Получение и свойства бензола. Физические и химические свойства бензола


Систематическое
наименование
бензол
Сокращения PhH
Традиционные названия фен (Лоран, 1837),
фениловый водород , бензен
Хим. формула C₆H₆
Состояние жидкость
Молярная масса 78,11 г/моль
Плотность 0,8786 г/см³
Динамическая вязкость 0,0652 Па·с
Энергия ионизации 9,24 ± 0,01 эВ
Т. плав. 5,5 °
Т. кип. 80,1 °
Т. всп. −11 °
Т. свспл. 562 °
Пр. взрв. 1,2 ± 0,1 об.%
Давление пара 75 ± 1 мм рт.ст.
Растворимость в воде 0,073 г/100 мл
ГОСТ ГОСТ 5955-75
Рег. номер CAS 71-43-2
PubChem
Рег. номер EINECS 200-753-7
SMILES

C1=CC=CC=C1

InChI
RTECS CY1400000
ChEBI 16716
ChemSpider
Токсичность

токсичен, обладает канцерогенными и наркотическими свойствами


Сигнальное слово ОПАСНО!
Приводятся данные для стандартных условий (25 ° , 100 кПа), если не указано иного.

Химические свойства

Для бензола характерны реакции замещения - бензол реагирует с алкенами, хлоралканами, галогенами, азотной и серной кислотами. Реакции разрыва бензольного кольца проходят в жёстких условиях (температура, давление).

  • Взаимодействие с алкенами (алкилирование), в результате реакции образуются гомологи бензола, например, этилбензол и кумол:
6 6 + 2 = CH 2 → AlCl3∗HCl 6 5 CH 2 CH 3 6 6 + CH 2 = CH − CH 3 → AlCl3 ∗ HCl 6 5 CH(CH 3) 2
  • Взаимодействие с хлором и бромом в присутствии катализатора с образованием хлорбензола (реакция электрофильного замещения):
6 6 + 2 → FeCl 3 6 5 + HCl
  • В отсутствие катализатора при нагревании или освещении идёт радикальная реакция присоединения с образованием смеси изомеров гексахлорциклогексана
6 6 + 3Cl 2 → T,hν 6 6 6
  • При взаимодействии бензола с бромом в растворе олеума образуется гексабромбензол:
6 6 + 6Br 2 → H2SO4 ∗ SO3 6 6 + 6HBr
  • Взаимодействие с галогенопроизводными алканов (алкилирование бензола, реакция Фриделя - Крафтса) с образованием алкилбензолов:

  • Реакция ацилирования по Фриделю-Крафтсу, бензола ангидридами, галогенангидридами карбоновых кислот приводит к образованию ароматических и жирноароматических кетонов:
6 6 + (CH 3 CO) 2 → AlCl 3 6 5 COCH 3 + CH 3 COOH

6 6 + 6 5 COCl → AlCl 3 6 5 COC 6 5 + HCl

В первой и второй реакциях образуется ацетофенон (метилфенилкетон), замена хлорида алюминия на хлорид сурьмы позволяет снизить температуру протекании реакции до 25° С. В третьей реакции образуется бензофенон (дифенилкетон).

  • Реакция формилирования - взаимодействие бензола со смесью СО и НСl, протекает при высоком давлении и под действием катализатора, продуктом реакции является бензальдегид:
6 6 + CO + HCl → AlCl 3 6 5 COH + HCl
  • Реакции сульфирования и нитрования (электрофильное замещение):
6 6 + HNO 3 → 2 SO 4 6 5 NO 2 + 2 6 6 + 2 SO 4 → 6 5 SO 3 + 2
  • Восстановление бензола водородом (каталитическое гидрирование):
6 6 + 3H 2 → / , ;t 6 12

Реакции окисления

Бензол, вследствие своего строения, очень устойчив к окислению, на него не действует, например, раствор перманганата калия. Однако окисление до малеинового ангидрида можно провести при помощи катализатора оксида ванадия :


  • Реакция озонолиза. Также бензол подвергается озонолизу, но процесс протекает медленнее, чем с непредельными углеводородами:


Результатом реакции является образование диальдегида - глиоксаля (1,2-этандиаля).

