Презентация к уроку по алгебре (10 класс) на тему: Числовые функции. Определение и способы задания

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Числовые функции. Определение и способы задания.

Напомним Если даны числовое множество и правило, позволяющее поставить в соответствие каждому элементу из множества определенное число, то говорят, что задана функция с областью определения: – область определения функции; – независимая переменная или аргумент; – зависимая переменная; множество всех значений, называют областью значений функции и обозначают.

Если дана функция, и на координатной плоскости отмечены все точки вида, где, а, то множество этих точек называют графиком функции, .

Графики некоторых функций прямая

парабола

гипербола

Зная график функции с помощью геометрических преобразований можно построить график функции. Для этого надо сделать параллельный перенос графика функции на вектор, то есть на вправо, если, и влево, если на вверх, если, и вниз, если.

Пример -4 0 1 2 3 4

Задать функцию – указать правило, которое поз- воляет по произвольно выбранному значению вычислить соответствующее значение. Чаще всего это правило связано с формулой (например). Такой способ задания функции называется аналитическим.

Пример Пусть – некоторая линия на координатной плоскости

Тем самым на отрезке задана функция. Такой способ задания функции называют графическим. Заметим, что если функция была задана аналитически и нам удалось построить ее график, то тем самым мы фактически осуществили переход от аналитического способа задания функции к графическому.

Табличный способ задания функции – с по-мощью таблицы, в которой указаны значения функции для конечного множества значений аргумента. Например: 5 7 8 9 10 12 5 7 4 6 5 7 8 9 10 12 5 7 4 6

Словесный способ задания функции – способ, при котором правило задания функции описывается словами.

Числовой функцией называется такое соответствие между числовым множеством Х и множеством R действительных чисел, при котором каждому числу из множества Х сопоставляется единственное число из множества R. Множество Х называют областью определения функции . Функции обозначают буквами f, g, h и др. Если f - функция, заданная на множестве Х , то действительное число у, соответствующее числу х их множества Х , часто обозначают f(x) и пишут
у = f(x). Переменную х при этом называют аргументом. Множество чисел вида f(x) называют областью значений функции


Функцию задают при помощи формулы. Например, у = 2х - 2. Если при задании функции с помощью формулы ее область определения не указывается, то полагают, что областью определения функции является область определения выражения f(x) .


Например. Если функция задана формулой , то ее область определения - есть множество действительных чисел, исключая число 2 (если х = 2, то знаменатель данной дроби обращается в нуль).


Числовые функции можно представлять наглядно с помощью графика на координатной плоскости. Графиком является множество таких точек координатной плоскости, которые имеют абсциссу х и ординату f(x) для всех х из множества Х. Так, графиком функции у = х + 2 , заданной на множестве R , является прямая (рис. 1), а графиком функции , заданной на этом же множестве, - парабола (рис. 2).


Для построения графика можно воспользоваться таблицей соответствующих значений х и у :








































1) для функции у = х + 2







































2) для функции



Не каждое множество точек на координатной плоскости представляет собой график некоторой функции. Так как при каждом значении аргумента из области определения функция должна иметь одно лишь значение, то любая прямая, параллельная оси ординат, или совсем не пересекает график функции, или пересекает его лишь в одной точке. Если это условие не выполняется, то множество точек координатной плоскости график функции не задает.


Например, кривая на рис. 3.


Функции можно задавать и при помощи графика, и при помощи таблицы. Например, таблица, приведенная ниже, описывает зависимость температуры воздуха от времени суток. Эта зависимость - функция, так как каждому значению времени t соответствует единственное значение температуры воздуха p .































t (в часах)























p (в градусах)






















Числовая функция - это функция, у которой область определения (аргументы) и область значений функции являются числовыми множествами. , где , - числовые множества.

Примером числовой функции может служить зависимость вашего роста (значения функции) от времени (аргумент) (Рис. 1).

Рис. 1. График функции роста

Функция, которая ставит в соответствие каждому человеку его размер обуви, не является числовой, так как ее аргументы - не числа.

Как и любые другие объекты, функции принято классифицировать, чтобы было удобнее их изучать. Вы знакомы с разными видами функций: линейной, квадратичной, логарифмической и т.д. Рассмотрим самые простые функции - линейные.

Уравнение линейной функции: , и - некоторые числа. График - прямая (Рис. 2).

