Презентация на тему "неорганические полимеры". Различные типы неорганических полимеров неорганические полимеры

НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ

Имеют неорг. главные цепи и не содержат орг. боковых радикалов. Главные цепи построены из ковалентных или ионно-ковалентных связей; в нек-рых Н. п. цепочка ионно-ковалентных связей может прерываться единичными сочленениями координац. характера. Структурная Н. п. осуществляется по тем же признакам, что и орг. или элементоорг. полиме-ров (см. Высокомолекулярные соединения). Среди природных Н. п. наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют типа алмаза или кварца. К образованию линейных Н. п. способны элементы верх. рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает. Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы. Элементы VIII гр. могут входить в главную цепь, образуя координац. Н. п. Последние, в принципе, отличны от орг. координационных полимеров, где система координац. связей образует лишь вторичную структуру. Мн. или соли металлов переменной валентности по макроскопич. св-вам похожи на сетчатые Н. п.

Длинные гомоатомные цепи (со степенью полимеризации п >= 100) образуют лишь и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны. Линейные углерода - кумулены =С=С=С=С= ... и кар-бин ЧС = СЧС = СЧ... (см. Углерод); кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы-соотв. графит и алмаз. Сера, и теллур образуют атомные цепочки с простыми связями и очень высокими п. Их имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Др. элементы, даже ближайшие соседи углерода по псриодич. системе-В и Si, уже неспособны к образованию гомоатомных цепей или циклич. олигомеров с п >= 20 (безотносительно к наличию или отсутствию боковых групп). Это обусловлено тем, что лишь атомы углерода способны образовывать друг с другом чисто ковалентные связи. По этой причине более распространены бинарные гетероцепные Н. п. типа [ЧМЧLЧ] n (см. табл.), где атомы М и L образуют между собой ионно-ковалентные связи. В принципе, гетероцепные линейные Н. п. не обязательно должны быть бинарными: регулярно повторяющийся участок цепи м. б. образован и более сложными комбинациями атомов. Включение в главную цепь атомов металлов дестабилизирует линейную структуру и резко снижает и.

КОМБИНАЦИИ ЭЛЕМЕНТОВ, ОБРАЗУЮЩИЕ БИНАРНЫЕ ГЕТЕРОЦЕПНЫЕ НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ ТИПА [ЧМЧLЧ] n (ОБОЗНАЧЕНЫ ЗНАКОМ +)

* Образует также неорг. полимеры состава [ЧВЧРЧ] n .

Особенности электронной структуры главных цепей гомо-цепных Н. п. делают их весьма уязвимыми при атаке нуклеоф. или электроф. агентами. Уже по одной этой причине относительно стабильнее цепи, содержащие в качестве компонента L или др. , соседний с ним по периодич. системе. Но и эти цепи нуждаются обычно в стабилизации, к-рая в прир. Н. п. связана с образованием сетчатых структур и с очень сильным межмол. взаимод. боковых групп (включая образование солевых мостиков), в результате к-рого большинство даже линейных Н. п. не-растворимы и по макроскопич. св-вам сходны с сетчатыми Н. п.

Практич. интерес представляют линейные Н. п., к-рые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т. п. Такие Н. п. могут быть термостойкими каучуками, стеклами, волокнообразующими и т. п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, . Нек-рые комбинации М и L образуют цепи, не имеющие аналогов среди орг. полимеров, напр. с широкой зоной проводимости и . Широкой зоной проводимости обладает , имеющий хорошо развитую плоскую или пространств. структуру. Обычным сверхпроводником при т-ре вблизи 0 К является полимер [ЧSNЧ] х ; при повышенных т-рах он утрачивает сверхпроводимость, но сохраняет полупроводниковые св-ва. Высокотемпературные сверхпроводящие Н. п. должны обладать структурой керамик, т. е. обязательно содержать в своем составе (в боковых группах) и кислород.

Переработка Н. п. в стекла, волокна, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие , позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Лит.: Энциклопедия полимеров, т. 2, М., 1974, с. 363-71; Бартенев Г. М., Сверхпрочные и высокопрочные неорганические стекла, М., 1974; Кор-шак В. В., Козырева Н. М., "Успехи химии", 1979, т. 48, в. 1, с. 5-29; Inorganic polymers, в кн.: Encyclopedia of polymer science and technology, v. 7, N. Y.-L.-Sydney, 1967, p. 664-91. С. Я. Френкель.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ" в других словарях:

    Полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп). В природе широко распространены трехмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав… …

    Полимеры, не содержащие в повторяющемся звене связей C C, но способные содержать органический радикал как боковые заместители. Содержание 1 Классификация 1.1 Гомоцепные полимеры … Википедия

    Полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп). В природе широко распространены трёхмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав… … Энциклопедический словарь

    Полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы (См. Макромолекула). Боковые (обрамляющие) группы обычно тоже неорганические; однако полимеры с органическими боковыми группами часто также относят к Н …

    Полимеры, макромолекулы к рых имеют неорганич. гл. цепи и не содержат боковых органич. радикалов (обрамляющих групп). Практич. значение имеет синтетич. полимер полифосфонитрилхлорид (полидихлорфссфазен) [ P(C1)2=N ]n. Из него получают др.… … Большой энциклопедический политехнический словарь

    Полимеры, молекулы к рых имеют неорганич. гл. цепи и не содержат органич. боковых радикалов (обрамляющих групп). В природе широко распространены трёхмерные сетчатые Н.п., к рые в виде минералов входят в состав земной коры (напр., кварц). В… … Естествознание. Энциклопедический словарь

    - (от поли... и греч. meros доля часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры… … Большой Энциклопедический словарь

    Ов; мн. (ед. полимер, а; м.). [от греч. polys многочисленный и meros доля, часть] Высокомолекулярные химические соединения, состоящие из однородных повторяющихся групп атомов, широко применяемые в современной технике. Природные, синтетические п.… … Энциклопедический словарь

    - (от греч. polymeres состоящий из многих частей, многообразный) химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы (См. Макромолекула)) состоят из большого числа… … Большая советская энциклопедия

Теоретически возможно существование неорганических полимеров, образованных химическими элементами III-VI групп системы элементов.

Наиболее важным химическим элементом для создания неорганических полимеров является кислород - самый распространенный на земле элемент. Он легко создает гетероцепные элементооксановые высокомолекулярные соединения, поэтому полиэлементооксаны являются основным классом гетероцепных безуглеродных, или неорганических, полимеров.

К неорганическим полимерам относят все безуглеродные полиэлементооксаны со связями типа Р-О, В-О, S-О, Si-О, А1-О и др., а также многие безуглеродные гетероядерные соединения типа боридов, сульфидов, силицидов, карбидов и др.

Общепринято, что к высокомолекулярным соединениям относятся вещества, состоящие из атомов, связанных в макромолекулярную структуру ковалентными связями. Установлено, что содержание ковалентных связей в неорганических полимерах составляет от 50 до 80%.

Макромолекулы неорганических полимеров могут быть не только гетероцепными, но и гомоатомными. Хорошо известны органические гомоатомные полимеры углерода - алмаз и графит, о которых говорилось выше (гл. 4).

Менее известны гомоатомные неорганические полимеры серы, селена, теллура. Гомоатомные полимеры серы имеют молекулярную массу от 5000 до 300 000, температуру стеклования 248-250 К и проявляют высокоэластические свойства при температуре 273-353 К. Но большинство химических элементов не способно к образованию устойчивых гомоатомных высокомолекулярных соединений.

Гетероцепные неорганические полимеры известны значительно шире. Благодаря своему строению они более стабильны и устойчивы к различным воздействиям.

Гетероцепные неорганические полимеры, так же как и органические, могут иметь линейное и сетчатое строение. К линейным относятся силикатные стекла на основе оксида кремния, полифосфаты и полибораты (соединения на основе солей полифосфорной и поли- борной кислот соответственно). Высокомолекулярную природу силикатов наш великий соотечественник Д.И. Менделеев предсказал еще в XIX в. и писал о кремнеземе как о полимере.

Другой неорганический гетероцепной полимер на основе диоксида кремния - кварц - имеет трехмерное сетчатое строение.

Хорошо известны другие природные неорганические полимерные материалы на основе силикатов - асбест, слюда, тальк. Разработаны технологии синтеза этих полимеров, причем технические характеристики искусственных материалов выше, чем природных.

Важнейшую группу неорганических гетероцепных полимерных материалов составляют керамики различного состава.

Что же позволяет считать эти материалы полимерными? Прежде всего, наличие высокой анизотропии макромолекулы и соединение атомов между собой прочными ковалентными связями. Наряду с этим для безуглеродных полимеров так же, как и для органических полимеров, неизвестно газообразное состояние. Так же как и органические высокомолекулярные соединения, безуглеродные полимеры делятся на термопласты (например, силикатные стекла) и реактопла- сты (например, оксидная керамика).

Растворы и расплавы неорганических полимеров по сравнению с растворами низкомолекулярных веществ имеют повышенную вязкость, которая возрастает с увеличением молекулярной массы. Сетчатые неорганические полимеры так же, как и сетчатые органические полимеры, не способны к растворению.

Неорганические полимерные материалы линейного строения способны находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. На рис. 17.1 показаны термомеханические кривые органических и неорганических полимеров. Кривые построены путем измерения при различных температурах угла кручения ф круглого стержня из исследуемого материала.

