Скорость химической реакции обозначение. Скорость химических реакций

Физическая химия: конспект лекций Березовчук А В

2. Факторы, влияющие на скорость химической реакции

Для гомогенных, гетерогенных реакций:

1) концентрация реагирующих веществ;

2) температура;

3) катализатор;

4) ингибитор.

Только для гетерогенных:

1) скорость подвода реагирующих веществ к поверхности раздела фаз;

2) площадь поверхности.

Главный фактор – природа реагирующих веществ – характер связи между атомами в молекулах реагентов.

NO 2 – оксид азота (IV) – лисий хвост, СО – угарный газ, монооксид углерода.

Если их окислить кислородом, то в первом случае реакция пойдет мгновенно, стоит приоткрыть пробку сосуда, во втором случае реакция растянута во времени.

Концентрация реагирующих веществ будет рассмотрена ниже.

Голубая опалесценция свидетельствует о моменте выпадения серы, чем выше концентрация, тем скорость выше.

Рис. 10

Чем больше концентрации Na 2 S 2 O 3 , тем меньше времени идет реакция. На графике (рис. 10) изображена прямо пропорциональная зависимость. Количественная зависимость скорости реакции от концент-рации реагирующих веществ выражается ЗДМ (законом действующих масс), который гласит: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Итак, основным законом кинетики является установленный опытным путем закон: скорость реакции пропорциональна концентрации реагирующих веществ, пример: (т.е. для реакции)

Для этой реакции Н 2 + J 2 = 2НJ – скорость можно выразить через изменение концентрации любого из веществ. Если реакция протекает слева направо, то концентрация Н 2 и J 2 будет уменьшаться, концентрация НJ – увеличиваться по ходу реакции. Для мгновенной скорости реакций можно записать выражение:

квадратными скобками обозначается концентрация.

Физический смысл k– молекулы находятся в непрерывном движении, сталкиваются, разлетаются, ударяются о стенки сосуда. Для того, чтобы произошла химическая реакция образования НJ, молекулам Н 2 и J 2 надо столкнуться. Число же таких столкновений будет тем больше, чем больше молекул H 2 и J 2 содержится в объеме, т. е. тем больше будут величины [Н 2 ] и . Но молекулы движутся с разными скоростями, и суммарная кинетическая энергия двух сталкивающихся молекул будет различной. Если столкнутся самые быстрые молекулы Н 2 и J 2 , энергия их может быть такой большой, что молекулы разобьются на атомы йода и водорода, разлетающиеся и взаимодействующие затем с другими молекулами Н 2 + J 2 ? 2H+2J, далее будет H + J 2 ? HJ + J. Если энергия сталкивающихся молекул меньше, но достаточно велика для ослабления связей H – H и J – J, произойдет реакция образования йодоводорода:

У большинства же сталкивающихся молекул энергия меньше необходимой для ослабления связей в Н 2 и J 2 . Такие молекулы «тихо» столкнутся и также «тихо» разойдутся, оставшись тем, чем они были, Н 2 и J 2 . Таким образом, не все, а лишь часть столкновений приводит к химической реакции. Коэффициент пропорциональности (k) показывает число результативных, приводящих к реакции соударений при концентрациях [Н 2 ] = = 1моль. Величина k– const скорости . Как же скорость может быть постоянной? Да, скоростью равномерного прямолинейного движения называют постоянную векторную величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка. Но молекулы движутся хаотически, тогда как же может быть скорость – const? Но постоянная скорость может быть только при постоянной температуре. С ростом температуры увеличивается доля быстрых молекул, столкновения которых приводят к реакции, т. е. увеличивается константа скорости. Но увеличение константы скорости не безгранично. При какой-то температуре энергия молекул станет столь большой, что практически все соударения реагентов будут результативными. При столкновении двух быстрых молекул будет происходить обратная реакция.

Настанет такой момент, когда скорости образования 2НJ из Н 2 и J 2 и разложения будут равны, но это уже химическое равновесие. Зависимость скорости реакции от концентрации реагирующих веществ можно проследить, пользуясь традиционной реакцией взаимодействия раствора тиосульфата натрия с раствором серной кислоты.

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + H 2 S 2 O 3 , (1)

H 2 S 2 O 3 = S?+H 2 O+SO 2 ?. (2)

Реакция (1) протекает практически мгновенно. Скорость реакции (2) зависит при постоянной температуре от концентрации реагирующего вещества H 2 S 2 O 3 . Именно эту реакцию мы наблюдали – в этом случае скорость измеряется временем от начала сливания растворов до появления опалесценции. В статье Л. М. Кузнецовой описана реакция взаимодействия тиосульфата натрия с соляной кислотой. Она пишет, что при сливании растворов происходит опалесценция (помутнение). Но данное утверждение Л. М. Кузнецовой ошибочно так как опалесценция и помутнение – это разные вещи. Опалесценция (от опал и латинского escentia – суффикс, означающий слабое действие) – рассеяние света мутными средами, обусловленное их оптической неоднородностью. Рассеяние света – отклонение световых лучей, распространяющихся в среде во все стороны от первоначального направления. Коллоидные частицы способны рассеивать свет (эффект Тиндаля – Фарадея) – этим объясняется опалесценция, легкая мутноватость коллоидного раствора. При проведении этого опыта надо учитывать голубую опалесценцию, а затем коагуляцию коллоидной суспензии серы. Одинаковую плотность суспензии отмечают по видимому исчезновению какого-либо рисунка (например, сетки на дне стаканчика), наблюдаемого сверху через слой раствора. Время отсчитывают по секундомеру с момента сливания.

Растворы Na 2 S 2 O 3 x 5H 2 O и H 2 SO 4 .

