Реакция соединения кислорода и водорода. Химические свойства водорода: особенности и применение

Водород. Свойства, получение, применение.

Историческая справка

Водород – первый элемент ПСХЭ Д.И. Менделеева.

Русское название водорода указывает, что он «рождает воду»; латинское «гидрогениум» означает то же самое.

Впервые выделение горючего газа при взаимодействии некоторых металлов с кислотами наблюдали Роберт Бойль и его современники в первой половине XVI века.

Но водород был открыт лишь в 1766 году английским химиком Генри Кавендишем, который установил, что при взаимодействии металлов с разбавленными кислотами выделяется некий «горючий воздух». Наблюдая горение водорода на воздухе, Кавендиш установил, что в результате появляется вода. Это было в 1782 году.

В 1783 году году французский химик Антуан-Лоран Лавуазье выделил водород путем разложения воды раскаленным железом. В 1789 году водород был выделен при разложении воды под действием электрического тока.

Распространенность в природе

Водород – главный элемент космоса. Например, Солнце на 70 % своей массы состоит из водорода. Атомов водорода во Вселенной в несколько десятков тысяч раз больше, чем всех атомов всех металлов, вместе взятых.

В земной атмосфере тоже есть немного водорода в виде простого вещества – газа состава Н 2 . Водород намного легче воздуха, и поэтому его находят в верхних слоях атмосферы.

Но гораздо больше на Земле связанного водорода: ведь он входит в состав воды, самого распространенного на нашей планете сложного вещества. Водород, связанный в молекулы, содержат и нефть, и природный газ, многие минералы и горные породы. Водород входит в состав всех органических веществ.

Характеристика элемента водорода.

Водород имеет двойственную природу, по этой причине в одних случаях водород помещают в подгруппу щелочных металлов, а в других – в подгруппу галогенов.


  • Электронная конфигурация 1s 1 . Атом водорода состоит из одного протона и одного электрона.

  • Атом водорода способен терять электрон и превращаться в катион H + , и в этом он сходен со щелочными металлами.

  • Атом водорода также может присоединять электрон, образуя при этом анион Н - , в этом отношении водород сходен с галогенами.

  • В соединениях всегда одновалентен

  • СО: +1 и -1.

Физические свойства водорода

Водород – это газ, без цвета, вкуса и запаха. В 14,5 раз легче воздуха. Мало растворим в воде. Обладает высокой теплопроводностью. При t= –253 °С – сжижается, при t= –259 °С – затвердевает. Молекулы водорода настолько малы, что способны медленно диффундировать через многие материалы – резину, стекло, металлы, что используется при очистке водорода от других газов.

Известны 3 изотопа водорода: - протий, - дейтерий, - тритий. Основную часть природного водорода составляет протий. Дейтерий входит в состав тяжелой воды, которой обогащены поверхностные воды океана. Тритий – радиоактивный изотоп.

Химические свойства водорода

Водород – неметалл, имеет молекулярное строение. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Энергия связи в молекуле водорода составляет 436 кДж/моль, что объясняет низкую химическую активность молекулярного водорода.


  1. Взаимодействие с галогенами. При обычной температуре водород реагирует лишь со фтором:
H 2 + F 2 = 2HF.

С хлором - только на свету, образуя хлороводород, с бромом реакция протекает менее энергично, с йодом не идет до конца даже при высоких температурах.


  1. Взаимодействие с кислородом – при нагревании, при поджигании реакция протекает со взрывом: 2H 2 + O 2 = 2H 2 O.
Водород горит в кислороде с выделением большого количества тепла. Температура водородно-кислородного пламени 2800 °С.

Смесь из 1 части кислорода и 2 частей водорода – «гремучая смесь», наиболее взрывоопасна.


  1. Взаимодействие с серой – при нагревании H 2 + S = H 2 S.

  2. Взаимодействие с азотом. При нагревании, высоком давлении и в присутствии катализатора:
3H 2 + N 2 = 2NH 3 .

  1. Взаимодействие с оксидом азота (II). Используется в очистительных системах при производстве азотной кислоты: 2NO + 2H 2 = N 2 + 2H 2 O.

  2. Взаимодействие с оксидами металлов. Водород – хороший восстановитель, он восстанавливает многие металлы из их оксидов: CuO + H 2 = Cu + H 2 O.