Из приведенных данных видно, что неорганические стекла, так же как и органические полимеры, имеют два температурных перехо-

Рис. 17.1. Термомеханические кривые органических и неорганических полимеров: 1 - оргстекла; 2- эбонита; 3, 4, 5 - силикатных стекол (свинцового, щелочного и малощелочного соответственно)

да, при которых их свойства (в данном случае угол закручивания стержня) резко изменяются, что связано с их переходами из стеклообразного в высокоэластическое и из высокоэластического в вязкотекучее состояние.

Многие неорганические полимеры имеют сетчатое строение и, как органические реактопласты, не могут проявить высокоэластич- ность. Для сетчатых неорганических полимеров, как и для органических, имеющих трехмерную сетку, понятие «макромолекула» теряет смысл, поскольку все их атомы соединены в единую сетчатую структуру, образующую гигантскую сверхмакромолекулу.

Технология получения неорганических высокомолекулярных соединений, так же как и органических, основана на полимеризации и поликонденсации. Синтез неорганических полимеров сетчатого строения и формование из них изделий происходят одновременно, так же как и при изготовлении изделий из реактопластов.

Пластификация неорганических полимеров производится низкомолекулярными веществами и позволяет снизить температуру стеклования, аналогично тому, как это происходит при пластификации органических полимеров органическими пластификаторами. В качестве пластификаторов неорганических полимеров используют воду, спирты, аммиак, газы - азот и кислород, позволяющие снизить уровень межмолекулярного взаимодействия и увеличить интервал между температурами стеклования и текучести.

Неорганические полимеры склонны к образованию надмолекулярных структур. Различными методами установлено, что в структуре стекол имеются микронеоднородности, обладающие строгой упорядоченностью. Один структурно-упорядоченный элемент в стекле приходится на объем 1(Г 28 см 3 . Размеры таких элементов, как правило, чрезвычайно малы (от 1 до 300 нм), поэтому существенного влияния на свойства стекол они не оказывают. В некоторых материалах с помощью зародышей кристаллизации специально создается двухфазная аморфно-кристаллическая структура, которая позволяет получать материалы с заданными свойствами.

На рис. 17.2 приведены фотографии микроструктуры неорганических полимеров на основе оксидов металлов, на которых отчетливо видны надмолекулярные образования, свидетельствующие о структурной упорядоченности этих материалов.

Рис. 17.2. Надмолекулярные структуры неорганических полимеров (х10 000): а - топливной таблетки U0 2 ; б - шпинели MgAl 2 0 4

Макромолекулы безуглеродных линейных полиэлементооксанов, так же как и органических полимеров, обладают гибкостью. Распространенное мнение об отсутствии гибкости у макромолекул неорганических полимеров основано на том, что большинство безуглеродных природных полимеров (силикатов) имеют трехмерную структуру, жестко ограничивающую сегментальную подвижность макромолекул.

Физические и химические свойства неорганических полимеров принципиально отличаются от свойств органических и элементоорганических полимеров, что является следствием различий в структуре главной цепи. Они обладают высокой прочностью и твердостью, тугоплавкостью и жаростойкостью, износостойкостью и отличными диэлектрическими свойствами, химически и биологически инертны.

Благодаря этим свойствам неорганические полимеры находят широкое применение в качестве огнеупорных, жаропрочных и сверхпрочных конструкционных материалов. Из них делают катализаторы и адсорбенты, клеи и герметики с высокой теплостойкостью, эти материалы применяются при изготовлении лазерного и электронного оборудования. Широко используются неорганические полимеры в качестве строительных материалов, а также в ортопедии и стоматологии. И это только начало.

Таблица 17.1. Прогноз развития исследований и разработок в области керамических материалов и стекла

Новые технологии и открытия

Области промышленности

Социальный или технический эффект

Научные принципы конвергенции неорганических, органических и биологических материалов

Производство энергетических установок; утилизация отходов; производство сельскохозяйственной продукции; создание био- функциональных и «интеллектуальных» материалов

Повышение безопасности энергетических установок (в том числе атомных); увеличение продолжительности здоровой жизни; создание новых технологий сельскохозяйственного производства, экологически здоровой среды обитания человека

Научные принципы стандарта рО для расплавов оксидных систем (по аналогии с pH для водных растворов); мониторинг оксидных расплавов

Принципиально новые технологии производства цемента, стекла, металлов

Сокращение энергозатрат на единицу продукции, снижение стоимости строительных материалов; разработка новых типов стекол и ситаллов; изменение условий жизни человека

Физико-химические процессы в системах с наноразмерами; теоретические представления, учитывающие размер как физико-химический фактор, и представления о «пятом» состоянии вещества

Новые технологии производства материалов; новые машины и оборудование; многофункциональные микропроцессоры

Промышленное производство дешевых и долговечных бытовых предметов; развитие городской инфраструктуры

Принципы структурно-энергетического моделирования строения и свойств материалов; программы компьютерного моделирования большинства конструкционных материалов, изделий и конструкций

Дизайн и конструирование новых машин и механизмов

Резкое изменение условий и содержания труда материаловедов и конструкторов, сокращение числа работающих в неблагоприятных условиях; автоматизированное производство материалов и механизмов

В табл. 17.1 приведены прогнозы развития исследований в области неорганических полимерных материалов, которые показывают, что это направление материаловедческой науки должно привести к революционным изменениям в области создания новой техники.