Рис. 2. Пример графика линейной функции

Почему линейную функцию можно назвать простой? Так как ее графиком является прямая. Любая невертикальная прямая на координатной плоскости задает линейную функцию и наоборот. В геометрии прямая - один из самых простых объектов.

Кроме того, линейную функцию мы часто встречаем и используем в жизни. Например, когда мы говорим, что автомобиль движется со скоростью км/ч. Это означает, что за первый час он проедет км, за второй - км и т.д. То есть одинаковые изменения аргумента (времени) приводят к одинаковому изменению функции (расстоянию, которое проехал автомобиль).

Опишем движение автомобиля: пусть начальное положение - , а за часов с постоянной скоростью он проедет расстояние . Тогда положение автомобиля в данный момент времени будет определяться следующим образом: , где - аргумент функции.

Такое уравнение и описывает линейную функцию. Возьмем два момента времени и :

Мы видим, что изменение значения функции пропорционально изменению значения её аргумента.

Также линейная функция важна и тем, что с помощью неё можно локально приблизить (описать) другие функции. Например, если мы на графике (Рис. 3) возьмем маленький участок (Рис. 4), то увидим, что он близок к прямой.

Рис. 3. График функции

Рис. 4. Часть графика на Рис. 3.

Проделав так для всей функции, мы получили кусочно-линейную функцию (Рис. 5). Теперь мы можем описать ее поведение на каждом линейном участке.

Рис. 5. Кусочно-линейная функция

Простой пример приближения кривой линии короткими отрезками прямых изучается в школе на информатике: черепашка в программе ЛОГО таким образом рисует окружность. Понятно, что идеальную окружность на экране нарисовать нельзя: у экрана есть минимальная ячейка (пиксель). Мы ее называем точкой, но у нее все равно есть какая-то ширина, длина. И понятно, что нарисовать гладкую окружность нельзя - на самом деле будет получаться очень-очень точное, но всё-таки приближение.

Если мы смотрим на фотографию на экране, то кажется, что линии плавные. Но если начать её увеличивать, то рано или поздно становятся видны квадратики (пиксели) (Рис. 6).

Рис. 6. Увеличение фотографии на экране

То же самое можно увидеть и в нарисованной черепашкой окружности. При увеличении станет заметно, что на самом деле нарисована не окружность, а правильный n-угольник с достаточно большим значением (Рис. 7).

Рис. 7. Увеличенное изображение окружности

В жизни мы часто используем такой метод. Например, наблюдая за полетом птицы, мы неосознанно высчитываем ее скорость и предполагаем, что она будет лететь дальше по прямой с той же скоростью (Рис. 8). На самом деле наше предсказание может отличаться от действительности, но на небольшом промежутке времени оно будет достаточно точным.

Рис. 8. Иллюстрация просчета положения птицы

Не только мы выполняем такой анализ. Многие животные тоже умеют решать такие задачи: например, лягушка, когда ловит комара, должна уметь предсказывать точку, в которой он будет, чтобы успеть выбросить язык.

Для более точных измерений мы используем более точные инструменты. Для функций более точным (по сравнению с линейной функцией) инструментом является квадратичная функция. Можно сказать, что это следующая по сложности функция.

Уравнение квадратичной функции: , где , и - некоторые числа.

График квадратичной функции - парабола (Рис. 9).

Рис. 9. Пример графика квадратичной функции

Используя квадратичную функцию, можно более точно приближать неизвестные нам функции, а значит, делать более точные предсказания.

Ещё одна часто возникающая задача, связанная с числовыми функциями: нам известны значения функции в определенных точках, а нужно понять, как ведёт себя функция между этими точками. Например, у нас есть какие-то данные эксперимента (Рис. 10).

Рис. 10. Результаты эксперимента

Чтобы понять, как вела себя температура воздуха между отмеченными точками, нужно каким-то образом предположить, как ведёт себя функция, так как мы не можем делать бесконечно много измерений. Приблизить можно линейно (Рис. 11, график А) или квадратично (Рис. 11, график Б).

Рис. 11. Линейное и квадратичное приближение

Такие процессы называются интерполяцией .

Задача кажется сложной: может показаться, что это гадание на кофейной гуще. Действительно, мы же не знаем, как поведёт себя функция между двумя отмеченными точками. Например, её график может выглядеть следующим образом (Рис. 12).

Рис. 12. «Неожиданное» поведение графика функции

На самом деле мы восстанавливаем график функции по точкам, используя некоторую модель: предполагаем, что функция достаточно гладкая, если в модели (например, при проведении эксперимента) не было резких скачков. Тогда с большой степенью вероятности можно сказать, что график функции выглядит так, как показано на Рис. 11.