Первый готовят путем растворения 7,5 г соли в 100 мл H 2 O, что соответствует 0,3 М концентрации. Для приготовления раствора H 2 SO 4 той же концентрации отмерить надо 1,8 мл H 2 SO 4 (к), ? = = 1,84 г/см 3 и растворить ее в 120 мл H 2 O. Приготовленный раствор Na 2 S 2 O 3 разлить в три стакана: в первый – 60 мл, во второй – 30 мл, в третий – 10 мл. Во второй стакан добавить 30 мл H 2 O дистиллированной, а в третий – 50 мл. Таким образом, во всех трех стаканах окажется по 60 мл жидкости, но в первом концентрация соли условно = 1, во втором – Ѕ, а в третьем – 1/6. После того, как будут подготовлены растворы, в первый стакан с раствором соли прилейте 60 мл раствора H 2 SO 4 и включите секундомер, и т. д. Учитывая, что скорость реакции падает с разбавлением раствора Na 2 S 2 O 3 , ее можно определить как величину, обратно пропорциональную времени v = 1/? и построить график, отложив на оси абсцисс концентрацию, а на оси ординат – скорость реакции. Из этого вывод – скорость реакции зависит от концентрации веществ. Полученные данные занесены в таблицу 3. Можно этот опыт выполнить с помощью бюреток, но это требует от выполняющего большой практики, потому что график бывает неправильным.

Таблица 3

Скорость и время реакции

Подтверждается закон Гульдберга-Вааге – профессора химии Гульдерга и молодого ученого Вааге).

Рассмотрим следующий фактор – температуру.

При увеличении температуры скорость большинства химических реакций повышается. Эта зависимость описана правилом Вант-Гоффа: «При повышении температуры на каждые 10 °C скорость химических реакций увеличивается в 2 – 4 раза».

где ? – температурный коэффициент, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры на 10 °C;

v 1 – скорость реакции при температуре t 1 ;

v 2 – скорость реакции при температуре t 2 .

Например, реакция при 50 °С протекает за две минуты, за сколько времени закончится процесс при 70 °С, если температурный коэффициент ? = 2?

t 1 = 120 с = 2 мин; t 1 = 50 °С; t 2 = 70 °С.

Даже небольшое повышение температуры вызывает резкое увеличение скорости реакции активных соударений молекулы. Согласно теории активации, в процессе участвуют только те молекулы, энергия которых больше средней энергии молекул на определенную величину. Эта избыточная энергия – энергия активации. Физический смысл ее – это та энергия, которая необходима для активного столкновения молекул (перестройки орбиталей). Число активных частиц, а следовательно, скорость реакции возрастает с температурой по экспоненциальному закону, согласно уравнению Аррениуса, отражающему зависимость константы скорости от температуры

где А – коэффициент пропорциональности Аррениуса;

k– постоянная Больцмана;

Е А – энергия активации;

R – газовая постоянная;

Т– температура.

Катализатор – вещество, ускоряющее скорость реакции, которое само при этом не расходуется.

Катализ – явление изменения скорости реакции в присутствии катализатора. Различают гомогенный и гетерогенный катализ. Гомогенный – если реагенты и катализатор находятся в одном агрегатном состоянии. Гетерогенный – если реагенты и катализатор в различных агрегатных состояниях. Про катализ см. отдельно (дальше).

Ингибитор – вещество, замедляющее скорость реакции.

Следующий фактор – площадь поверхности. Чем больше поверхность реагирующего вещества, тем больше скорость. Рассмотрим на примере влияние степени дисперсности на скорость реакции.

CaCO 3 – мрамор. Плиточный мрамор опустим в соляную кислоту HCl, подождем пять минут, он растворится полностью.

Порошкообразный мрамор – с ним проделаем ту же процедуру, он растворился через тридцать секунд.

Уравнение обоих процессов одинаково.

CaCO 3 (тв) + HCl(г) = CaCl 2 (тв) + H 2 O(ж) + CO 2 (г) ?.

Итак, при добавлении порошкообразного мрамора время меньше, чем при добавлении плиточного мрамора, при одинаковой массе.

С увеличением поверхности раздела фаз скорость гетерогенных реакций увеличивается.

Из книги Физическая химия: конспект лекций автора Березовчук А В

2. Уравнение изотермы химической реакции Если реакция протекает обратимо, то?G= 0.Если реакция протекает необратимо, то?G? 0 и можно рассчитать изменение?G. где? – пробег реакции – величина, которая показывает, сколько молей изменилось в ходе реакции. I сп – характеризует

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

3. Уравнения изохоры, изобары химической реакции Зависимость К от температуры Уравнение изобары: Уравнение изохоры: По ним судят о направлении протекания

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

1. Понятие химической кинетики Кинетика – наука о скоростях химических реакций.Скорость химической реакции – число элементарных актов химического взаимодействия, протекающих в единицу времени в единицу объема (гомогенные) или на единице поверхности

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

8. Факторы, влияющие на перенапряжение водорода. Перенапряжение кислорода Факторы, влияющие на?Н2:1) ?тока (плотность тока). Зависимость от плотности тока описывается уравнением Тафеля;2) природа материала катода – ряд по возрастанию?, ?– перенапряжение.В уравнении Тафеля

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Из книги Что такое теория относительности автора Ландау Лев Давидович

Ядерные реакции и электрический заряд Когда в 90-х годах прошлого века физики стали яснее представлять себе структуру атома, они обнаружили, что, по крайней мере, некоторые его части несут электрический заряд. Например, электроны, заполняющие внешние области атома,

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

ЯДЕРНЫЕ РЕАКЦИИ МЕТОДЫ БОМБАРДИРОВКИ ЯДЕР1.40. Кокрофт и Уолтон получали протоны с достаточно большой энергией путем ионизации газообразного водорода и последующего ускорения ионов высоковольтной установкой с трансформатором и выпрямителем. Подобный же метод можно

Из книги 50 лет советской физики автора Лешковцев Владимир Алексеевич

ПРОБЛЕМА ЦЕПНОЙ РЕАКЦИИ 2.3. Принцип действия атомных бомб или силовой установки, использующей деление урана, достаточно прост. Если один нейтрон вызывает деление, которое приводит к освобождению нескольких новых нейтронов, то число делений может чрезвычайно быстро