Дальнейшее развитие использования этих материалов связано с необходимостью снижения их стоимости и расширения объемов производства.

Контрольные вопросы

  • 1. Какие химические элементы могут образовывать неорганические полимерные материалы?
  • 2. Какими связями соединены атомы в неорганических полимерных материалах?
  • 3. Приведите примеры неорганических конструкционных материалов.
  • 4. Какими важнейшими свойствами, присущими высокомолекулярным соединениям, обладают неорганические полимеры?
  • 5. Какие физические состояния известны для неорганических полимеров?
  • 6. Как можно классифицировать неорганические полимеры по отношению к нагреванию?
  • 7. Можно ли пластифицировать неорганические полимеры?
  • 8. Применимо ли понятие о надмолекулярной структуре к неорганическим полимерам?
  • 9. Каковы отличительные свойства неорганических конструкционных материалов?

§ 12. ПОЛИМЕРЫ

В сознании любого человека, знающего основы естествознания, понятие «полимеры» ассоциируется с чем-то необыкновенно большим, крупным. В действительности это так и есть. Полимерами называют вещества, молекулы которых состоят из множества повторяющихся структурных звеньев, соединенных между собой химическими связями.
Повторяющийся структурный фрагмент в макромолекуле полимера называют элементарным звеном и в химической формуле записывают в круглых скобках. Число элементарных звеньев именуют степенью полимеризации. Поскольку степень полимеризации каждой конкретной молекулы полимера может варьироваться в значительных пределах, ее обозначают не числом, а подстрочным индексом n в формуле вещества. Например, химическую формулу одного из самых распространенных полимеров полиэтилена – записывают так: (–СН2–СН2–)n, где (–СН2–СН2–) – элементарное звено, n – степень полимеризации.
Вещество, из которого образуется полимер, называют мономером. По природе мономера различают неорганические и органические полимеры. Превращение мономера в полимер может осуществляться в ходе реакции полимеризации (в этом случае помимо полимера в результате реакции не образуетсяникаких других веществ) или реакции поликонденсации (в таких реакциях кроме полимера образуются также низкомолекулярные побочные продукты, например вода).
Приведем пример записи реакции полимеризации для получения полиэтилена: nСН2=СН2 → (–СН2–СН2–)n.
Примером реакции поликонденсации служит превращение моносахарида глюкозы в полисахарид крахмал:
nС6H12O6 → (C6H10O5)n + nH2O.
По происхождению различают природные полимеры, или биополимеры (те, которые создаются самой природой без участия человека), искусственные (это химически модифицированные природные полимеры) и синтетические полимеры (те, которые получают химическим путем).
«Везде пластмасса, никель – все не то…» (И.Бродский). Буквально на каждом шагу в повседневной жизни мы сталкиваемся с веществами полимерного строения: это строительные, отделочные, упаковочные, конструкционные, изоляционные материалы; детали машин и механизмов; одежда, ткани и обувь; декоративные, антикоррозионные и специальные покрытия; резинотехнические изделия, эластомеры и многое, многое другое.
Сама жизнь немыслима без природных высокомолекулярных веществ – биополимеров, к числу которых относятся белки, нуклеиновые кислоты (ДНК и РНК), полисахариды (крахмал, целлюлоза, гликоген, хитин и др.). Кратко охарактеризуем наиболее важные группы известных вам полимеров – пластмассы и волокна.
Пластмассы – это полимерные материалы, способные при нагревании приобретать заданную форму и сохранять ее после охлаждения.

Как правило, пластмасса представляет собой смесь нескольких веществ, а полимер – это лишь одно из них, но самое важное. Именно он связывает все компоненты пластмассы в единое, более или менее однородное целое. Поэтому полимер в составе пластмассы называют связующим. Понятно, что превращать в готовые изделия удобно те пластмассы, которые обратимо твердеют и размягчаются. Такие пластмассы называют термопластами, или термопластичными полимерами. К таким пластмассам относят полиэтилен, полистирол, поливинилхлорид, полиамиды. Если же в процессе формования изделия происходит сшивка макромолекул, и полимер, твердея, приобретает пространственную структуру, то такие пластмассы называют реактопластами, или термореактивными полимерами. К ним относятся фенолоформальдегидные, карбамидные и полиэфирные смолы. Обратно в вязкотекучее состояние такие полимеры вернуть нельзя.