Квадратичную, линейную функции объединяет то, что они задаются многочленом (есть и другие такие функции):

Кроме таких функций, есть и другие, они описывают разные процессы физики, биологии и также являются изучаемыми. Их можно задать, описать их свойства, построить их графики и дальше с ними работать. К таким функциям относятся, например, показательная, логарифмическая, тригонометрические функции. О них мы поговорим на следующих уроках.

09.07.2015 11340 0

Цель: обсудить определение функции, способы ее задания.

I. Сообщение темы и цели уроков

II. Повторение материала 9 класса

Различные аспекты этой темы уже рассматривались в 7-9 классах. Теперь необходимо расширить и обобщить сведения о функциях. Напомним, что тема является одной из важнейших для всего курса математики. Различные функции будут изучаться вплоть до окончания школы и далее в высших учебных заведениях. Данная тема вплотную связана с решением уравнений, неравенств, текстовыми задачами, прогрессиями и т. д.

Определение 1. Пусть даны два множества действительных чисел D и Е и указан закон f по которому каждому числу х ∈ D ставится в соответствие единственное числом y ∈ Е (см. рисунок). Тогда говорят, что задана функция у = f (x ) или у(х) с областью определения (О.О.) D и областью изменения (О.И.) Е. При этом величину х называют независимой переменной (или аргументом функции), величину у - зависимой переменной (или значением функции).

Область определения функции f обозначают D (f ). Множество, состоящее из всех чисел f (x ) (область значений функции f ), обозначают E (f ).

Пример 1

Рассмотрим функцию Для нахождения у для каждого значения х необходимо выполнить следующие операции: из величины х вычесть число 2 (х - 2), извлечь квадратный корень из этого выражения и, наконец, прибавить число 3 Совокупность этих операций (или закон, по которому для каждого значения х ищется величина у) и называется функцией у(х). Например, для х = 6 находим Таким образом, для вычисления функции у в данной точке х необходимо подставить эту величину х в данную функцию у(х).

Очевидно, что для данной функции для любого допустимого числа х можно найти только одно значение у (т. е. каждому значению х соответствует одно значение у).

Рассмотрим теперь область определения и область изменения этой функции. Извлечь квадратный корень из выражения (х - 2) можно, только если эта величина неотрицательная, т. е. х - 2 ≥ 0 или х ≥ 2. Находим Так как по определению арифметического корня то прибавим ко всем частям этого неравенства число 3, получим: или 3 ≤ у < +∞. Находим

В математике часто используются рациональные функции. При этом функции вида f (x ) = р(х) (где р(х) - многочлен) называют целыми рациональными функциями. Функции вида (где р(х) и q (x ) - многочлены) называют дробно-рациональными функциями. Очевидно, дробь определена, если знаменатель q (x ) не обращается в нуль. Поэтому область определения дробно-рациональной функции - множество всех действительных чисел, из которого исключены корни многочлена q (x ).

Пример 2

Рациональная функция определена при х - 2 ≠ 0, т. е. x ≠ 2. Поэтому область определения данной функции - множество всех не равных 2 действительных чисел, т. е. объединение интервалов (-∞; 2) и (2; ∞).

Напомним, что объединением множеств А и В называется множество, состоящее из всех элементов, входящих хотя бы в одно из множеств А или В. Объединение множеств А к В обозначается символом А U В. Так, объединением отрезков и (3; 9) является промежуток (непересекающиеся промежутки) обозначают .

Возвращаясь к примеру, можно записать: Так как при всех допустимых значениях х дробь не обращается в нуль, то функция f (x ) принимает все значения, кроме 3. Поэтому

Пример 3

Найдем область определения дробно-рациональной функции

Знаменатели дробей обращаются в нуль при х = 2, х = 1 и х = -3. Поэтому область определения данной функции

Пример 4

Зависимость уже не является функцией. Действительно, если мы хотим вычислить значение у, например, для х = 1, то, пользуясь верхней формулой, найдем: у = 2 · 1 - 3 = -1, а пользуясь нижней формулой, получим: у = 12 + 1 = 2. Таким образом, одному значению x (x = 1) соответствуют два значения у (у = -1 и у = 2). Поэтому эта зависимость (по определению) не является функцией.