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

ПРОДУКТЫ РЕАКЦИИ И ПРОБЛЕМА РАЗДЕЛЕНИЯ 8.16. В хэнфордской установке процесс производства плутония разделяется на две главных части: собственно получение его в котле и выделение его из блоков урана, в которых он образуется. Переходим к рассмотрению второй части процессу

Из книги На кого упало яблоко автора Кессельман Владимир Самуилович

ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАЗДЕЛЕНИЕ ИЗОТОПОВ 9.2. По определению, изотопы элемента отличаются своими массами, но не химическими свойствами. Точнее говоря, хотя массы ядер изотопов и их строение различны, заряды ядер одинаковы, и поэтому наружные электронные оболочки

Из книги автора

Осуществление цепной реакции деления ядер Теперь встал со всей силой вопрос о цепной реакции деления и о возможности получения разрушительной взрывной энергии деления. Этот вопрос роковым образом переплелся с мировой войной, развязанной фашистской Германией 1 сентября

Из книги автора

И скорость относительна! Из принципа относительности движения следует, что говорить о прямолинейном и равномерном движении тела с некоторой скоростью, не указывая, относительно какой из покоящихся лабораторий измерена скорость, имеет столь же мало смысла, как говорить

Из книги автора

Скорость звука Случалось ли вам наблюдать издали за дровосеком, рубящим дерево? Или, быть может, вы следили за тем, как вдали работает плотник, вколачивая гвозди? Вы могли заметить при этом очень странную вещь: удар раздается не тогда, когда топор врезается в дерево или

Из книги автора

УПРАВЛЯЕМЫЕ ТЕРМОЯДЕРНЫЕ РЕАКЦИИ Неуправляемые термоядерные реакции происходят при взрывах водородных бомб. Они приводят к высвобождению громадного количества ядерной энергии, сопровождающемуся крайне разрушительным взрывом. Теперь задача ученых - найти пути

Из книги автора

Из книги автора

В лабиринтах реакции деления В 1938 году немецкие ученые Отто Ган и Фриц Штрассман (1902–1980) сделали удивительное открытие. Они обнаружили, что при бомбардировке урана нейтронами иногда возникают ядра, примерно вдвое более легкие, чем исходное ядро урана. Дальнейшие

Химические методы

Физические методы

Методы измерения скорости реакции

В приведенном выше примере скорость реакции между карбонатом кальция и кислотой измеряли путем изучения зависимости объема выделившегося газа от времени. Опытные данные о скоростях реакций можно получать измерением других величин.

Если в ходе реакции изменяется общее количество газообразных веществ, то за ее протеканием можно наблюдать, измеряя давление газа при постоянном объеме. В тех случаях, когда одно из исходных веществ или один из продуктов реакции окрашены, за ходом реакции можно следить, наблюдая изменение окраски раствора. Другим оптическим методом является измерение вращения плоскости поляризации света (если исходные вещества и продукты реакции обладают различной вращающей способностью).

Некоторые реакции сопровождаются изменением числа ионов в растворе. В таких случаях скорость реакции можно изучать путем измерения электрической проводимости раствора. В следующей главе будут рассмотрены некоторые другие электрохимические методы, которые могут быть использованы для измерения скоростей реакций.

За ходом реакции можно следить, измеряя во времени концентрацию одного из участников реакции с помощью разнообразных методов химического анализа. Реакцию проводят в термостатированном сосуде. Через определенные промежутки времени из сосуда отбирают пробу раствора (или газа) и определяют концентрацию одного из компонентов. Для получения надежных результатов важно, чтобы в пробе, отобранной для анализа, реакция не происходила. Это достигается путем химического связывания одного из реагентов, резким охлаждением или разбавлением раствора.

Экспериментальные исследования показывают, что скорость реакции зависит от нескольких факторов. Рассмотрим влияние этих факторов вначале на качественном уровне.

1.Природа реагирующих веществ. Из лабораторной практики мы знаем, что нейтрализация кислоты основанием

Н + + ОН – ® Н 2 О

взаимодействие солей с образованием малорастворимого соединения

Ag + + Cl – ® AgCl

и другие реакции в растворах электролитов происходят очень быстро. Время, необходимое для завершения таких реакций, измеряется в миллисекундах и даже в микросекундах. Это вполне понятно, т.к. сущность таких реакций состоит в сближении и соединении заряженных частиц с зарядами противоположного знака.

В противоположность ионным реакциям взаимодействие между ковалентно связанными молекулами обычно протекает гораздо медленнее. Ведь в ходе реакции между такими частицами должен произойти разрыв связей в молекулах исходных веществ. Для этого сталкивающиеся молекулы должны обладать определенным запасом энергии. Кроме того,если молекулы достаточно сложны, для того, чтобы произошла между ними реакция, они должны быть определенным образом ориентированы в пространстве.

2. Концентрация реагирующих веществ . Скорость химической реакции, при прочих равных условиях, зависит от числа столкновений реагирующих частиц в единицу времени. Вероятность столкновений зависит от количества частиц в единице объема, т.е. от концентрации. Поэтому скорость реакции увеличивается с повышением концентрации.

3. Физическое состояние веществ . В гомогенных системах скорость реакции зависит от числа столкновений частиц в объеме раствора (или газа). В гетерогенных системах химическое взаимодействие происходит на поверхности раздела фаз . Увеличение площади поверхности твердого вещества при его измельчении облегчает доступ реагирующих частиц к частицам твердого вещества, что приводит к существенному ускорению реакции.

4. Температура оказывает существенное влияние на скорость разнообразных химических и биологических процессов. При увеличении температуры повышается кинетическая энергия частиц, а, следовательно, увеличивается доля частиц, энергия которых достаточна для химического взаимодействия.

5. Стерический фактор характеризует необходимость взаимной ориентации реагирующих частиц. Чем сложнее молекулы, тем меньше вероятность их должной ориентации, тем меньше эффективность столкновений.