Кроме связующего полимера, в состав пластмасс часто вводят разные добавки: наполнители, красители, а также вещества, повышающие механические свойства, термостойкость и устойчивость к старению. Наполнители не только значительно удешевляют пластмассы, но и придают им многие специфические свойства. Например, пластмассы с наполнителем в виде алмазной и карборундовой пыли – это абразивы, т.е. шлифовальный материал. Широкому применению пластмасс способствует низкая их стоимость, легкость переработки. По свойствам пластмассы часто не уступают металлам и сплавам, а иногда даже превосходят их.
Основные потребители пластмасс – это строительная индустрия, машиностроение, электротехника, транспорт, производство упаковочных материалов, товаров народного потребления (рис. 1).

Рис. 1. Области применения пластмасс
Понятие «полимеры» часто воспринимается как категория химическая, как нечто придуманное и синтезированное изобретателями-химиками. Однако многие полимеры встречаются в природе, и не в форме брошенных человеком и загрязняющих ее отработанных изделий, а как натуральные вещества, синтезированные растительными и животными организмами.
Так, растущее в Малой Азии дерево Liuamber orientalis выделяет пахучую смолу, называемую стираксом, которую еще 3000 лет назад древние египтяне использовали при бальзамировании умерших. Стиракс, так же, как и «драконова кровь», выделяемая малайской пальмой ротангом, представляет собой не что иное, как полистирол. Жук Abax ater в случае опасности выстреливает в атакующего жидкостью, состоящей, в основном, из мономерного метилметакрилата, который, полимеризуясь на теле врага, делает его неподвижным.

Основные пластмассы и области их применения приведены в таблице 1.

Пластмассы и их применение




Ко второй группе полимерных материалов относятся волокна.


Как и все полимеры, волокна бывают природные (натуральные), искусственные и синтетические .

Природные волокна по происхождению делят на растительные , животные и минеральные .

Волокна растительного происхождения можно подразделить на:

волокна, формирующиеся на поверхности семян (хлопок);
– волокна стеблей растений – лубяные волокна (лен, джут, пенька);
– волокна оболочек плодов (копра орехов кокосовой пальмы).
Наиболее важное волокно растительного происхождения – хлопковое – обладает хорошими механическими свойствами, износоустойчивостью, термостабильностью, умеренной гигроскопичностью. Оно применяется в производстве различных тканей и трикотажа, швейных ниток, ваты. Лен применяют для изготовления бельевых, платьевых и декоративных тканей. Лубяные волокна используют в производстве тканей, из которых изготавливают тару (мешки), канаты, веревки.

К волокнам животного происхождения относят шерсть и шелк.
Натуральная шерсть характеризуется невысокой прочностью, большой эластичностью. Применяют ее для изготовления тканей бытового и технического назначения, трикотажа, валяльно-войлочных изделий.
Натуральный шелк вырабатывают многочисленные гусеницы и пауки. Самый известный шелк выделяют шелковичные черви Bombyx mori (рис. 2).


Рис. 2. Тутовый шелкопряд. На открытке:
бабочка за откладкой яиц, гусеница, кокон
и кокон в разрезе (художник Л.В.Аристов)
Китайцам шелк был известен более чем за две с половиной тысячи лет до н.э. Секрет его изготовления охранялся государством, пока в 556 г. н.э. монахи из Европы не вывезли контрабандой из Китая яйца шелковичных червей, спрятав их в полые трости. Натуральный шелк – это очень дорогое волокно.
Например, в Японии шелковое кимоно стоит около 30 000 долларов. Раньше шелк окрашивали натуральными красителями, например, кошенилью в различные цвета: пурпурные, алые, лиловые и т.д. Такой шелк использовали для пошива одежды царствующих особ, священнослужителей, светских красавиц.
…И кажется лицо бледней
От лиловеющего шелка…
А.Ахматова
Единицей измерения шелка служит мумми. Слово это не имеет ничего общего с египетскими мумиями. Оно происходит от японского «момме». Мумми – это единица массы ткани (3,75 г), соотнесенная с одним квадратным метром ткани фабричного производства. Один квадратный метр большинства сортов шелка весит 16–22 мумми, однако некоторые китайские сорта весят только 4–8 мумми.