Пример 5

Приведены графики двух зависимостей y (x ). Определим, какая из них является функцией.


На рис. а приведен график функции, так как любой точке x 0 соответствует только одно значение у0. На рис. б приведен график какой- то зависимости (но не функции), так как существуют такие точки (например, x 0 ), которым отвечает более одного значения у (например, у1 и у2).

Рассмотрим теперь основные способы задания функций.

1) Аналитический (с помощью формулы или формул).

Пример 6

Рассмотрим функции:

Несмотря на непривычную форму, это соотношение также задает функцию. Для любого значения х легко найти величину у. Например, для х = -0,37 (так как х < 0, то пользуясь верхним выражением), получаем: у(-0,37) = -0,37. Для х = 2/3 (так как х > 0, то пользуемся нижним выражением) имеем: Из способа нахождения у понятно, что любой величине х отвечает только одно значение у.

в) 3х + у = 2у - х2. Выразим из этого соотношения величину у: 3х + х2 = 2у - у или х2 + 3х = у. Таким образом, это соотношение также задает функцию у = х2 + 3х.

2) Табличный

Пример 7

Выпишем таблицу квадратов у для чисел х.

2,25

6,25

Данные таблицы также задают функцию - для каждого (приведенного в таблице) значения х можно найти единственное значение у. Например, у(1,5) = 2,25, y (5) = 25 и т. д.

3) Графический

В прямоугольной системе координат для изображения функциональной зависимости у(х) удобно пользоваться специальным рисунком - графиком функции.

Определение 2. Графиком функции y (x ) называют множество всех точек системы координат, абсциссы которых равны значениям независимой переменной х, а ординаты - соответствующим значениям зависимой переменной у.

В силу такого определения все пары точек (х0, у0), которые удовлетворяют функциональной зависимости у(х), расположены на графике функции. Любые другие пары точек, не удовлетворяющие зависимости y (x ), на графике функции не лежат.

Пример 8

Дана функция Принадлежит ли графику этой функции точка с координатами: а) (-2; -6); б) (-3; -10)?

1. Найдем значение функции у при Так как у(-2) = -6, то точка А (-2; -6) принадлежит графику данной функции.

2. Определим значение функции у при Так как y (-3) = -11, то точка В (-3; -10) не принадлежит графику этой функции.

По данному графику функции у = f (x ) легко найти область определения D (f ) и область значений E (f ) функции. Для этого точки графика проецируют на оси координат. Тогда абсциссы этих точек образуют область определения D (f ), ординаты - область значений E (f ).

Сравним различные способы задания функции. Наиболее полным следует считать аналитический способ. Он позволяет составить таблицу значений функции для некоторых значений аргументов, построить график функции, провести необходимое исследование функции. Вместе с тем табличный способ позволяет быстро и легко найти значение функции для некоторых значений аргумента. График функции наглядно показывает ее поведение. Поэтому противопоставлять различные способы задания функции не следует каждый из них имеет свои преимущества и свои недостатки. На практике используются все три способа задания функции.

Пример 9

Дана функция у = 2х2 - 3х +1.

Найдем: а) y (2); б) y (-3х); в) у(х + 1).

Для того чтобы найти значение функции при каком-то значении аргумента, необходимо подставить это значение аргумента в аналитический вид функции. Поэтому получим:

Пример 10

Известно, что у(3 - х) = 2х2 - 4. Найдем: а) y (x ); б) у(-2).

а) Обозначим буквой z = 3-х, тогда х = 3 - z . Подставим это значение х в аналитический вид данной функции у(3 - х) = 2х2 - 4 и получим: y (3 - (3 - z )) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (9 - 6 z + z 2 ) - 4, или y (z ) = 2х2 - 12 z + 14. Так как безразлично, какой буквой обозначен аргумент функции - z , х, t или любой другой, то сразу получим: у(х) = 2х2 - 12х + 14;

б) Теперь легко найти у(-2) = 2 · (-2)2 - 12 · (-2) + 14 = 8 + 24 + 14 = 46.

Пример 11

Известно, что Найдем х(у).

Обозначим буквой z = x - 2, тогда х = z + 2, и запишем условие задачи: или To же условие запишем для аргумента (- z ): Для удобства введем новые переменные a = y (z ) и b = y (- z ). Для таких переменных получим систему линейных уравнений

Нас интересует неизвестная a .