  3. Сильным восстановителем является атомарный водород. Он образуется из молекулярного в электрическом разряде в условиях низкого давления. Высокой восстановительной активностью обладает водород в момент выделения , образующийся при восстановлении металла кислотой.

  4. Взаимодействие с активными металлами . При высокой температуре соединяется с щелочными и щелочно-земельными металлам и образуя белые кристаллические вещества – гидриды металлов, проявляя свойства окислителя: 2Na + H 2 = 2NaH;
Ca + H 2 = CaH 2 .

Получение водорода

В лаборатории:


  1. Взаимодействие металла с разбавленными растворами серной и соляной кислот,
Zn + 2HCl = ZnCl 2 + H 2 .

  1. Взаимодействие алюминия или кремния с водными растворами щелочей:
2Al + 2NaOH + 10H 2 O = 2Na + 3H 2 ;

Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 .

В промышленности:


  1. Электролиз водных растворов хлоридов натрия и калия или электролиз воды при присутствии гидроксидов:
2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH;

2Н 2 О = 2Н 2 + О 2 .


  1. Конверсионный способ. Вначале получают водяной газ, пропуская пары воды через раскаленный кокс при 1000 °С:
С + Н 2 О = СО + Н 2 .

Затем оксид углерода (II) окисляют в оксид углерода (IV), пропуская смесь водяного газа с избытком паров воды над нагретым до 400–450 °С катализатором Fe 2 O 3:

CO +H 2 O = CO 2 + H 2 .

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.


  1. Конверсия метана: CH 4 + H 2 O = CO + 3H 2 .
Реакция протекает в присутствии никелевого катализатора при 800 °С.

  1. Термическое разложение метана при 1200 °С: CH 4 = C + 2H 2 .

  2. Глубокое охлаждение (до -196 °С) коксового газа. При этой температуре конденсируются все газообразные вещества, кроме водорода.
Применение водорода

Применение водорода основано на его физических и химических свойствах:


  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);

  • кислородно-водородное пламя применяется для получения высоких температур при сварки металлов;

  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;

  • для получения аммиака и искусственного жидкого топлива, для гидрогенизации жиров.

Самый распространенный элемент во вселенной - это водород. В веществе звезд он имеет вид ядер - протонов - и является материалом для термоядерных процессов. Почти половина массы Солнца также состоит из молекул H 2 . Содержание его в земной коре достигает 0,15 % , а атомы присутствуют в составе нефти, природного газа, воды. Вместе с кислородом, азотом и углеродом он является органогенным элементом, входящим в состав всех живых организмов на Земле. В нашей статье мы изучим физические и химические свойства водорода, определим основные области его применения в промышленности и значение в природе.

Положение в периодической системе химических элементов Менделеева

Первый элемент, открывающий периодическую систему - это водород. Его атомная масса составляет 1,0079. Имеет два стабильных (протий и дейтерий) и один радиоактивный изотоп (тритий). Физические свойства определяются местом неметалла в таблице химических элементов. В обычных условиях водород (формула его - H 2) представляет газ, который почти в 15 раз легче воздуха. Строение атома элемента уникально: он состоит только из ядра и одного электрона. Молекула вещества двухатомная, частицы в ней соединяются с помощью ковалентной неполярной связи. Ее энергоемкость достаточно велика - 431 кДж. Это объясняет невысокую химическую активность соединения в обычных условиях. Электронная формула водорода такова: H:H.

Вещество имеет еще целый ряд свойств, аналогов которым нет среди других неметаллов. Рассмотрим некоторые из них.

Растворимость и теплопроводность

Лучше всего проводят тепло металлы, но водород по теплопроводности приближается к ним. Объяснение феномена заключается в очень большой скорости теплового движения легких молекул вещества, поэтому в водородной атмосфере нагретый предмет остывает в 6 раз быстрее, чем на воздухе. Соединение может хорошо растворяться в металлах, например, почти 900 объемов водорода могут быть поглощены одним объемом палладия. Металлы могут вступать с H 2 в химические реакции, в которых проявляются окислительные свойства водорода. В этом случае образуются гидриды:

2Na + H 2 =2 NaH.

В этой реакции атомы элемента принимают электроны от частиц металла, превращаясь в анионы с единичным отрицательным зарядом. Простое вещество H 2 в данном случае является окислителем, что для него обычно не характерно.