Химические волокна получают из растворов или расплавов волокнообразующих полимеров. Их подразделяют на следующие группы:
искусственные (вискозное, ацетатное и др.), которые получают из природных полимеров или продуктов их переработки, главным образом из целлюлозы и ее эфиров;
синтетические (капрон, лавсан, энант, найлон), которые получают из синтетических полимеров.
Рассмотрим еще одну группу полимеров, которую в обыденном сознании редко связывают с этим понятием. Это неорганические полимеры .
Такой неорганический полимер, как сера пластическая, нетрудно получить из кристаллической серы, выливая ее расплав в холодную воду. В результате получается резиноподобное вещество, строение которого можно отобразить так:


Элементарным звеном в этом полимере являются атомы серы.
Другие неорганические полимеры, имеющие атомную структуру, – это все аллотропные видоизменения углерода (в т.ч. алмаз и графит), селен и теллур цепочечного строения, красный фосфор, кристаллический кремний. Последний обладает полупроводниковыми свойствами и используется для изготовления солнечных батарей (рис. 3).



Рис. 3. Солнечная батарея на крыше жилого дома
Мы привели примеры простых веществ, имеющих полимерную атомную структуру. Еще более разнообразна группа неорганических полимеров – сложных веществ. Это, например, оксид кремния(IV):


Разновидностями этого полимера, который образует основную массу литосферы, являются кварц, кремнезем, горный хрусталь, агат (рис. 4).


Рис.4. Агат

Не менее распространен и такой важный для литосферы полимер, как оксид алюминия. Чаще всего оба эти полимера образуют минералы, имеющие общее название алюмосиликаты. К ним относятся, например, белая глина (каолин), полевые шпаты, слюда (рис. 5).



Рис. 5. Парагонит (слюда – природный слоистый минерал)

Почти все минералы и горные породы представляют собой природные полимеры.
Среди неорганических полимеров встречаются и волокна.
К минеральным волокнам относят асбест (рис. 6), издавна известный на Руси под названием «горный лен». Из него в «Каменном поясе» (так нередко называли Уральские горы) на предприятиях промышленников и предпринимателей Демидовых готовили несгораемое белье, которое они в качестве экзотических презентов дарили знатным людям, в том числе и императрице Екатерине Великой.


Асбест в наши дни используется для производства тепло- и огнезащитных химически стойких изделий: технических тканей, шифера, труб и др.

1. Что такое полимер, мономер, элементарное звено, степень полимеризации?
2. Какие биополимеры вы знаете? Охарактеризуйте их с использованием понятий, перечисленных в первом вопросе.
3. Что такое пластмассы? На какие группы по происхождению и по отношению к нагреванию они делятся? Приведите примеры.
4. Что такое полимеризация и поликонденсация? Сравните эти процессы. Приведите примеры. При ответе на этот вопрос используйте, в том числе, и знания по общей биологии.
5. Что такое волокна? На какие группы они делятся? Приведите примеры и расскажите о значении конкретных представителей каждой группы, используя возможности Интернета.
6. Приготовьте сообщение на тему: «Синтетические материалы и их роль в современной технике» с использованием ресурсов Интернета.
7. Какие неорганические полимеры вам известны? Что общего в их строении? Какую роль они играют в неживой природе?
8. Приготовьте сообщение на тему «Полимеры – природные минералы» с использованием ресурсов Интернета.
9. Запишите структурное звено кварца. Расскажите о разновидностях природных минералов, имеющих это структурное звено.
10. Что такое полупроводники? Чем они отличаются от проводников и диэлектриков? Какое значение имеют полупроводники в современной технике? Для ответа на эти вопросы воспользуйтесь ресурсами Интернета.
11. Подготовьте сообщение на тему «Шелк: история и развитие шелковой промышленности», используя возможности Интернета.

В природе существуют элементоорганические, органические и неорганические полимеры. К неорганическим относят материалы, главная цепь которых неорганическая, а боковые ответвления не являются углеводородными радикалами. К формированию полимеров неорганического происхождения наиболее склонны элементы III-VI групп периодической системы химических элементов.

Классификация

Органические и неорганические полимеры активно исследуются, определяются их новые характеристики, поэтому четкой классификации этих материалов еще не выработано. Впрочем, можно выделить определенные группы полимеров.

В зависимости от структуры:

  • линейные;
  • плоские;
  • разветвленные;
  • полимерные сетки;
  • трехмерные и другие.

В зависимости от атомов главной цепи, образующих полимер:

  • гомоцепные типа (-M-)n - состоят из одного вида атомов;
  • гетероцепные типа (-M-L-)n - состоят из различных видов атомов.

В зависимости от происхождения:

  • природные;
  • искусственные.

Для отнесения к неорганическим полимерам веществ, которые в твердом состоянии представляют собой макромолекулы, необходимо также наличие в них определенной анизотропии пространственного строения и соответствующих свойств.