  • Реакция горения. Горение бензола является предельным случаем окисления. Бензол легко воспламеняется и горит на воздухе сильно коптящим пламенем:
2C 6 6 + 15O 2 → 12CO 2 + 6H 2

Структура

Бензол по составу относится к ненасыщенным углеводородам (гомологический ряд n 2n −6), но в отличие от углеводородов ряда этилена, 2 4 , проявляет свойства, присущие ненасыщенным углеводородам (для них характерны реакции присоединения), только при жёстких условиях, а вот к реакциям замещения бензол более склонен. Такое «поведение» бензола объясняется его особым строением: нахождением атомов в одной плоскости и наличием в структуре сопряжённого 6π-электронного облака. Современное представление об электронной природе связей в бензоле основывается на гипотезе Лайнуса Полинга, который предложил изображать молекулу бензола в виде шестиугольника с вписанной окружностью, подчёркивая тем самым отсутствие фиксированных двойных связей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.

В специальной и популярной литературе распространён термин бензольное кольцо , относящийся, как правило, к углеродной структуре бензола без учёта иных атомов и групп, связанных с атомами углерода. Бензольное кольцо входит в состав множества различных соединений.

Производство

На сегодняшний день существует несколько принципиально различных способов производства бензола.


Применение

Перевозка бензола железнодорожным транспортом осуществляется в специализированных вагонах-цистернах

Значительную часть получаемого бензола используют для синтеза других продуктов:

  • около 50 % бензола превращают в этилбензол (алкилирование бензола этиленом);
  • около 25 % бензола превращают в кумол (алкилирование бензола пропиленом);
  • приблизительно 10-15 % бензола гидрируют в циклогексан;
  • около 10 % бензола расходуют на производство нитробензола;
  • 2-3 % бензола превращают в линейные алкилбензолы;
  • приблизительно 1 % бензола используется для синтеза хлорбензола.

В существенно меньших количествах бензол используют для синтеза некоторых других соединений. Изредка и в крайних случаях, ввиду высокой токсичности, бензол используют в качестве растворителя.

Кроме того, бензол входит в состав бензина. В 1920-х - 1930-х годах, бензол добавляли ru de в прямогонный бензин для повышения его октанового числа, но к 1940-м годам такие смеси не выдержали конкуренции с высокооктановыми бензинами. Ввиду высокой токсичности содержание бензола в топливе ограничено современными стандартами введением до 1 %.

Биологическое действие и токсикология

Бензол является одним из самых распространённых ксенобиотиков антропогенного происхождения.

Бензол сильно ядовит. Минимальная летальная доза при пероральном приеме составляет 15 мл, средняя 50-70 мл. При непродолжительном вдыхании паров бензола не возникает немедленного отравления, поэтому до недавнего времени порядок работ с бензолом особо не регламентировался. В больших дозах бензол вызывает тошноту и головокружение, а в некоторых тяжёлых случаях отравление может повлечь смертельный исход. Первым признаком отравления бензолом нередко бывает эйфория. Пары бензола могут проникать через неповрежденную кожу. Жидкий бензол довольно сильно раздражает кожу. Если организм человека подвергается длительному воздействию бензола в малых количествах, последствия также могут быть очень серьёзными.

Бензол является сильным канцерогеном. Исследования показывают связь бензола с такими заболеваниями, как апластическая анемия, острые лейкозы (миелоидный, лимфобластный), хронический миелоидный лейкоз, миелодиспластический синдром и заболевания костного мозга.