6. Наличие катализаторов . Катализаторами называются вещества, в присутствии которых изменяется скорость химической реакции. Вводимые в реакционную систему в небольших количествах и остающиеся после реакции неизменившимися, они способны чрезвычайно менять скорость процесса.

Основные факторы, от которых зависит скорость реакции, будут подробнее рассмотрены ниже.

Понятие «скорость» довольно часто встречается в литературе. Из физики известно, что чем большее расстояние преодолеет материальное тело (человек, поезд, космический корабль) за определённый отрезок времени, тем выше скорость этого тела.

А как измерить скорость химической реакции, которая никуда «не идёт» и никакое расстояние не преодолевает? Для того чтобы ответить на этот вопрос, следует выяснить, а что всегда меняется в любой химической реакции? Поскольку любая химическая реакция - это процесс изменения вещества, то исходное вещество в ней исчезает, превращаясь в продукты реакции. Таким образом, в ходе химической реакции всегда изменяется количество вещества, уменьшается число частиц исходных веществ, а значит, и его концентрация (С) .

Задание ЕГЭ. Скорость химической реакции пропорциональна изменению:

  1. концентрации вещества в единицу времени;
  2. количеству вещества в единице объёма;
  3. массы вещества в единице объёма;
  4. объёму вещества в ходе реакции.

А теперь сравните свой ответ с правильным:

скорость химической реакции равна изменению концентрации реагирующего вещества в единицу времени

где С 1 и С 0 - концентрации реагирующих веществ, конечная и начальная, соответственно; t 1 и t 2 - время эксперимента, конечный и начальный отрезок времени, соответственно.

Вопрос. Как вы считаете, какая величина больше: С 1 или С 0 ? t 1 или t 0 ?

Поскольку реагирующие вещества всегда расходуются в данной реакции, то

Таким образом, отношение этих величин всегда отрицательно, а скорость не может быть величиной отрицательной. Поэтому в формуле появляется знак «минус», который одновременно говорит о том, что скорость любой реакции с течением времени (при неизменных условиях) всегда уменьшается .

Итак, скорость химической реакции равна:

Возникает вопрос, в каких единицах следует измерять концентрацию реагирующих веществ (С) и почему? Для того чтобы ответить на него, нужно понять, какое условие является главным для протекания любой химической реакции.

Для того чтобы частицы прореагировали, необходимо, чтобы они, как минимум, столкнулись. Поэтому чем выше число частиц* (число молей) в единице объёма, тем чаще они сталкиваются, тем выше вероятность химической реакции .

* О том, что такое «моль», читай в уроке 29.1.

Поэтому при измерении скоростей химических процессов используют молярную концентрацию веществ в реагирующих смесях.

Молярная концентрация вещества показывает, сколько молей его содержится в 1 литре раствора

Итак, чем больше молярная концентрация реагирующих веществ, тем больше частиц в единице объёма, тем чаще они сталкиваются, тем выше (при прочих равных условиях) скорость химической реакции. Поэтому основным законом химической кинетики (это наука о скорости химических реакций) является закон действующих масс .

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Для реакции типа А + В →… математически этот закон можно выразить так:

Если реакция более сложная, например, 2A + B → или, что тоже самое А + А + В → …, то

Таким образом, в уравнении скорости появился показатель степени « два » , который соответствует коэффициенту 2 в уравнении реакции. Для более сложных уравнений большие показатели степеней, как правило, не используют. Это связано с тем, что вероятность одновременного столкновения, скажем, трёх молекул А и двух молекул В крайне мала. Поэтому многие реакции протекают в несколько стадий, в ходе которых сталкивается не более трёх частиц, и каждая стадия процесса протекает с определённой скоростью. Эту скорость и кинетическое уравнение скорости для неё определяют экспериментально.

Вышеприведённые уравнения скорости химической реакции (3) или (4) справедливы только для гомогенных реакций, т. е. для таких реакций, когда реагирующие вещества не разделяет поверхность. Например, реакция происходит в водном растворе, и оба реагирующих вещества хорошо растворимы в воде или для любой смеси газов.

Другое дело, когда происходит гетерогенная реакция. В этом случае между реагирующими веществами имеется поверхность раздела, например, углекислый газ реагирует с водным раствором щёлочи. В этом случае любая молекула газа с равной вероятностью может вступить в реакцию, поскольку эти молекулы быстро и хаотично двигаются. А частицы жидкого раствора? Эти частицы двигаются чрезвычайно медленно, и те частицы щёлочи, которые находятся «на дне», практически не имеют шансов вступить в реакцию с углекислым газом, если раствор не перемешивать постоянно. Реагировать будут только те частицы, которые «лежат на поверхности». Значит, для гетерогенных реакций -

скорость реакции зависит от величины площади поверхности раздела, которая увеличивается при измельчении.

Поэтому очень часто реагирующие вещества измельчают (например, растворяют в воде), пищу тщательно пережёвывают, а в процессе приготовления - растирают, пропускают через мясорубку и т. д. Не измельчённый пищевой продукт практически не усваивается!

Таким образом, с максимальной скоростью (при прочих равных условиях) протекают гомогенные реакции в растворах и между газами, (если эти газы реагируют при н. у.), причём в растворах, где молекулы располагаются «рядом», а измельчение такое же, как в газах (и даже больше!), - скорость реакции выше.

Задание ЕГЭ. Какая из реакций протекает с наибольшей скоростью при комнатной температуре:

  1. углерода с кислородом;
  2. железа с соляной кислотой;
  3. железа с раствором уксусной кислоты
  4. растворов щёлочи и серной кислоты.

В данном случае нужно найти, какой процесс является гомогенным.

Следует отметить, что скорость химической реакции между газами или гетерогенной реакции, в которой участвует газ, зависит и от давления, поскольку при увеличении давления газы сжимаются, и концентрация частиц увеличивается (см. формулу 2). На скорость реакций, в которых газы не участвуют, изменение давления влияния не оказывает.

Задание ЕГЭ. На скорость химической реакции между раствором кислоты и железом не оказывает влияния

  1. концентрация кислоты;
  2. измельчение железа;
  3. температура реакции;
  4. увеличение давления.

