной молекуле бензола.

Чтобы выйти из этого затруднения, Кекуле допустил, что в бензоле происходит непрерывное перемещение двойных связей.

Использование современных физических и квантовых методов исследования дало возможность создать исчерпывающее представление о строении бензола.

Атомы углерода в молекуле бензола находятся во втором валентном состоянии (sp 2). Каждый атом углерода образует -связи с двумя другими атомами углерода и одним атомом водорода, лежащими в одной плоскости. Валентные углы между тремя -связями равны 120°. Таким образом, все шесть атомов углерода лежат в одной плоскости, образуя правильный шестиугольник (рис. 1):

Рис. 1. Схема образования -связей
в молекуле бензола

Каждый атом углерода имеет одну негибридную р-орбиталь. Шесть таких орбиталей располагаются перпендикулярно плоскости -связей и параллельно друг другу (рис. 2). Все шесть р-электронов взаимодействуют между собой, образуя единое -электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение. Наибольшая -электронная плотность в этой сопряженной системе располагается над и под плоскостью кольца (рис. 3):

В результате такого равномерного перекрывания 2р-орбиталей всех шести углеродных атомов происходит “выравнивание” простых и двойных связей – длина связи составляет 0,139 нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154 нм) и длиной двойной связи в алкенах (0,133 нм). То есть, в молекуле бензола отсутствуют классические двойные и одинарные связи.

Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения – количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола.

Такое электронное строение объясняет все особенности бензола. В частности, почему бензол трудно вступает в реакции присоединения – это приводит к нарушению сопряжения. Такие реакции возможны в жёстких условиях.

В настоящее время нет единого способа графического изображения молекулы бензола с учётом его реальных свойств. Но, чтобы подчеркнуть выравненность -электронной плотности в молекуле бензола, прибегают к помощи следующих формул:

Используют и формулу Кекуле, помня при этом о её недостатках.

Совокупность свойств бензола принято называть ароматичностью. В общем виде явление ароматичности было сформулировано немецким физиком Хюккелем: соединение должно проявлять ароматические свойства, если в его молекуле содержится плоское кольцо с (4n+2) -электронами, где n может принимать значения 0, 1, 2, 3 и т. д. Согласно этому правилу, системы, содержащие 6, 10, 14 -электронов, являются ароматическими.

Примерами таких соединений являются нафталин (n=2) и антрацен (n=3).

После рассмотрения строения бензола с учащимися обсуждаем ответы на вопросы:

  1. Можно ли отнести бензол к непредельным углеводородам? Ответ обоснуйте.
  2. К какому классу углеводородов относится бензол?
  3. Что подразумевается под понятием “ароматическое соединение”?
  4. Какие углеводороды называются ароматическими?

Далее знакомлю учащихся с происхождением термина “ароматические соединения”. Сообщаю, что это название возникло в начальный период развития химии. Было замечено, что соединения бензольного ряда получаются при перегонке некоторых приятно пахнущих (ароматических) веществ – природных смол и бальзамов. Однако большинство ароматических соединений не имеют запаха или пахнут неприятно. Но данный термин сохранился в химии. Ароматическими углеводородами (аренами) называются вещества, в молекулах которых содержится одно или несколько бензольных колец – циклических групп атомов углерода с особым характером связей.

Далее учащиеся знакомятся с физическими свойствами бензола, работая с учебной литературой. Им известно, что бензол – это жидкость, может находиться и в парообразном состоянии (при исследовании запаха). Знакомлю учащихся с бензолом в твёрдом виде. Температура плавления бензола 5,5°С. Основываясь на этом сведении, демонстрирую превращение жидкого бензола в белую кристаллическую массу. Для этого 4-5 мл бензола, находящегося в пробирке, опускаю в сосуд, наполненный снегом или льдом. Через несколько минут учащиеся наблюдают изменение агрегатного состояния бензола. На основании наблюдений учащиеся высказывают предположение о том, что у этого вещества должна быть молекулярная кристаллическая решетка.

Обращаю внимание учащихся на то, что бензол является сильно токсичным веществом. Вдыхание его паров вызывает головокружение и головную боль. При высоких концентрациях бензола возможны случаи потери сознания. Его пары раздражают глаза и слизистую оболочку.

Жидкий бензол легко проникает в организм через кожу, что может привести к отравлению. Поэтому работа с бензолом и его гомологами требует особой осторожности.

Материал темы “Бензол” использую для объяснения вреда курения. Исследования дёгтеобразного вещества, полученного из табачного дыма показали, что в нём содержатся, помимо никотина, ароматические углеводороды типа бензпирена,

обладающие сильными канцерогенными свойствами, т. е. эти вещества действуют как возбудители рака. Табачный дёготь при попадании на кожу и в лёгкие вызывает образование раковых опухолей. Курильщики чаще заболевают раком губы, языка, гортани, пищевода. Они намного чаще страдают стенокардией, инфарктом миокарда. Отмечаю, что около 50% ядовитых веществ курильщик выделяет в окружающее пространство, создавая вокруг себя кольцо “пассивных курильщиков”, у которых быстро появляется головная боль, тошнота, общее недомогание, а затем могут развиваться и хронические заболевания.

В конце урока провожу фронтальный опрос по вопросам:

Домашнее задание : стр.55-58, стр. 61 №1, 2 по учебнику Э. Е. Нифантьева, Л. А. Цветкова “Химия 10-11”.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...