Проверочная работа классификация химических реакций. Контрольная работа по темам "Классификация химических реакций

В каждой окислительно-восстановительной реакции, в том числе в реакции

Zn + CuSO 4 = ZnSO 4 + Cu (1)

участвуют две окислительно-восстановительные пары - восстановитель (Zn) и его окисленная форма (Zn 2+); окислитель (Cu 2+) и его восстановленная форма (Cu). Мерой окислительно-восстановительной способности данной пары является окислительно-восстановительный или электродный потенциал, который обозначают , где Ox – окисленная форма, Red – восстановленная форма (например, , ). Измерить абсолютное значение потенциала невозможно, поэтому измерения осуществляют относительно эталона, например стандартного водородного электрода.

Стандартный водородный электрод состоит из платиновой пластинки, покрытой тонким порошком платины, погруженной в раствор серной кислоты с концентрацией ионов водорода, равной 1 моль/л. Электрод омывают током газообразного водорода под давлением 1,013 · 10 5 Па при температуре 298 К. На поверхности платины протекает обратимая реакция, которую можно представить в виде:

2H + + 2 Û H 2 .

Потенциал такого электрода принимают за нуль: В (размерность потенциала – Вольт).

Стандартные потенциалы измерены или рассчитаны для большого числа окислительно-восстановительных пар (полуреакций) и приведены в таблицах. Например, . Чем больше значение , тем более сильным окислителем является окисленная форма (Оx) данной пары. Чем меньше значение потенциала, тем более сильным восстановителем является восстановленная форма (Red) окислительно-восстановительной пары.

Ряд металлов, расположеных в порядке увеличения их стандартных электродных потенциалов, называют электрохимическим рядом напряжений металлов (рядом активности металлов):

Li Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb H Bi Cu Ag Hg Au

E 0 < 0 E 0 =0 E 0 > 0

Начинается ряд наиболее активными металлами (щелочными), а завершается «благородными», т.е. трудноокисляемыми металлами. Чем левее расположены в ряду металлы, тем более сильными восстановительными свойствами они обладают, они могут вытеснять из растворов солей металлы, стоящие правее. Металлы, расположенные до водорода, вытесняют его из растворов кислот (кроме HNO 3 и H 2 SO 4 конц).

В тех случаях когда система находится в нестандартных условиях, значе-

,

где – потенциал системы при нестандартных условиях, В;

– потенциал системы при стандартных условиях, В;

R – универсальная газовая постоянная (8,31 Дж/моль К);

T – температура, К;

n – число электронов, участвующих в процессе;

F – число Фарадея (96500 К/моль);

А, в – произведение концентраций (моль/л) окисленной и восстановленной форм участников процесса, возведенных в степень стехиометрических коэффициентов.

Концентрации твердых веществ и воды принимают за единицу.

При температуре 298 К, после подстановки численных значений R и F,

уравнение Нернста принимает вид:

. (2)

Так, для полуреакции

Û

уравнение Нернста

Используя значения электродных потенциалов, можно определить направление самопроизвольного протекания окислительно-восстановительной реакции. В ходе ОВР электроны всегда перемещаются от пары, содержащей восстановитель, к паре, содержащей окислитель. Обозначим

Электродный потенциал пары, содержащей окислитель;

В основе определения направления самопроизвольного про­текания окислительно-восстановительных реакций лежит сле­дующее правило:

Окислительно-восстановительные реакции самопроизволь­но протекают всегда в сторону превращения сильного окис­лителя в слабый сопряженный восстановитель или силь­ного восстановителя в слабый сопряженный окислитель.

Это правило аналогично правилу, определяющему направление протекания кислотно-основных превращений.

Количественной мерой окислительно-восстановительной способности данной сопряженной окислительно-восстановительной пары является вели­чина ее восстановительного потенциала ф, которая зависит от:

Природы окисленной и восстановленной формы данной сопряжен­ной пары;

Соотношения концентраций окисленной и восстановленной фор­мы данной сопряженной пары;

Температуры.

В тех случаях, когда в процессе превращения окислителя или восстановителя участвуют ионы Н + или ОН-, (р зависит также и от рН раствора. Значение, которое принимает ф при стандартных ус­ловиях: концентрация всех компонентов, участвующих в реакции, включая ионы воды Н + (в кислой среде) и ОН- (в щелочной среде), равна 1 моль/л, температура 298 К, - называется стандартным восстановительным потенциалом и обозначается (ф°. Величина ф° является количественной характеристикой окислительно-восста­новительных свойств данной сопряженной окислительно-восста­новительной пары при стандартных условиях.