Механизм трансформации и мутагенное воздействие бензола

Существует несколько вариантов механизма трансформации бензола в организме человека. В первом варианте происходит гидроксилирование молекулы бензола микросомальной системой окисления при участии цитохрома P450. Согласно механизму, бензол окисляется сначала до высокореакционного эпоксида, который далее преобразуется в фенол. Помимо этого происходит генерация свободных радикалов (активные формы кислорода), вследствие высокой активации Р450 по реакции:

Молекулярный механизм мутагенеза бензола

Бензол является промутагеном , мутагенные свойства он приобретает только после биотрансформации, в результате которой образуются соединения с высокой реакционной способностью. Одним из таких является эпоксид бензола. Вследствие высокого углового напряжения эпоксидного цикла, происходит разрыв связей -С-О-С- и молекула становится электрофилом, она легко вступает в реакцию с нуклеофильными центрами азотистых оснований молекул нуклеиновых кислот, в особенности ДНК.

Механизм взаимодействия эпоксидного цикла, с нуклеофильными центрами - аминогруппами азотистых оснований (реакция арилирования) протекает, как реакция нуклеофильного замещения 2 . В результате образуются довольно прочные ковалентно-связанные ДНК-аддукты, наиболее часто такие дериваты наблюдаются у гуанина (так, как молекула гуанина имеет максимальное количество нуклеофильных центров), например, N7-фенилгуанин. Образовавшиеся ДНК-аддукты могут приводить к изменению нативной структуры ДНК, тем самым нарушается правильное протекание процессов транскрипции и репликации. Что является источником генетических мутаций. Накопление эпоксида в гепатоцитах (клетках печени) ведёт к необратимым последствиям: увеличению арилирования ДНК, а вместе с тем и к увеличению экспрессии (сверхэкспрессия) мутантных белков, являющихся продуктами генетической мутации; торможению апоптоза; трансформации клеток и даже гибели. Помимо яркой выраженной генотоксичности и мутагенности, бензол обладает сильной миелотоксичностью и канцерогенной активностью, особенно этот эффект проявляется в клетках миелоидной ткани (клетки данной ткани очень чувствительны к подобному роду воздействиям ксенобиотиков).

Бензол и токсикомания

Бензол оказывает на человека одурманивающее воздействие и может приводить к наркотической зависимости.

Острое отравление

При очень высоких концентрациях - почти мгновенная потеря сознания и смерть в течение нескольких минут. Окраска лица синюшная, слизистые оболочки часто вишнёво-красные. При меньших концентрациях - возбуждение, подобное алкогольному, затем сонливость, общая слабость, головокружение, тошнота, рвота, головная боль, потеря сознания. Наблюдаются также мышечные подёргивания, которые могут переходить в тонические судороги. Зрачки часто расширены, не реагируют на свет. Дыхание сначала учащено, затем замедлено. Температура тела резко снижается. Пульс учащенный, малого наполнения. Кровяное давление понижено. Известны случаи сильной сердечной аритмии.

После тяжёлых отравлений, которые не приводят непосредственно к смерти, иногда наблюдаются длительные расстройства здоровья: плевриты, катары верхних дыхательных путей, заболевания роговицы и сетчатки, поражения печени, сердечные расстройства и т. д. Описан случай вазомоторного невроза с отёком лица и конечностей, расстройствами чувствительности и судорогами через короткое время после острого отравления парами бензола. Иногда смерть наступает спустя некоторое время после отравления.

Хроническое отравление

В тяжёлых случаях наблюдаются: головные боли, чрезвычайная утомляемость, одышка, головокружение, слабость, нервность, сонливость или бессонница, расстройство пищеварения, тошнота, иногда рвота, отсутствие аппетита, учащение мочеиспускания, менструаций, нередко развиваются упорные кровотечения из слизистой оболочки рта, особенно дёсен, и носа, длящиеся часами и даже сутками. Иногда упорные кровотечения наблюдаются после удаления зуба. Многочисленные мелкие геморрагии (кровоизлияния) в коже. Кровь в испражнениях, маточные кровотечения, кровоизлияния в сетчатку. Обычно именно кровотечения, а часто и сопутствующая им лихорадка (температура до 40° и выше) приводят отравленных в больницу. В подобных случаях прогноз всегда серьёзен. Причиной смерти иногда являются вторичные инфекции: известны случаи гангренозного воспаления надкостницы и некроза челюсти, тяжёлых язвенных воспалений дёсен, общего сепсиса с септическим эндометритом.