Водород как восстановитель

Объединяет металлы и водород не только высокая теплопроводность, но и способность их атомов в химических процессах отдавать собственные электроны, то есть окисляться. Например, основные оксиды вступают в реакции с водородом. Окислительно-восстановительная реакция заканчивается выделением чистого металла и образованием молекул воды:

CuO + H 2 = Cu + H 2 O.

Взаимодействие вещества с кислородом при нагревании приводит также к получению молекул воды. Процесс является экзотермическим и сопровождается выделением большого количества тепловой энергии. Если газовая смесь H 2 и O 2 реагирует в соотношении 2:1, то ее называют так как при поджигании она взрывается:

2H 2 + O 2 = 2H 2 O.

Вода является и играет важнейшую роль в формировании гидросферы Земли, климата, погоды. Она обеспечивает круговорот элементов в природе, поддерживает все жизненные процессы организмов - обитателей нашей планеты.

Взаимодействие с неметаллами

Наиболее важные химические свойства водорода - это его реакции с неметаллическими элементами. При нормальных условиях достаточно химически инертны, поэтому вещество может реагировать только с галогенами, например с фтором или хлором, являющимися наиболее активными среди всех неметаллов. Так, смесь фтора и водорода взрывается в темноте или на холоде, а с хлором - при нагревании или на свету. Продуктами реакции будут галогеноводороды, водные растворы которых известны как фторидная и хлоридная кислоты. С взаимодействует при температуре 450-500 градусов, давлении 30-100 мПа и в присутствии катализатора:

N₂ + 3H₂ ⇔ p, t, kat ⇔ 2NH₃.

Рассмотренные химические свойства водорода имеют большое значение для промышленности. Например, можно получить ценный химический продукт - аммиак. Он является основным сырьем для получения нитратной кислоты и азотных удобрений: карбамида, нитрата аммония.

Органические вещества

Между углеродом и водородом приводит к получению простейшего углеводорода - метана:

C + 2H 2 = CH 4.

Вещество является важнейшей составной частью природного и Они применяются в качестве ценного вида топлива и сырья для промышленности органического синтеза.

В химии соединений углерода элемент входит в состав огромного количества веществ: алканов, алкенов, углеводов, спиртов и т. д. Известно много реакций органических соединений с молекулами H 2 . Они носят общее название - гидрирование или гидрогенизация. Так, альдегиды можно восстановить водородом до спиртов, непредельные углеводороды - до алканов. Например, этилен превращается в этан:

C 2 H 4 + H 2 = C 2 H 6 .

Важное практическое значение имеют такие химические свойства водорода, как, например, гидрогенизация жидких масел: подсолнечного, кукурузного, рапсового. Она приводит к получению твердого жира - саломаса, который используют в производстве глицерина, мыла, стеарина, твердых сортов маргарина. Для улучшения внешнего вида и вкусовых качеств пищевого продукта в него добавляют молоко, животные жиры, сахар, витамины.

В нашей статье мы изучили свойства водорода и выяснили его роль в природе и жизни человека.

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

§3. Уравнение реакции и как его составить

Взаимодействие водорода с кислородом , как это установил еще сэр Генри Кавендиш , приводит к образованию воды. Давайте на этом простом примере поучимся составлять уравнения химических реакций .
Что получается из водорода и кислорода , мы уже знаем:

Н 2 + О 2 → Н 2 О

Теперь учтем, что атомы химических элементов в химических реакциях не исчезают и не появляются из ничего, не превращаются друг в друга, а соединяются в новых комбинациях , образуя новые молекулы. Значит, в уравнении химической реакции атомов каждого сорта должно быть одинаковое количество до реакции (слева от знака равенства) и после окончания реакции (справа от знака равенства), вот так:

2Н 2 + О 2 = 2Н 2 О

Это и есть уравнение реакции - условная запись протекающей химической реакции с помощью формул веществ и коэффициентов .

Это значит, что в приведенной реакции два моля водорода должны прореагировать с одним молем кислорода , и в результате получится два моля воды .

Взаимодействие водорода с кислородом - совсем не простой процесс. Он приводит к изменению степеней окисления этих элементов. Чтобы подбирать коэффициенты в таких уравнениях, обычно пользуются методом "электронного баланса ".