Для ее нахождения используем способ алгебраического сложения. Поэтому умножим первое уравнение на число (-2), второе уравнение - на число 3. Получим:

Сложим эти уравнения: откуда Так как аргумент функции можно обозначать любой буквой, то имеем:

В заключение заметим, что к концу 9 класса были изучены свойства и графики:

а) линейной функции у = кх + m (график - прямая линия);

б) квадратичной функции у = ах2 + b х + с (график - парабола);

в) дробно-линейной функции (график - гипербола), в частности функции

г) степенной функции у = ха (в частности, функции

д) функции у = |х|.

Для дальнейшего изучения материала рекомендуем повторить свойства и графики указанных функций. На следующих занятиях будут рассмотрены основные способы преобразования графиков.

1. Дайте определение числовой функции.

2. Расскажите о способах задания функции.

3. Что называется объединением множеств А и B ?

4. Какие функции называются целыми рациональными?

5. Какие функции называются дробно-рациональными? Как находится область определения таких функций?

6. Что называют графиком функции f (х)?

7. Приведите свойства и графики основных функций.

IV. Задание на уроках

§ 1, № 1 (а, г); 2 (в, г); 3 (а, б); 4 (в, г); 5 (а, б); 6 (в); 7 (а, б); 8 (в, г); 10 ( a ); 13 (в, г); 16 (а, б); 18.

V. Задание на дом

§ 1, № 1 (б, в); 2 (а, б); 3 (в, г); 4 (а, б); 5 (в, г); 6 (г); 7 (в, г); 8 (а, б); 10 (б); 13 (а, б); 16 (в, г); 19.

VI. Творческие задания

1. Найдите функцию у = f (х), если:


Ответы:


2. Найдите функцию у = f (x ) если:

Ответы:


VII. Подведение итогов уроков

Числовой функцией называется такое соответствие между числовым множеством Х и множеством R действительных чисел, при котором каждому числу из множества Х сопоставляется единственное число из множества R. Множество Х называют областью определения функции . Функции обозначают буквами f, g, h и др. Если f – функция, заданная на множестве Х , то действительное число у, соответствующее числу х их множества Х , часто обозначают f(x) и пишут
у = f(x). Переменную х при этом называют аргументом. Множество чисел вида f(x) называют областью значений функции

Функцию задают при помощи формулы. Например, у = 2х – 2. Если при задании функции с помощью формулы ее область определения не указывается, то полагают, что областью определения функции является область определения выражения f(x) .

1. Функция называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает

2. Функция называется возрастающей на некотором промежутке А, если для любых чисел их множества А выполняется условие: .

График возрастающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика увеличиваются (рис. 4).

3. Функция называется убывающей на некотором промежутке А , если для любых чисел их множества А выполняется условие: .

График убывающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика уменьшаются (рис. 4).

4. Функция называется четной на некотором множестве Х, если выполняется условие: .

График четной функции симметричен относительно оси ординат (рис. 2).

5. Функция называется нечетной на некотором множестве Х, если выполняется условие: .

График нечетной функции симметричен относительно начала координат (рис. 2).

6. Если функция у = f(x)
f(x) f(x ) ,то говорят, что функция у = f(x) принимает наименьшее значение у = f(x ) при х = x (рис. 2, функция принимает наименьшее значение в точке с координатами (0;0)).



7. Если функция у = f(x) определена на множестве Х и существует такое , что для любого справедливо неравенствоf(x) f(x ) ,то говорят, что функция у = f(x) принимает наибольшее значение у = f(x ) при х = x (рис. 4, функция не имеет наибольшего и наименьшего значений).

Если для данной функции у = f(x) изучены все перечисленные свойства, то говорят, что проведено исследование функции.

Пределы.

Число А называетс пределом ф-ии при х стремящемся к ∞ если для любого Е>0, существует δ (E)>0 такое что при всех х удовлетворяет неравенство |x|>δ выполняется неравенство |F(x)-A|

Число А называется пределом функции при Х стремящемся к Х 0 если для любого Е>0, существует δ (E)>0 такое что при всех Х≠Х 0 удовлетворяет неравенство |X-X 0 |<δ выполняется неравенство |F(x)-A|

ОДНОСТОРОННИЕ ПРЕДЕЛЫ.

При определении предел что Х стремится к Х0 произвольным образом, то есть с любой стороны. Когда Х стремится к Х0, так что он всё время меньше Х0, то тогда предел называется пределом в т. Х0 слева. Или левосторонним пределом. Аналогично определяется и правосторонни предел.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...