Иногда при тяжёлых отравлениях развиваются симптомы нервных заболеваний: повышение сухожильных рефлексов, двусторонний клонус, положительный симптом Бабинского, расстройство глубокой чувствительности, псевдотабетические расстройства с парестезиями, атаксией, параплегией и двигательными нарушениями (признаки поражения задних столбов спинного мозга и пирамидных путей).

Наиболее типичны изменения крови. Число эритроцитов обычно резко снижено, вплоть до 1-2 млн и ниже. Содержание гемоглобина также сильно падает, иногда до 10 %. Цветной показатель в части случаев низок, иногда близок к нормальному, а порой высок (особенно при сильной анемии). Отмечают анизоцитоз и пойкилоцитоз, базофильную пунктацию и появление ядерных эритроцитов, увеличение числа ретикулоцитов и объёма эритроцитов. Типичнее резкое уменьшение числа лейкоцитов. Иногда первоначально лейкоцитоз, быстро сменяющийся лейкопенией, ускорение СОЭ. Изменения со стороны крови развиваются не одновременно. Чаще всего раньше поражается лейкопоэтическая система, позже присоединяется тромбоцитопения. Поражение эритробластической функции часто наступает ещё позже. В дальнейшем может развиться характерная картина тяжёлого отравления - апластическая анемия.

Явления отравления могут сохраняться и даже прогрессировать через месяцы и годы после прекращения работы с бензолом.

Первая помощь при отравлении и лечение

При остром отравлении бензолом (парами бензола) пострадавшего необходимо в первую очередь вынести на свежий воздух, в случае остановки дыхания проводят искусственное дыхание до нормализованного, в качестве стимуляторов дыхания применяют кислород и лобелин. Применение адреналина в качестве аналептика категорически запрещено! При возникновении рвоты внутривенно 40% раствор глюкозы, в случае нарушения кровообращения - инъекцию раствора кофеина. Если отравление произошло перорально и бензол попал в желудок, необходимо промыть его с помощью растительного масла (хорошо абсорбирует бензол), процедуру следует проводить с осторожностью, так как возможна аспирация. При лёгких отравлениях больному показан покой. При возбуждённых состояниях необходимы седативные средства. При возникновении анемии проводят переливания крови, витамин B12, фолиевая кислота, при лейкопении - витамин B6, пентоксил. В случае снижения иммунитета (иммунодефицитное состояние) - иммуностимуляторы.

Действие бензола на биомембраны

Биологические мембраны представляют собой надмолекулярные структуры - двойной липидный слой, в который интегрированы (встроены) или прикреплены на поверхности молекулы белков, полисахаридов. Липиды, входящие в состав биомембран по своей природе амфифильные (дифильные) соединения, то есть способные к растворению, как в полярных веществах, так и в неполярных, вследствие наличия у них полярных групп т. н. «голова» (карбоксильных -СООН, гидроксильных -ОН, аминогрупп -NH 2 и других) и неполярных т. н. «хвосты» (углеводородные радикалы - алкилы, арилы, полициклические структуры типа холестана и другие).

Бензол является эффективным солюбилизатором биологических мембран, он быстро растворяет неполярные группы (т. н. углеводородные «хвосты» ) липидов, главным образом холестерина, входящего в состав мембран. Процесс солюбилизации лимитируется концентрацией бензола, чем его больше, тем быстрее протекает этот процесс. В процессе солюбилизации выделяется энергия, буквально, разрывающая двойной липидный слой (липидный бислой), что приводит к полной деструкции (разрушению структуры) мембраны и, последующему апоптозу клетки (в процессе деструкции биомембран происходит активация мембранных рецепторов (таких, как: CD95, TNFR1, DR3, DR4, и других), которые активируют апоптоз клетки).

Действие на кожу

При частом соприкосновении рук с бензолом наблюдаются сухость кожи, трещины, зуд, краснота (чаще между пальцами), отёчность, просовидные пузырьковые высыпи. Иногда из-за кожных поражений рабочие вынуждены бросать работу.

Предельно допустимая концентрация 5 мг/м 3 .