Когда из водорода и кислорода образуется вода, то это значит, что водород поменял свою степень окисления от 0 до +I , а кислород - от 0 до −II . При этом от атомов водорода к атомам кислорода перешло несколько (n) электронов:

Водород, отдающий электроны, служит здесь восстановителем , а кислород, принимающий электроны - окислителем .

Окислители и восстановители


Посмотрим теперь, как выглядят процессы отдачи и приема электронов по отдельности. Водород , встретившись с "грабителем"-кислородом, теряет все свое достояние - два электрона, и его степень окисления становится равной +I :

Н 2 0 − 2e − = 2Н +I

Получилось уравнение полуреакции окисления водорода.

А бандит-кислород О 2 , отняв последние электроны у несчастного водорода, очень доволен своей новой степенью окисления -II :

O 2 + 4e − = 2O −II

Это уравнение полуреакции восстановления кислорода.

Остается добавить, что и "бандит", и его "жертва" потеряли свою химическую индивидуальность и из простых веществ - газов с двухатомными молекулами Н 2 и О 2 превратились в составные части нового химического вещества - воды Н 2 О .

Дальше будем рассуждать следующим образом: сколько электронов отдал восстановитель бандиту-окислителю, столько тот и получил. Число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем .

Значит, надо уравнять число электронов в первой и второй полуреакциях. В химии принята такая условная форма записи уравнений полуреакций:

2 Н 2 0 − 2e − = 2Н +I

1 O 2 0 + 4e − = 2O −II

Здесь числа 2 и 1 слева от фигурной скобки - это множители, которые помогут обеспечить равенство числа отданных и принятых электронов. Учтем, что в уравнениях полуреакций отдано 2 электрона, а принято 4. Чтобы уравнять число принятых и отданных электронов, находят наименьшее общее кратное и дополнительные множители. В нашем случае наименьшее общее кратное равно 4. Дополнительные множители будут для водорода равны 2 (4: 2 = 2), а для кислорода - 1 (4: 4 = 1)
Полученные множители и будут служить коэффициентами будущего уравнения реакции:

2H 2 0 + O 2 0 = 2H 2 +I O −II

Водород окисляется не только при встрече с кислородом . Примерно так же на водород действуют и фтор F 2 , галоген и известный "разбойник", и казалось бы, безобидный азот N 2 :

H 2 0 + F 2 0 = 2H +I F −I


3H 2 0 + N 2 0 = 2N −III H 3 +I

При этом получается фтороводород HF или аммиак NH 3 .

В обоих соединениях степень окисления водорода становится равной +I , потому что партнеры по молекуле ему достаются "жадные" до чужого электронного добра, с высокой электроотрицательностью - фтор F и азот N . У азота значение электроотрицательности считают равным трем условным единицам, а у фтора вообще самая высокая электроотрицательность среди всех химических элементов - четыре единицы. Так что немудрено им оставить бедняжку-атом водорода без всякого электронного окружения.

Но водород может и восстанавливаться - принимать электроны. Это происходит, если в реакции с ним будут участвовать щелочные металлы или кальций, у которых электроотрицательность меньше, чем у водорода.

Наиболее известным и наиболее изученным соединением кислорода является его оксид H 2 O – вода. Чистая вода представляет собой бесцветную прозрачную жидкость без запаха и вкуса. В толстом слое имеет голубовато-зеленоватый цвет.

Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

Из всех жидких и твердых веществ вода обладает наибольшей удельной теплоемкостью. Благодаря этому факту вода является аккумулятором теплоты в различных организмах.

При нормальном давлении температура плавления льда 0 0 С (273 0 К), температура кипения воды +100 0 С (373 0 К). Это аномально высокие значения. При Т 0 +4 0 С вода имеет небольшую плотность, равную 1 г/мл. Выше или ниже этой температуры плотность воды меньше 1 г/мл. Эта особенность отличает воду от всех других веществ, плотность которых с понижением t 0 увеличивается. При переходе воды их жидкого состояния в твердое состояние происходит увеличение объема: из каждых 92 объемов жидкой воды образуется 100 объемов льда. С увеличением объема плотность уменьшается, поэтому, будучи легче воды, лед всегда всплывает на поверхность.