Способа определения абсолютного значения потенциалов для сопряжен­ных окислительно-восстановительных пар не существует. Поэтому пользу­ются относительными величинами (разд. 25.2), характеризующими потен­циалы сопряженных пар относительно эталонной пары потенциал которой при стандартных условиях принят условно равным нулю

Положительное значение ф° имеют окислительно-восстановительные пары, в которых окисленная форма присоединяет электроны легче, чем катион водорода в эталонной паре. Отрицательное значение ф° имеют окислительно-восстановительные пары, в которых окисленная форма при­соединяет электроны труднее, чем Н+ в эталонной паре. Следовательно, чем больше (т. е. положительнее) значение ф° данной сопряженной окисли­тельно-восстановительной пары, тем сильнее выражены ее окислительные свойства, а восстановительные свойства - соответственно слабее.

В табл. 9.1 приведены стандартные значения потенциалов некоторых сопряженных окислительно-восстановительных пар.


В условиях, отличных от стандартных, величина ф рассчиты­вается по уравнению Нернста (разд. 25.2, 25.3).

Суть окислительно-восстановительных реакций заключается в конкуренции за присоединение электрона между участвую­щими окислителями. При этом электрон присоединяет та со­пряженная пара, окисленная форма которой сильнее его удер­живает. Это отражает следующая схема: *


Сопоставляя потенциалы сопряженных пар, участвующих в окислительно-восстановительной реакции, можно заранее опре­делить направление, в котором будет самопроизвольно проте­кать та или иная реакция.

При взаимодействии двух сопряженных окислительно-вос­становительных пар окислителем всегда будет окислен­ная форма той пары, потенциал которой имеет более по­ложительное значение.


Пример. В реакционной смеси содержатся две сопряженные окислительно-восстановительные пары:

Так как первая пара содержит более сильный окислитель (I2), чем вторая пара (S), то в стандартных условиях самопроизвольно пойдет реакция, в которой окисли­телем будет I2, а восстановителем

Для определения направления окислительно-восстановитель­ной реакции можно также пользоваться величиной ее ЭДС.


ЭДС окислительно-восстановительной реакции в стандарт­ных условиях (Е°) численно равна разности стандартных потенциалов сопряженных окислительно-восстанлвительных пар, участвующих в реакции:

Условием самопроизвольного протекания окислительно-восстановительной реакиии является положительное зна­чение ее ЭДС, т. е.


С учетом этого условия для самопроизвольно протекающей окислительно-восстановительной реакции значение ф окисли­тельно-восстановительной пары, выступающей окислителем, должно быть больше ф второй окислительно-восстановительной пары, играющей роль восстановителя в данной реакции. Так, в рассмотренном выше примере:
Если Е° = 0, то равновероятно протекание окислительно-востановительной реакции как в прямом, так и в обратном на­правлении, и это является условием возникновения химическо­го равновесия для окислительно-восстановительного процесса. Количественной характеристикой протекания любых обратимых процессов является константа равновесия К, которая связана с изменением стандартной энергии Гиббса (разд. 5.5) следующим соотношением:

С другой стороны, изменениестандартной энергии Гиббса свя­зано с ЭДС окислительно-восстановительной реакции соотношением:

где F = 96 500 Кл/моль; z - число электронов, принимающих участие в элементарном процессе.

Из этих двух уравнении следует:

Пользуясь этими выражениями, можно рассчитать константу равновесия любой окислительно-восстановительной реакции, но реальное значение она будет иметь только для тех реакций, ЭДС которых менее 0,35 В, так как при больших ЭДС реакции рассматриваются как практически необратимые. Поскольку ЭДС отдельных стадий окислительно-восстановительных реак­ций, протекающих в живых системах, обычно не превышает 0,35 В (| Е° | < 0,35 В), то большинство из них практически об­ратимы, причем обратимость процесса выражена тем сильнее, чем величина | Е° | ближе к нулю.

Окислительно-восстановительные реакции лежат в основе ме­таболизма любых организмов. В случае аэробного метаболизма основным окислителем является молекулярный кислород, посту­пающий в процессе дыхания, а восстановителем - органические соединения, поступающие с продуктами питания. При анаэроб­ном метаболизме в его основе лежат преимущественно окисли­тельно-восстановительные реакции, в которых и окислителями, и восстановителями являются органические соединения.