Безопасность

Работа с применением бензола сопряжена с риском отравления и серьёзного ухудшения здоровья. Бензол - легколетучая жидкость (летучесть 320 мг/л при 20 °С) с высокой степенью воспламенения, поэтому при работе с ним необходимо соблюдать технику безопасности работ с легковоспламеняющимися жидкостями. Большую опасность представляют пары бензола, так как они могут образовывать взрывоопасные смеси с воздухом. В настоящее время применение бензола в качестве органического растворителя сильно ограничено, ввиду токсичности и канцерогенного воздействия его паров и негативном воздействии на кожу. Работа с бензолом в лабораториях также предусматривает его ограничение (строго регламентирована). Бензол рекомендуется использовать в экспериментах лишь в небольших объёмах (не более 50 мл), работа должна проводиться исключительно в перчатках из фторкаучука (латекс растворяется и набухает при воздействии на него бензолом).

  • хранить вблизи источников тепла, открытого огня, сильных окислителей, пищевых продуктов, и так далее,
  • оставлять в открытом виде тару, содержащую бензол, курить,
  • использовать тару из-под бензола для пищевого применения, мытья рук, посуды,
  • производить работу в закрытом, плохо вентилируемом помещении с температурой воздуха больше 30°С,
  • использовать большой объём вещества в качестве растворителя,
  • работать без средств защиты кожи рук, глаз и органов дыхания.

Экология

Бензол экологически небезопасное вещество, токсикант антропогенного происхождения. Основными источниками бензола, поступающего в окружающую среду со сточными водами или выбросами в атмосферу, являются нефтехимические и коксохимические промышленные предприятия, производство топлива и транспорт. Из водоёмов бензол легко улетучивается, cпособен к трансформации из почв в растения, что несёт серьёзную угрозу экосистемам.

Бензол обладает свойством кумуляции, вследствие своей липофильности он способен депонироваться в клетках жировой ткани животных, тем самым отравляя их.


ПРЦВШ (Ф) ФГБОУ ВПО

Кафедра «Пожарная безопасность»

Контрольная работа

по дисциплине «Теория горения и взрывов»

Задание № 1

Определить удельные теоретические количества и объем воздуха, необходимого для полного сгорания паров бензола. Условия, в которых находится воздух, характеризуются температурой Тв и давлением Рв, а пары бензола -- температурой Тг и давлением Рг. Результаты расчетов выразить в следующих единицах: ; ;;;

Исходные данные (N -- номер группы, n -- номер по списку студентов:

Тв=300+(-1) N *2*N-(-1) n *0.2*n= 277,6 K

Рв=?10 3 =95900 Па;

Тг=300?(?1) N ?2?N?(?1) n ?0,2?n= 321,6 К;

Рr=?10 3 =79400 Па.

С6Н6+7,5О2+7,5?3,76N2=6CO2+3pO+7,5?3,76N2+Qp (1),

где Qр - теплота химической реакции. Из данного уравнения можно определить стехиометрические коэффициенты бензола и молекулярного кислорода: Vг =1, V0 = 7,5

2. Удельное теоретическое количество воздуха -- число киломолей воздуха, которые необходимы для полного сгорания одного киломоля бензола, рассчитывается по формуле:

где 4,76 - количество воздуха, в котором содержится единица количества кислорода, = - отношение стехиометрических коэффициентов молекулярного кислорода (Vо) и бензола (Vг)

Подставляя в (г) значения Vо и Vг,получаем:

3. Объем воздуха, необходимого для полного сгорания одного киломоля бензола, определяется так:

где - объем одного киломоля воздуха при температуре Тв и давлением Рв. Значение рассчитывается по формуле

где 22,4 - мольный объем газа при нормальных условиях, Ро = 101325 Па -- нормальное давление, То = 273 К -- нормальная температура.