Исследования строения воды показали, что молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород. Валентный угол равен 104, 27. Молекула воды полярна – электронная плотность смещена к атому кислорода. Такая полярная молекула может взаимодействовать с другой молекулой с образованием более сложных агрегатов как за счет взаимодействия диполей, так и путем образования водородных связей. Это явление получило название ассоциации воды. Ассоциация молекул воды в основном определяется образованием между ними водородных связей. Молекулярная масса воды в состоянии пара равна 18 и отвечает ее простейшей формуле – Н 2 О. В остальных случаях молекулярная масса воды в кратное число раз больше восемнадцати (18).

Полярность и малые размеры молекулы приводят к тому, что она обладает сильными гидратирующими свойствами.

Диэлектрическая проницаемость воды настолько велика (81), что она оказывает мощное ионизирующее действие на растворенные в ней вещества, вызывая диссоциацию кислот, солей и оснований.

Молекула воды способна присоединиться к различным ионам, образуя гидраты. Эти соединения характеризуются специфическим стрением, напоминая комплексные соединения.

Одним из важнейших продуктов присоединения является ион гидроксония – Н 3 О, который образуется вследствие присоединения иона Н + к неподеленной паре электронов атома кислорода.

Вследствие этого присоединения образующийся ион гидроксония приобретает заряд +1.

Н + + Н 2 О Н 3 О +

Такой процесс возможен в системах, где содержатся вещества, отщепляющие ион водорода.

Вода, как на холоде, так и при нагревании активно взаимодействует со многими металлами, стоящими в ряду активности до водорода. В этих реакциях образуются соответствующие им оксиды или гидроксиды и вытесняется водород.:

2 Fe + 3 HOH = Fe 2 O 3 + 3 H 2

2 Na + 2 HOH = 2 NaOH + H 2

Ca + 2 HOH = Ca (OH) 2 + H

Вода довольно активно присоединяется к основным и кислотным оксидам, образуя соответствующие гидроксиды:

CaO + H 2 O = Ca (OH) 2 – основание

P 2 O 5 + 3 H 2 O = 2 H 3 PO 4 – кислота

Вода, которая присоединена в этих случаях, называется конституционной (в отличие от кристаллизационной в кристаллогидратах).

Вода реагирует с галогенами, в этом случае образуется смесь кислот:

H 2 + HOH HCl + HClO

Наиболее важным свойством воды является ее растворяющая способность.

Вода – самый распространенный растворитель в природе и технике. Большинство химических реакций проводится в воде. Но, пожалуй, наибольшее значение имеют биологические и биохимические процессы, происходящие в растительном и животном организмах с участием белков, жиров, углеводов и других веществ в водной среде организма.

Второе соединение водорода с кислородом – пероксид водорода H 2 O 2 .

Структурная формула Н – О – О – Н, молекулярный вес – 34.

Латинское название Hydrogenii peroxydum.

Это вещество было открыто в 1818 году французским ученым Луи-Жаком Тенаром, который изучал действие различных минеральных кислот на бария пероксид (BaO 2). В природе пероксид водорода образуется в процессе окисления. Наиболее удобным и современным способом получения H 2 O 2 является электролитический способ, который и используется в промышленности. В качестве исходных веществ используют серную кислоту или аммония сульфат.

Современными физико-химическими методами установлено, что оба атома кислорода в пероксиде водорода связаны непосредственно друг с другом неполярной ковалентной связью. связи же между атомами водорода и кислорода (вследствие смещения общих электронов в сторону кислорода) полярны. Поэтому молекула H 2 O 2 также полярна. Между молекулами H 2 O 2 возникает водородная связь, что приводит к их ассоциации с энергией связи О – О, равной 210 кДж, это значительно меньше энергии связи Н – О (470 кДж).

Раствор перекиси водорода – прозрачная бесцветная жидкость, без запаха или со слабым своеобразным запахом, слабокислой реакции. Быстро разлагается под действием света, при нагревании, при соприкосновении с щелочью, окисляющими и восстанавливающими веществами, выделяя кислород. Происходит реакция: H 2 O 2 = H 2 O + O

Малая устойчивость молекул H 2 O 2 обусловлена непрочностью связи О – О.

Хранят его в посуде из темного стекла и в прохладном месте. При действии на кожу концентрированных растворов перекиси водорода образуются ожоги, причем обожженное место болит.