И наконец, скорость реакции зависит и от реакционной способности веществ. Например, если с веществом реагирует кислород, то при прочих равных условиях, скорость реакции будет выше, чем при взаимодействии этого же вещества с азотом. Дело в том, что реакционная способность кислорода заметно выше, чем у азота. Причину этого явления мы рассмотрим в следующей части Самоучителя (урок 14).

Задание ЕГЭ. С большей скоростью идёт химическая реакция между соляной кислотой и

  1. медью;
  2. железом;
  3. магнием;
  4. цинком.

Следует отметить, что далеко не каждое столкновение молекул приводит к их химическому взаимодействию (химической реакции). В газовой смеси водорода и кислорода при обычных условиях происходит несколько миллиардов столкновений в секунду. Но первые признаки реакции (капельки воды) появятся в колбе только через несколько лет. В таких случаях говорят, что реакция практически не идёт . Но она возможна , иначе чем объяснить тот факт, что при нагревании этой смеси до 300 °C колба быстро запотевает, а при температуре 700 °C прогремит страшный взрыв! Недаром смесь водорода и кислорода называют «гремучим газом».

Вопрос. Как вы полагаете, почему скорость реакции так резко возрастает при нагревании?

Скорость реакции возрастает потому, что, во-первых, увеличивается число столкновений частиц, а во-вторых, увеличивается число активных столкновений. Именно активные соударения частиц приводят к их взаимодействию. Для того чтобы произошло такое соударение, частицы должны обладать определённым запасом энергии.

Энергия, которой должны обладать частицы, для того чтобы произошла химическая реакция, называется энергией активации.

Эта энергия расходуется на преодоление сил отталкивания между внешними электронами атомов и молекул и на разрушение «старых» химических связей.

Возникает вопрос: как повысить энергию реагирующих частиц? Ответ простой - повысить температуру, поскольку при повышении температуры возрастает скорость движения частиц, а, следовательно, их кинетическая энергия.

Правило Вант-Гоффа* :

при повышении температуры на каждые 10 градусов скорость реакции возрастает в 2–4 раза.

ВАНТ-ГОФФ Якоб Хендрик (30.08.1852–1.03.1911) - голландский химик. Один из основателей физической химии и стереохимии. Нобелевская премия по химии № 1 (1901).

Следует заметить, что это правило (не закон!) было установлено экспериментально для реакций, «удобных» для измерения, то есть для таких реакций, которые протекали не слишком быстро и не слишком медленно и при температурах, доступных экспериментатору (не слишком высоких и не слишком низких).

Вопрос . Как вы полагаете, как можно быстрее приготовить картофель: отварить его или обжарить в слое масла?

Для того чтобы как следует уяснить себе смысл описываемых явлений, можно сравнить реагирующие молекулы с группой учеников, которым предстоит прыгать в высоту. Если им поставлен барьер высотой 1 м, то ученикам придётся как следует разбежаться (повысить свою «температуру»), чтобы преодолеть барьер. Тем не менее всегда найдутся ученики («неактивные молекулы»), которые взять этот барьер не смогут.

Что делать? Если придерживаться принципа: «Умный в гору не пойдёт, умный гору обойдёт», то следует просто опустить барьер, скажем, до 40 см. Тогда любой ученик сможет преодолеть барьер. На молекулярном уровне это означает: для того чтобы увеличить скорость реакции, нужно уменьшить энергию активации в данной системе .

В реальных химических процессах эту функцию выполняет катализатор.

Катализатор - это вещество, которое изменяет скорость химической реакции, оставаясь при этом неизменным к концу химической реакции.

Катализатор участвует в химической реакции, взаимодействуя с одним или несколькими исходными веществами. При этом образуются промежуточные соединения, и изменяется энергия активации. Если промежуточное соединение более активно (активный комплекс), то энергия активации понижается, а скорость реакции увеличивается.

Например, реакция между SO 2 и О 2 происходит очень медленно, при нормальных условиях практически не идёт . Но в присутствии NO скорость реакции резко возрастает. Сначала NO очень быстро реагирует с O 2:

полученный диоксид азота быстро реагирует с оксидом серы (IV):

Задание 5.1. Покажите на этом примере, какое вещество является катализатором, а какое - активным комплексом.

И наоборот, если образуются более пассивные соединения, то энергия активации может возрасти настолько, что реакция при данных условиях практически происходить не будет. Такие катализаторы называются ингибиторами .

На практике применяются оба типа катализаторов. Так особые органические катализаторы - ферменты - участвуют абсолютно во всех биохимических процессах: переваривании пищи, сокращении мышц, дыхании. Без ферментов невозможно существование жизни!

Ингибиторы необходимы для того, чтобы защитить металлические изделия от коррозии, жиросодержащие пищевые продукты от окисления (прогоркания). Некоторые лекарства также содержат ингибиторы, которые угнетают жизненные функции микроорганизмов и тем самым уничтожают их.

Катализ может быть гомогенным и гетерогенным. Примером гомогенного катализа служит действие NO (это катализатор) на процесс окисления диоксида серы. Примером гетерогенного катализа может служить действие нагретой меди на спирт:

Эта реакция идёт в две стадии:

Задание 5.2. Определите, какое вещество в этом случае является катализатором? Почему этот вид катализа называется гетерогенным?

На практике чаще всего используется гетерогенный катализ, где катализаторами служат твёрдые вещества: металлы, их оксиды и др. На поверхности этих веществ имеются особые точки (узлы кристаллической решётки), где, собственно и происходит каталитическая реакция. Если эти точки закрыть посторонними веществом, то катализ прекращается. Это вещество, губительное для катализатора, называется каталитическим ядом . Другие вещества - промоторы - наоборот, усиливают каталитическую активность.

Катализатор может изменить направление химической реакции, то есть, меняя катализатор, можно получать разные продукты реакции. Так, из спирта C 2 H 5 OH в присутствии оксидов цинка и алюминия можно получить бутадиен, а в присутствии концентрированной серной кислоты - этилен.