По величинам стандартных окислительно-восстановительных потенциалов (Е 0) можно судить о направлении окислительно-восстановительной реакции.

Например . Для уравнения реакции

MnO 4 — + 5Fe 2+ + 8H + → Mn 2+ + 5Fe 3+ + 4H 2 O

самопроизвольно прямая реакция будет протекать, если стандартный потенциал окислительно-восстановительной пары окислителя больше, чем стандартный потенциал окислительно-восстановительной пары восстановителя, а ΔЕ > 0 . Табличные значения стандартных электродных потенциалов для следующих окислительно-восстановительных пар:

Е 0 (MnO 4 — /Mn 2+) = 1,51 B; Е 0 (Fe 3+ /Fe 2+) = 0,77 B.

Величина 1,51 В > 0,77 В, следовательно, при контакте перманганат ион MnO 4 — выступает в роли окислителя, а катион железа Fe 2+ — восстановителя, протекает прямая реакция. Вычисляем ΔЕ этой реакции:

ΔЕ = Е 0 ок – Е 0 восст = 1,51 – 0,77 = 0,74 В.

Величина ΔЕ положительная, реакция протекает самопроизвольно в прямом направлении. Если ΔЕ окажется отрицательной величиной, то реакция протекает в обратном направлении в стандартных условиях.

Например. Может ли хлор Cl 2 окислить бромид-ион Br — до брома Br 2 ?

Выпишем из справочной таблицы значения стандартных потенциалов окислительно-восстановительных пар:

Е 0 (Cl 2 /2Cl —) = 1,36 B; Е 0 (Br 2 /2Br —) = 1,07 В.

Из значений стандартных потенциалов видно, что величина 1,36 В > 1,07 В, следовательно, хлор будет окислять бромид–ион до брома по уравнению реакции:

Cl 2 + 2Br — = 2Cl — + Br 2

Стандартные окислительно-восстановительные потенциалы (Е 0)
по отношению к потенциалу стандартного водородного электрода при 25 °С