ПРИМЕНЕНИЕ: в медицине применяют 3 % раствор перекиси водорода как кровоостанавливающее средство, дезинфицирующее и дезодорирующее средство для промываний и полосканий при стоматите, ангине, гинекологических заболеваниях и др.

При соприкосновении с ферментом каталазой (из крови, гноя, тканей) действует атомарный кислород в момент выделения. Действие H 2 O 2 кратковременное. Ценность препарата заключается в том, что продукты его разложения безвредны для тканей.

ГИДРОПЕРИТ – комплексное соединение перекиси водорода с мочевиной. Содержание перекиси водорода составляет около 35 %. Применяют как антисептическое средство вместо перекиси водорода.

Одним из основных химических свойств H 2 O 2 является его окислительно-восстановительные свойства. Степень окисления кислорода в H 2 O 2 равна -1, т.е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0). Поэтому перекись водорода обладает свойствами как окислителя, так и восстановителя, т.е. проявляет окислительно-восстановительную двойственность. Следует отметить, что окислительные свойства H 2 O 2 выражены гораздо сильнее, чем восстановительные и проявляются они в кислой, щелочной и нейтральной средах. Например:

2 KI + H 2 SO 4 + H 2 O 2 = I 2 + K 2 SO 4 + 2 H 2 O

2 I - - 2ē → I 2 0 1 – в-ль

H 2 O 2 + 2 H + + 2ē → 2 H 2 O 1 – ок-ль

2 I - + H 2 O 2 + 2 H + → I 2 + 2 H 2 O

Под действием сильных окислителей H 2 O 2 проявляет восстановительные свойства:

2 KMnO 4 + 5 H 2 O 2 + 3 H 2 SO 4 = 2 MnSO 4 + 5 O 2 + K 2 SO 4 + 8 H 2 O

MnO 4 - + 8H + + 5ē → Mn +2 + 4 H 2 O 2 – ок-ль

H 2 O 2 - 2ē → O 2 + 2 H + 5 – в-ль

2 MnO 4 - + 5 H 2 O 2 + 16 H + → 2 Mn +2 + 8 H 2 O + 5 O 2 + 10 H +

Выводы:

1. Кислород -самый распространенный элементна Земле.

В природе кислород встречается в двух аллотропных видоизменениях: O 2 – дикислород или «обычный кислород» и О 3 – трикислород (озон).

2.Аллотропия – образование разных простых веществ одним элементом.

3.Аллотропные видоизменения кислорода: кислород и озон.

4.Соединения кислорода с водородом -вода и пероксид водорода .

5.Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

6.При Т 0 +4 0 С вода имеет плотность, равную 1 г/мл.

7.Молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород.

8.Валентный угол равен 104, 27

9.Молекула воды полярна – электронная плотность смещена к атому кислорода.

12.Сера. Характеристика серы, исходя из ее положения в периодической системе, с точки зрения теории строения атома, возможные степени окисления, физические свойства, распространение в природе,биологическая роль, способы получения, химические свойства. . Применение серы и её соединений в медицине и народном хозяйстве.

СЕРА:

А) нахождение в природе

Б) биологическая роль

В) применение в медицине

Сера широко распространена в природе и встречается как в свободном состоянии (самородная сера), так и в виде соединений – FeSe (пирит), CuS, Ag 2 S, PbS, CaSO 4 и др. Входит в состав различных соединений, содержащихся в природных углях, нефтях и природных газах.

Сера принадлежит к числу элементов, имеющих важное значение для жизненных процессов, т.к. она входит в состав белковых веществ. Содержание серы в организме человека составляет 0, 25 %. Входит в состав аминокислот: цистеина, глютатиона, метионина и др.

Особенно много серы в белках волос, рогов, шерсти. Кроме того, сера является составной частью биологически активных веществ организма: витаминов и гормонов (н-р, инсулина).

В виде соединений сера обнаружена в нервной ткани, в хрящах, костях и в желчи. Она участвует в окислительно-восстановительных процессах организма.

При недостатке серы в организме наблюдается хрупкость и ломкость костей, выпадение волос.

Сера содержится в крыжовнике, винограде, яблоках, капусте, луке репчатом, ржи, горохе, ячмене, гречихе, пшенице.

Рекордсмены: горох 190, соя 244 %.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...