Таким образом, в ходе химической реакции изменяется энергия системы. Если в ходе реакции энергия выделяется в виде теплоты Q , такой процесс называется экзотермическим :

Для эндо термических процессов теплота поглощается , т. е. тепловой эффект Q < 0 .

Задание 5.3. Определить, какой из предложенных процессов экзотермический, а какой - эндотермический:

Уравнение химической реакции, в котором указан тепловой эффект , называется термохимическим уравнением реакции. Для того чтобы составить такое уравнение, необходимо рассчитать тепловой эффект на 1 моль реагирующего вещества.

Задача. При сжигании 6 г магния выделилось 153,5 кДж теплоты. Составить термохимическое уравнение этой реакции.

Решение. Составим уравнение реакции и укажем НАД формулами, что дано:

Составив пропорцию, найдём искомый тепловой эффект реакции:

Термохимическое уравнение этой реакции:

Такие задачи приведены в заданиях большинства вариантов ЕГЭ! Например.

Задание ЕГЭ. Согласно термохимическому уравнению реакции

количество теплоты, выделившейся при сжигании 8 г метана, равно:

Обратимость химических процессов. Принцип Ле-Шателье

* ЛЕ ШАТЕЛЬЕ Анри Луи (8.10.1850–17.09.1936) - французский физико-химик и металловед. Сформулировал общий закон смещения равновесия (1884).

Реакции бывают обратимыми и необратимыми.

Необратимыми называют такие реакции, для которых не существует условий, при которых возможен обратный процесс.

Примером таких реакций могут служить реакции, которые происходят при скисании молока, или когда сгорела вкусная котлета. Как невозможно пропустить мясной фарш назад через мясорубку (и получить снова кусок мяса), также невозможно «реанимировать» котлету или сделать свежим молоко.

Но зададим себе простой вопрос: является ли необратимым процесс:

Для того чтобы ответить на этот вопрос, попробуем вспомнить, можно ли осуществить обратный процесс? Да! Разложение известняка (мела) с целью получить негашёную известь СаО используется в промышленном масштабе:

Таким образом реакция является обратимой, так как существуют условия, при которых с ощутимой скоростью протекают оба процесса:

Более того, существуют условия, при которых скорость прямой реакции равна скорости обратной реакции .

В этих условиях устанавливается химическое равновесие. В это время реакция не прекращается, но число полученных частиц равно числу разложившихся частиц. Поэтому в состоянии химического равновесия концентрации реагирующих частиц не изменяются . Например, для нашего процесса в момент химического равновесия

знак означает равновесная концентрация.

Возникает вопрос, что произойдёт с равновесием, если повысить или понизить температуру, изменить другие условия? Ответить на подобный вопрос можно, зная принцип Ле-Шателье :

если изменить условия (t, p, c), при которых система находится в состоянии равновесия, то равновесие сместится в сторону того процесса, который противодействует изменению .

Другими словами, равновесная система всегда противится любому воздействию извне, как противится воле родителей капризный ребёнок, который делает «всё наоборот».

Рассмотрим пример. Пусть установилось равновесие в реакции получения аммиака:

Вопросы. Одинаково ли число молей реагирующих газов до и после реакции? Если реакция идёт в замкнутом объёме, когда давление больше: до или после реакции?

Очевидно, что данный процесс происходит с уменьшением числа молекул газов, значит, давление в ходе прямой реакции уменьшается. В обратной реакции - наоборот, давление в смеси увеличивается .

Зададим себе вопрос, что произойдёт, если в этой системе повысить давление? По принципу Ле-Шателье пойдёт та реакция, которая «делает наоборот», т. е. понижает давление. Это - прямая реакция: меньше молекул газа - меньше давление.

Итак, при повышении давления равновесие смещается в сторону прямого процесса, где давление понижается, так как уменьшается число молекул газов.

Задание ЕГЭ. При повышении давления равновесие смещается вправо в системе:

Если в результате реакции число молекул газов не меняется, то изменение давления на положение равновесия не оказывает влияние.

Задание ЕГЭ. Изменение давления оказывает влияние на смещение равновесия в системе:

Положение равновесия этой и любой другой реакции зависит от концентрации реагирующих веществ: увеличивая концентрацию исходных веществ и уменьшая концентрацию полученных веществ, мы всегда смещаем равновесие в сторону прямой реакции (вправо).

Задание ЕГЭ.

сместится влево при:

  1. повышении давления;
  2. понижении температуры;
  3. повышении концентрации СО;
  4. понижении концентрации СО.

Процесс синтеза аммиака экзотермичен, то есть сопровождается выделением теплоты, то есть повышением температуры в смеси.

Вопрос. Как сместится равновесие в этой системе при понижении температуры ?

Рассуждая аналогично, делаем вывод : при понижении температуры равновесие сместится в сторону образования аммиака, так как в этой реакции теплота выделяется, а температура повышается.

Вопрос. Как изменится скорость химической реакции при понижении температуры?

Очевидно, что при понижении температуры резко понизится скорость обеих реакций, т. е. придётся очень долго ждать, когда же установится желаемое равновесие. Что делать? В этом случае необходим катализатор . Он хотя и не влияет на положение равновесия , но ускоряет наступление этого состояния.

Задание ЕГЭ. Химическое равновесие в системе

смещается в сторону образования продукта реакции при:

  1. повышении давления;
  2. повышении температуры;
  3. понижении давления;
  4. применении катализатора.

Выводы

Скорость химической реакции зависит от:

  • природы реагирующих частиц;
  • концентрации или площади поверхности раздела реагирующих веществ;
  • температуры;
  • наличия катализатора.

Равновесие устанавливается, когда скорость прямой реакции равна скорости обратного процесса. В этом случае равновесная концентрация реагирующих веществ не меняется. Состояние химического равновесия зависит от условий и подчиняется принципу Ле-Шателье.