Основные характеристики

Более распространенными являются гетероцепные полимеры, в которых происходит чередование электроположительных и электроотрицательных атомов, например B и N, P и N, Si и O. Получить гетероцепные неорганические полимеры (НП) можно с помощью реакций поликонденсации. Поликонденсация оксоанионов ускоряется в кислой среде, а поликонденсация гидратированных катионов - в щелочной. Поликонденсация может быть проведена как в растворе, так и в при наличии высокой температуры.

Многие из гетероцепных неорганических полимеров можно получить только в условиях высокотемпературного синтеза, например, непосредственно из простых веществ. Образование карбидов, которые являются полимерными телами, происходит при взаимодействии некоторых оксидов с углеродом, а также при наличии высокой температуры.

Длинные гомоцепные цепи (со степенью полимеризации n>100) образуют карбон и p-элементы VI группы: сера, селен, теллур.

Неорганические полимеры: примеры и применение

Специфика НП заключается в образовании полимерных с регулярной трехмерной структурой макромолекул. Наличие жесткого каркаса химических связей предоставляет таким соединениям значительную твердость.

Указанное свойство позволяет использовать в качестве неорганические полимеры. Применение этих материалов нашло широчайшее применение в промышленности.

Исключительная химическая и термическая стойкость НП является также ценным свойством. Например, армирующие волокна, изготовленные из органических полимеров, устойчивы на воздухе до температуры 150-220 ˚С. Между тем борное волокно и его производные остаются устойчивыми до температуры 650 ˚С. Именно поэтому неорганические полимеры являются перспективными для создания новых химически и термостойких материалов.

Практическое значение также имеют НП, которые одновременно являются и приближающимися по свойствам к органическим, и сохраняющими свои специфические свойства. К таким относят фосфаты, полифосфазены, силикаты, полимерные с различными боковыми группами.

Полимеры углерода

Задание: «Приведите примеры неорганических полимеров», - часто встречается в учебниках по химии. Целесообразно его выполнять с упоминанием самых выдающихся НП - производных углерода. Ведь сюда входят материалы с уникальными характеристиками: алмазы, графит и карбин.

Карбин - искусственно созданный, малоизученный линейный полимер с непревзойденными показателями прочности, не уступающими, а согласно ряду исследований и превосходящими графен. Впрочем, карбин - вещество таинственное. Ведь не все ученые признают его существование как самостоятельного материала.

Внешне выглядит как металло-кристаллический черный порошок. Имеет полупроводниковые свойства. Электропроводность карбина значительно увеличивается под действием света. Он не теряет этих свойств даже при температуре до 5000 ˚С, что намного выше, чем для других материалов подобного назначения. Получен материал в 60-х В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным и Ю.П. Кудрявцевым путем каталитического окисления ацетилена. Самое сложное было определить вид связей между атомами углерода. Впоследствии было получено вещество только с двойными связями между атомами углерода в Институте элементоорганических соединений АН СССР. Новое соединение назвали поликумулен.

Графит - в этом упорядоченность распространяется только в плоскости. Его слои соединены не химическими связями, а слабыми межмолекулярными взаимодействиями, поэтому он проводит тепло и ток и не пропускает свет. Графит и его производные - достаточно распространенные неорганические полимеры. Примеры их использования: от карандашей до атомной промышленности. Окисляя графит, можно получить промежуточные продукты окисления.

Алмаз - его свойства принципиально другие. Алмаз является пространственным (трехмерным) полимером. Все атомы углерода скрепляются между собой прочными ковалентными связями. Потому этот полимер является чрезвычайно прочным. Алмаз не проводит ток и тепло, имеет прозрачную структуру.

Полимеры бора

Если вас спросят о том, какие неорганические полимеры вам известны, смело отвечайте - полимеры бора (-BR-). Это достаточно обширный класс НП, широко применяемый в промышленности и науке.

Карбид бора - его формула правильнее выглядит так (B12C3)n. Его элементарная ячейка - ромбоэдрическая. Каркас образуют двенадцать ковалентно связанных атомов бора. А в середине его - линейная группа из трех ковалентно связанных атомов углерода. В результате образуется очень прочная конструкция.

Бориды - их кристаллы образованы подобно вышеописанному карбиду. Наиболее стойкий из них HfB2, который плавится только при температуре 3250 °C. Наибольшей химической стойкостью отмечается TaB2 - на него не действуют ни кислоты, ни их смеси.

Нитрид бора - его часто называют белым тальком за сходство. Это сходство действительно лишь внешнее. Структурно он аналогичен графиту. Получают его, нагревая бор или его оксид в атмосфере аммиака.

Боразон

Эльбор, боразон, киборит, кингсонгит, кубонит - сверхтвердые неорганические полимеры. Примеры их применения: изготовление абразивных материалов, обработка металлов. Это химически инертные вещества на основе бора. По твердости ближе прочих материалов к алмазам. В частности, боразон оставляет царапины на алмазе, последний тоже оставляет царапины на кристаллах боразона.