Элемент Высшая степень окисления +ne — Низшая степень окисления E 0 , В
As As↓ + 3H +
As↓ + 3H 2 OH
AsO 2 + 3H + H 3
AsO 4 + 2H +
AsO 4 3- + 2H 2 O
+3e
+3e
+3e
+2e
+2e
AsH 3
AsH 3 + 3OH —
As↓ + 2H 2 OH
AsO 2 +2H 2 O
AsO 2 — + 4OH —
-0,60
-1,43
+0,234
+0,56
-0,71
Br Br 2
BrO 3 — + 5H +
BrO 3 — + 2H 2 O
+2e
+4e
+4e
2Br —
HBrO + 2H 2 O
BrO — + 4OH —
+1,087
+1,45
+0,54
2BrO 3 — + 12H +
2 BrO 3 — + 6H 2 O
BrO 3 — + 6H +
BrO 3 — + 3H 2 O
+10e
+10e
+6e
+6e
Br 2 + 6H 2 O
Br 2 + 12OH —
Br — + 3H 2 O
Br — + 6OH —
+1,52
+0,50
+1,45
+0,61
C C 6 H 4 O 2 +2H +
Хинон
HCHO + 2H +
HCOOH + 2H +
CO 2 + 2H +
2CO 2 + 2H +
+2e
+2e
+2e
+2e
+2e
C 6 H 4 (OH) 2
Гдрохинон
CH 3 OH
HCHO + H 2 O
HCOOH
H 2 C 2 O 4
+0,699
+0,19
-0,01
-0,20
-0,49
Cl Cl 2 ↓
2ClO 3 — + 12H +
ClO 4 — + 2H +
2ClO 4 — + 16H +
ClO 4 — + 8H +
+2e
+10e
+2e
+14e
+8e
2Cl — Cl
2 ↓ + 6H 2 O
ClO 3 — + H 2 O
Cl 2 ↓ + 8H 2 O
Cl — + 4H 2 O
+1,359
+1,47
+1,19
+1,39
+1,38
Cr Cr 3+
Cr 3+
Cr 2+
Cr(OH) 3 ↓
Cr 2 O 7 2- + 14H +
CrO 4 2- + 4H 2 O
+e
+3e
+2e
+3e
+6e
+3e
Cr 2+
Cr↓
Cr↓
Cr↓ + 3OH —
2Cr 3+ + 7H 2 O
Cr(OH) 3 ↓
-0,41
-0,74
-0,91
-1,3
+1,33
-0,13
Cu Cu 2+
Cu +
Cu 2+
CuI↓
Cu(NH 3) 4 2+
+2e
+e
+e
+e
+2e
Cu↓
Cu↓
Cu +
Cu↓ + I —
Cu↓ + 4NH 3
+0,345
+0,531
+0,159
-0,185
-0,07
F F 2 +2e 2F — +2,77
Fe Fe 3+
Fe 3+
Fe 2+
Fe(CN) 6 3-
+e
+3e
+2e
+e
Fe 2+
Fe↓
Fe↓
Fe(CN) 6 4-
+0,771
-0,058
-0,473
+0,364
H 2H +
2H + (10 -7 M)
H 2
2H 2 O
H 2 O 2 + 2H +
+2e
+2e
+2e
+2e
+2e
H 2
H 2
2H —
H 2 + 2OH —
2H 2 O
0,0000
-0,414
-2,25
-0,828
+1,77
I I 2 ↓
I 2
I 3 —
2IO 3 — + 12H +
2IO 3 — + 6H 2 O
IO 3 — + 6H +
IO 3 — + 3H 2 O
+2e
+2e
+2e
+10e
+10e
+6e
+6e
2I —
2I —
3I —
I 2 ↓ + 6H 2 O
I 2 ↓ + 12OH —
I — + 3H 2 O
I — + 6OH —
+0,536
+0,621
+0,545
+1,19
+0,21
+1,08
+0,26
K K + +e K↓ -2,923
Li Li + +e Li↓ -3,04
Mg Mg 2+ +2e Mg↓ -2,37
Mn Mn 3+
Mn 2+
+e
+2e
Mn 2+
Mn↓
+1,51
-1,17
MnO 2 ↓ + 4H +
MnO 4 2- + 2H 2 O
MnO 4 —
MnO 4 — + 4H +
MnO 4 — + 2H 2 O
MnO 4 — + 8H +
+2e
+2e
+e
+3e
+3e
+5e
Mn 2+ + 2H 2 O
MnO 2 ↓ + 4OH —
MnO 4 2-
MnO 2 ↓ + 2H 2 O
MnO 2 ↓ + 4OH —
Mn 2+ + 4H 2 O
+1,23
+0,58
+0,558
+1,69
+0,60
+1,51
Mo Mo 3+
H 2 MoO 4 + 6H +
MoO 4 2- + 4H 2 O
+3e
+6e
+6e
Mo↓
Mo↓ + 4H 2 O
Mo↓ + 8OH —
-0,20,0
-1,05
Na Na + +e Na↓ -2,713

1) Реакцией обмена является

а) BaO + HOH →; б) H2SO4 + Zn →; в) HNO3 + Ca(OH)2 →; г) N2 + O2 →

2) Обратимой реакцией является

а) HCl + KOH → KCl -+ H2O; б) N2 + O2 → 2NO;

в) C(тв.) + O2 → CO2; г) BaCl2 + 2AgNO3 → 2AgCl + Ba(NO3)2

3) Эндотермическими реакциями являются:

а) CaCO3 = CaO + CO2 -Q; б) 2H2O2 → 2Н3O + O2 +Q

в) N2 + O2 → 2NO -Q; г) 2SO2 + O2 → 2SO3 + Q

4) Катализатор - это …

а) замедлитель реакций, который вступает в реакцию с исходными веществами;

б) ускоритель реакций, который вступает в реакцию с исходными веществами;

в) ускоритель реакций, который не расходуется и в состав продуктов не входит;

5) Гомогенной реакцией является:

а) 2H2O2(ж) ↔ 2Н2O (ж) + O2(г) ; б) CH₄(г) + 2O₂(г) → CO₂(г) + 2H₂O(пар);

в) 2Al(тв) + 3Сl2(г) → 2AlСl3(тв); г) Сa(тв) + 2HCl(ж) → CaCl2(ж) + Н2(г)

6) Не окислительно-восстановительной реакцией является

а) 2С + О2 → 2СО; б) N2 + O2 → 2NO

в) BaO + SO2 → BaSO3; г) 2Al + 6HCl → 2AlCl3 + 3H2

7) Реакцией разложения является:

а) 2Mg + O2 → 2MgO; б) (CuOH)2CO3 = 2CuO + CO2 + H2O;

в) 3O2 → 2O3; г) CH₄ + 2O₂ → CO₂ + 2H₂O

8) Реакцией, протекающей без изменения состава веществ, является

а) N2 + O2 → 2NO; б) P4 ↔ 4P; в) 2С + О2 → 2СО; г) N2 + 3H2 → 2NH3

а) FeCl3 + NaOH →

в) Mg + HNO3 →

10) Вытеснение более активными металлами менее активных из их оксидов - это …

а) оксидирование; б) горение; в) металлотермия; г) металлопластика.

11) Правило Бертолле гласит:

а) Каждое чистое вещество независимо от способа его получения всегда имеет постоянный качественный и количественный состав.

б) Масса веществ, вступивших в реакцию, равна массе веществ, образующихся в результате неё.

в) Объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов реакции как небольшие целые числа равные стехиометрическим коэффициентам.

г) Реакции между растворами электролитов протекают до конца, если образуется осадок, газ или малодиссоциирующее вещество.

12) Охарактеризуйте химическую реакцию по всем признакам:

2H2O2(ж) ↔ 2Н3O (ж) + O2(г) + Q

Тест по теме «Классификация химических реакций»

1) Экзотермическими реакциями являются:

а) Mg + 1/2O2 → MgO +614 кДж; б) H2 + O2 → 2H2O -484 кДж;

в) г) CH₄ + 2O₂ → CO₂ + 2H₂O +891кДж; г) 2C + 2H2 → C2H4 -55 кДж

2) Ингибитор - это …

а) реагент, который замедляет или останавливает химическую реакцию;

б) реагент, который ускоряет химическую реакцию;

в) реагент, который отслеживает наличие в реакционной системе побочных продуктов;

г) средство контроля за протеканием химической реакции.

3) Реакцией замещения является

а) Na2O + HOH →; б) H2SO4 + Al →; в) AgNO3 + CaCl2 →; г) N2 + H2 →

4) Необратимой реакцией является:

а) K2CO3 + HCl → KCl -+ CO2 + H2O; б) N2 + O2 → 2NO;

в) SO2 + 1/2O2 → SO3; г) N2 + 3H2 → 2NH3

5) Окислительно-восстановительной реакцией является:

а) СO2 + Na2О → Na2СО3; б) 2Al + 6HCl → 2AlCl3 + 3H2

в) BaCl2 + K2SO4 → BaSO4 + 2KCl; г) 2HNO3 + CaO → Ca(NO3)2 + H2O

6) Гетерогенной реакцией является:

а) 2H2(г) + O2(г) ↔ 2Н2O (пар) ; б) CH₄(г) + 2O₂(г) → CO₂(г) + 2H₂O(пар);

в) Al(тв) + 3HCl(ж) → AlCl3(ж) + 1/2Н2(г) г) 2Al(тв) + 3I2(тв) → 2AlI3(тв)

7) Реакцией, протекающей без изменения состава веществ, является:

в) 3C2H2 → C6H6; г) S + O2 → SO2

8) Реакцией соединения является:

а) 2CrO + 1/2O2 → Cr2O3; б) (CuOH)2CO3 → 2CuO + CO2 + H2O;

в) P4 → 4P; г) C2H₄ + 3O₂ → 2CO₂ + 2H₂O

9) Допишите уравнения реакций и определите их тип (р.р., р.с., р.з., р.о.):

а) Na + HOH →

г) H3PO4 + NaOH→

10) Взаимодействие сильных кислоты и основания с образованием соли и воды - это …

а) выщелачивание; б) нейтрализация; в) окисление; г) кислотно-основное титрование.

11) Закон постоянства состава гласит:

а) Объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов реакции как небольшие целые числа равные стехиометрическим коэффициентам.

б) Реакции между растворами электролитов протекают до конца, если образуется осадок, газ или малодиссоциирующее вещество.

в) Каждое чистое вещество независимо от способа его получения всегда имеет постоянный качественный и количественный состав.

г) Масса веществ, вступивших в реакцию, равна массе веществ, образующихся в результате неё.

12) Охарактеризуйте химическую реакцию по всем признакам:

2SO2(г) + O2(г) ↔ 2SO3(г) + Q

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...