7.1. Гомогенные и гетерогенные реакции

Химические вещества могут находиться в разных агрегатных состояниях, при этом их химические свойства в разных состояниях одинаковы, однако активность отличается (что на прошлой лекции было показано на примере теплового эффекта химической реакции).

Рассмотрим различные комбинации агрегатных состояний, в которых могут находиться два вещества А и Б.

A (г.), Б (г.)

A (тв.), Б (тв.)

A (ж.), Б (тв.)

смешиваются

A(тв.), Б (г.)

A (ж.), Б (г.)

смешиваются

(раствор)

гетерогенная

гетерогенная

гетерогенная

гомогенная

гетерогенная

гетерогенная

гомогенная

Hg(ж.) + HNO3

H2 O + D2 O

Fe + O2

H2 S + H2 SO4

CO + O2

Фазой называется область химической системы, в пределах которой все свойства системы постоянны (одинаковы) или непрерывно меняются от точки к точке. Отдельными фазами являются каждое из твердых веществ, кроме того существуют фазы раствора и газа.

Гомогенной называетсяхимическая система , в которой все вещества находятся в одной фазе (в растворе или в газе). Если фаз несколько, то система называется

гетерогенной.

Соответственно химическая реакция называетсягомогенной , еслиреагенты находятся в одной фазе. Еслиреагенты находятся в разных фазах, тохимическая реакция называетсягетерогенной .

Нетрудно понять, что поскольку для возникновения химической реакции требуется контакт реагентов, то гомогенная реакция происходит одновременно во всем объеме раствора или реакционного сосуда, тогда как гетерогенная реакция происходит на узкой границе между фазами - на поверхности раздела фаз. Таким образом, чисто теоретически гомогенная реакция происходит быстрее, чем гетерогенная.

Таким образом, мы переходим к понятию скорость химической реакции .

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

7.2. Скорость химической реакции

Раздел химии, который изучает скорости и механизмы химических реакций является разделом физической химии и называется химической кинетикой .

Скоростью химической реакции называется изменение количества вещества в единицу времени в единице объема реагирующей системы (для гомогенной реакции) или на единице площади поверхности (для гетерогенной реакции).

Таким образом, если объем

или площадь

поверхности раздела фаз

не изменяются, то выражения для скоростей химических реакций имеют вид:

hom o

Отношение изменения количества вещества к объему системы можно интерпретировать как изменение концентрации данного вещества.

Отметим, что для реагентов в записи выражения для скорости химической реакции ставят знак «минус», так как концентрация реагентов уменьшается, а скорость химической реакции – вообще-то величина положительная.

Дальнейшие умозаключения базируются на простых физических соображениях, которые рассматривают химическую реакцию как следствие взаимодействия нескольких частиц.

Элементарной (или простой) называют химическую реакцию, происходящую в одну стадию. Если стадий несколько, то подобные реакции называют сложными, или составными, или брутто-реакциями.

В 1867 году для описания скорости химической реакции был предложен закон действующих масс : скорость элементарной химической реакции пропорциональная концентрациям реагирующих веществ в степенях стехиометрических коэффициентов.n A +m B P,

A, B – реагенты, P – продукты, n ,m – коэффициенты.

W =k n m

Коэффициент k называется константой скорости химической реакции,

характеризует природу взаимодействующих частиц и не зависит от концентрации частиц.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Величины n иm называютсяпорядком реакции по веществу А и B соответственно, а

их сумма (n +m ) –порядком реакции .

Для элементарных реакций порядок реакции может быть 1, 2 и 3.

Элементарные реакции с порядком 1 называют мономолекулярными, с порядком 2 – бимолекулярными, с порядком 3 – тримолекулярными по числу участвующих молекул. Элементарных реакций выше третьего порядка неизвестно – расчеты показывают, что одновременная встреча четырех молекул в одной точке слишком невероятное событие.

Поскольку сложная реакция состоит из некоторой последовательности элементарных реакций, то её скорость может быть выражена через скорости отдельных стадий реакции. Поэтому для сложных реакций порядок может быть любым , в том числе, дробным или нулевым (нулевой порядок реакции говорит о том, что реакция происходит с постоянной скоростью и не зависит от концентрации реагирующих частицW =k ).

Самую медленную из стадий сложного процесса обычно называют лимитирующей стадией (скоростьлимитирующей стадией).

Представьте себе, что большое количество молекул пошли в бесплатный кинотеатр, но на входе стоит контролер, который проверяет возраст каждой молекулы. Поэтому в двери кинотеатра заходит поток вещества, а в кинозал молекулы проникают по одной, т.е. очень медленно.

Примерами элементарных реакций первого порядка являются процессы термического или радиоактивного распада, соответственно константа скорости k характеризует либо вероятность разрыва химической связи, либо вероятность распада в единицу времени.

Примеров элементарных реакций второго порядка очень много – это наиболее привычный нам способ течения реакций – частица А налетела на частицу B, произошло какое-то превращение и что-то там получилось (обратите внимание, что продукты в теории ни на что не влияют – все внимание уделяется только реагирующим частицам).

Напротив, элементарных реакций третьего порядка довольно мало, так как трём частицам одновременно встретиться удается довольно редко.

В качестве иллюстрации посмотрим предсказательную силу химической кинетики.

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

Кинетическое уравнение первого порядка

(иллюстративный дополнительный материал)

Рассмотрим гомогенную реакцию первого порядка, константа скорости которой равна k , начальная концентрация вещества A равна [A]0 .

По определению скорость гомогенной химической реакции равна

K [ A ]

изменению концентрации в единицу времени. Раз вещество A –

реагент, ставим знак «минус».

Такое уравнение называется дифференциальным (есть

производная)

[ A ]

Для его решения в левую часть переносим величины

концентраций, а в правую – времени.

Если равны производные двух функций, то сами функции

должны отличаться не более, чем на константу.

Для решения данного уравнения берут интеграл левой части (по

концентрации) и правой части (по времени). Чтобы не пугать

ln[ A ] = −kt +C

слушателей, ограничимся ответом.