Впрочем, эти НП имеют несколько преимуществ перед натуральными алмазами: у них большая термостойкость (выдерживают температуру до 2000 °C, алмаз же разрушается при показателях в пределах 700-800 °C) и высокая устойчивость к механическим нагрузкам (они не такие хрупкие). Боразон был получен при температуре 1350 °C и давлении 62000 атмосфер Робертом Венторфом в 1957 году. Аналогичные материалы ленинградскими учеными были получены в 1963 году.

Неорганические полимеры серы

Гомополимер - эта модификация серы имеет линейную молекулу. Вещество не является устойчивым, при колебаниях температуры распадается на октаэдрические циклы. Образуется в случае резкого охлаждения расплава серы.

Полимерная модификация сернистого ангидрида. Очень похожа на асбест, имеет волокнистую структуру.

Полимеры селена

Серый селен - полимер со спиралевидными линейными макромолекулами, вложенными параллельно. В цепях атомы селена связаны ковалентно, а макромолекулы связаны молекулярными связями. Даже расплавленный или растворенный селен не распадается на отдельные атомы.

Красный или аморфный селен тоже полимер цепной, но малоупорядоченной структуры. В температурном промежутке 70-90 ˚С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние, чем напоминает органические полимеры.

Карбид селена, или горный хрусталь. Термически и химически устойчивый, достаточно прочный пространственный кристалл. Пьезоэлектрик и полупроводник. В искусственных условиях его получили при реакции и угля в электропечи при температуре около 2000 °C.

Прочие полимеры селена:

  • Моноклинный селен - более упорядоченный, чем аморфный красный, но уступает серому.
  • Диоксид селена, или (SiO2)n - представляет собой трехмерный сетчатый полимер.
  • Асбест - полимер оксида селена волокнистой структуры.

Полимеры фосфора

Существует много модификаций фосфора: белый, красный, черный, коричневый, фиолетовый. Красный - НП мелкокристаллического строения. Получается нагревом белого фосфора без доступа воздуха при температуре 2500 ˚С. Черный фосфор получен П. Бриджменом при следующих условиях: давление 200000 атмосфер при температуре 200 °C.

Фосфорнитридхлориды - соединения фосфора с азотом и хлором. Свойства этих веществ меняются с ростом массы. А именно уменьшается их растворимость в органических веществах. Когда молекулярная масса полимера достигает нескольких тысяч единиц, образуется каучукоподобное вещество. Это единственный достаточно термостойкий безуглеродный каучук. Он разрушается только при температуре свыше 350 °C.

Вывод

Неорганические полимеры в большинстве своем - вещества с уникальными характеристиками. Их применяют на производстве, в строительстве, для разработки инновационных и даже революционных материалов. По мере изучения свойств известных НП и создания новых, сфера их применения расширяется.

Слайд 2

НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп).

В природе широко распространены трехмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав земной коры (напр., кварц).

Слайд 3

В отличие от органических полимеров такие неорганические полимеры не могут существовать в высокоэластичном состоянии. Синтетически могут быть получены, напр., полимеры серы, селена, теллура, германия. Особый интерес представляет неорганический синтетический каучук - полифосфонитрилхлорид. Обладает значительной высокоэластической деформацией

Слайд 4

Главные цепи построены из ковалентных или ионно-ковалентных связей; в некоторых неорганических полимерах цепочка ионно-ковалентных связей может прерываться единичными сочленениями координационного характера. Структурная классификация неорганических
полимеров осуществляется по тем же признакам, что и органических или полимеров.

Слайд 5

Среди природных неорганических полимеров наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют кристаллы типа алмаза или
кварца.

Слайд 6

Строение неорганических полимеров

К образованию линейных неорганических полимеров способны элементы верхних рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает.

Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы.

Слайд 7

Длинные гомоатомные цепи (образуют лишь углерод и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны.

Слайд 8

Линейные полимеры углерода - кумулены =С=С=С=С= ... и кар-бин -С=С-С=С-...; кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы -соответственно графит и алмаз

Общая формула кумуленов: RR¹CnR²R³

Слайд 9

Виды неорганических полимеров

Сера, селен и теллур образуют атомные цепочки с простыми связями.

Их полимеризация имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Слайд 10

Практический интерес представляют линейные неорганические полимеры, которые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т.п.

Такие неорганические полимеры могут быть термостойкими каучуками, стеклами, волокнообразующими и т.п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, силикаты.

Слайд 11

Применение неорганических полимеров

Переработка неорганических полимеров в стекла, волокна, ситаллы, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие добавки, позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Посмотреть все слайды

Последние материалы раздела:

Все, что нужно знать о бактериях
Все, что нужно знать о бактериях

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10...

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...