Значок ln – натуральный логарифм, т.е. число b, такое что

= [ A ] ,e = 2,71828…

ln[ A ]- ln0 = - kt

Константу C находят из начальных условий:

при t = 0 начальная концентрация равна [A]0

[ A ]

Раз логарифм –

это степень числа, используем свойства степеней

[ A ]0

e a− b=

Теперь избавимся от противного логарифма (см. определение

логарифма на 6-7 строчек выше),

для чего возведем число

в степень левой части уравнения и правой части уравнения.

[ A ]

E − kt

Умножим на [A]0

[ A ]0

Кинетическое уравнение первого порядка.

[ A ]= 0 × e − kt

На основании

полученного кинетического уравнения первого

порядка может

рассчитана

концентрация вещества

в любой момент времени

Для целей нашего курса данный вывод носит ознакомительный характер, для того чтобы продемонстрировать Вам применение математического аппарата для расчета хода химической реакции. Следовательно, грамотный химик не может не знать математику. Учите математику!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. График зависимости концентрации реагентов и продуктов от времени может быть качественно изображен следующим образом (на примере необратимой реакции первого порядка)

Факторы, которые влияют на скорость реакции

1. Природа реагирующих веществ

Например, скорость реакции следующих веществ: H2 SO4 , CH3 COOH, H2 S, CH3 OH – с гидроксид-ионом будет различаться в зависимости от прочности связи H-O. Для оценки прочности данной связи можно использовать величину относительного положительного заряда на атоме водорода: чем больше заряд, тем легче будет идти реакция.

2. Температура

Жизненный опыт подсказывает нам, что скорость реакции от температуры зависит и увеличивается с ростом температуры. Например, процесс скисания молока быстрее происходит при комнатной температуре, а не в холодильнике.

Обратимся к математическому выражению закона действующих масс.

W =k n m

Раз левая часть этого выражения (скорость реакции) от температуры зависит, следовательно, правая часть выражения также зависит от температуры. При этом концентрация, разумеется, от температуры не зависит: например, молоко сохраняет свою жирность 2,5% и в холодильнике, и при комнатной температуре. Тогда, как говаривал Шерлок Холмс оставшееся решение и есть верное, каким бы странным оно ни казалось: от температуры зависит константа скорости!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Зависимость константы скорости реакции от температуры выражается посредством уравнения Аррениуса:

− E a

k = k0 eRT ,

в котором

R = 8,314 Дж·моль-1 ·К-1 – универсальная газовая постоянная,

E a – энергия активации реакции (см. ниже), её условно считают не зависящей от температуры;

k 0 – предэкспоненциальный множитель (т.е. множитель, который стоит перед экспонентойe ), величина которого тоже почти не зависит от температуры и определяется, в первую очередь, порядком реакции.

Так, величина k0 составляет примерно для реакции первого порядка 1013 с-1 , для реакции второго порядка – 10 -10 л·моль-1 ·с-1 ,

для реакции третьего порядка – 10 -33 л2 ·моль-2 ·с-1 . Эти значения запоминать не обязательно.

Точные значения k0 для каждой реакции определяют экспериментально.

Понятие энергии активации становится ясным из следующего рисунка. Фактически энергия активации представляет собой энергию, которой должна обладать реагирующая частица, для того, чтобы реакция произошла.

При этом если мы нагреваем систему, то энергия частиц повышается (пунктирный график), тогда как переходное состояние (≠) остается на прежнем уровне. Разница в энергии между переходным состоянием и реагентами (энергия активации) сокращается, а скорость реакции согласно уравнению Аррениуса возрастает.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Кроме уравнения Аррениуса, существует уравнение Вант-Гоффа, которое

характеризует зависимость скорости реакции от температуры посредством температурного коэффициента γ:

Температурный коэффициент γ показывает, во сколько раз вырастет скорость химической реакции при изменении температуры на 10o .

Уравнение Вант-Гоффа:

T 2− T 1

W (T 2 )= W (T 1 )× γ10

Обычно коэффициент γ находится в диапазоне от 2 до 4. По этой причине химики часто пользуются приближением, что увеличение температуры на 20o приводит к возрастанию скорости реакции на порядок (т.е. в 10 раз).

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение вещества в единицу времени:

υ = ΔC / Δt.

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной , и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt).

Как заставить частицы чаще сталкиваться, т.е. как увеличить скорость химической реакции ?

1. Самый простой способ – повысить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетичекий барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что большинство реакций примерно одинаково увеличивают скорость (примерно в 2-4 раза) при повышении температуры на 10 о С. Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ). Точное значение температурного коэффициента определяется для каждой реакции.

Здесь v 2 — скорость реакции при температуре T 2 , v 1 — скорость реакции при температуре T 1 , γ — температурный коэффициент скорости реакции, коэффинциент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или арстворители испаряются при повышенной температуре и т.д., т.е. нарушаются условия проведения процесса.

2. Концентрация. Также повысить число эффективных соударений можно, изменив концентрацию реагирующих веществ . как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

C A и C B — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

N 2 + 3H 2 ↔ 2NH 3

закон действующих масс выглядит так:

Константа скорости реакции показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция осстоит из несольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии ).

3. Давление. Для газов концентрация напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

CaCO 3 + SiO 2 ↔ CaSiO 3 + CO 2

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

– это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно изобрать так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом . Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты - кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака :

N 2 + 3H 2 ↔ 2NH 3

В качестве катализатора используется пористое железо с примесями Al 2 O 3 и K 2 O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды ). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты . Ферментативные катализаторы действуют высокоэффективно и избирательно, с избарительностю 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами . Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоброт. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ. Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод кипящего слоя . Например , при производстве серной кислоты методом кипящег ослоя производят обжиг колчедана.

6. Природа реагирующих веществ . На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ. Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества. Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Последние материалы раздела:

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...

Конспект урока по окружающему миру на тему: «Режим дня II
Конспект урока по окружающему миру на тему: «Режим дня II

Тема Режим дня Учебная задача Цель темы научиться планировать распорядок дня Сформировать понятие о режиме дня школьника Показать...