Подставляя Тв, То, Рв, Ро в (5), получаем

Удельный теоретический объем воздуха рассчитывается по формуле (4):

4. Объем воздуха, необходимого полного сгорания единицы объема газообразного горючего, определяется так:

где - объем одного киломоля горючего -- паров бензола при температуре Тг и давления Рг. Учитывая, что

и подставляя (8) и (5) в (7), получаем следующее выражение для удельного теоретического объема воздуха:

Вычисляем значение данного параметра процесса горения:

Объем воздуха, необходимого для полного сгорания одного килограмма бензола, определяется так:

где - мольная масса горючего -- масса одного киломоля бензола, выраженная в килограммах. Мольная масса бензола численно равна его молекулярному весу находится по формуле:

Ас?nc+Aн?nн, УiAi?ni (11)

где Ас и Ан - атомные веса углерода и водорода, nc и nн - числа атомов углерода в молекуле бензола. Подставляя значения Ас = 12, nc = 6, Ан = 1, nн = 6, получаем:

Удельный теоретический объем воздуха находим, подставляя значения n в и в формулу (10):

Результат расчетов:

Задание № 2

Определить удельные теоретические количество, объем и состав продуктов горения бензола, если известны коэффициент избытка воздуха в, температура Тп и давление Рп продуктов сгорания, температура Тг и давление Рг паров бензола. Результаты расчетов выразить в мольных долях (в процентах) и в следующих единицах: ; ;;

Исходные данные:

в=1,5+(?1) N ?0,1?N?(?1) n ?0,01?n = 0,2 ;

Рп=?10 3 = 68400 Па;

Тп=1600?(?1) N ?20?N?(?1) n ?2?n = 1816 К;

Тг=273?(?1) N ?2?N+(?1) n ?0,2?n = 295,4 К;

Рг=?10 3 = 111600 Па;

решение (N=11, n=2).

1. Запишем стехиометрическое уравнение реакции горения бензола в воздухе:

С 6 Н 6 +7,5О 2 +7,5?3,76N 2 =6CO 2 +3H 2 O+7,5?3,76N 2 +Qp , (1)

где Qp - теплота химической реакции. Из данного уравнения определяем следующие стехиометрические коэффициенты:

V CO2 =6 , V pO =3 , V C6H6 =1 , V O2 =7,5 , V N2 =7,5?3,76

2. Определяем расчетное количество продуктов сгорания одного киломоля горючего:

Подставляя в (2) значения стехиометрических коэффициентов продуктов сгорания и горючего, получаем:

3. Удельное теоретическое количество воздуха -- число киломолей воздуха, необходимого для полного сгорания одного киломоля горючего, определим с помощью формулы:

Где 4,76 - количество воздуха, в котором содержится единица количества кислорода,

Отношение стехиометрических коэффициентов молекулярного кислорода и бензола.

Подставляя в (4) значения V O2 =7,5 и V C6H6 =1 , получаем:

4. Избыточное количество воздуха, которое приходится на 1 Кмоль горючего, определяется выражением:

бензол пар сгорание воздух

Подставляя в данное выражение значения

37,7(0,2-1)=30,16(7)

5. Общее количество продуктов сгорания единицы количества вещества горючего определяется суммой:

После подстановки значений и получаем:

6. Мольные доли продуктов сгорания, выраженные в процентах, определяются так:

В формулах (9) для мольных долей азота и кислорода в продуктах сгорания 0,79 и 0,21 -- мольные доли данных веществ в воздухе, избыток которого приводит к увеличению доли азота и появлению кислорода в продуктах сгорания.

7. Для определения удельных объемов и продуктов сгорания необходимо рассчитать их мольный объем -- объем одного киломоля газа при условиях, в которых находятся продукты:

где 22,4 - объем одного киломоля газа при нормальных условиях, Т 0 =273К - нормальная температура, Ро=101325Па - нормальное давление.

Подставляя в (10) значения,Ро,То, получаем:

Объем продуктов, которые образуются при сгорании одного килограмма горючего, без учета избытка воздуха, рассчитывается так:

где - мольная масса горючего -- масса одного киломоля бензола, выраженная в килограммах. Мольная масса бензола находится по формуле:

где Ас и Ан - атомные веса углерода (12) и водорода (1), n c и n н - числа атомов углерода (6) и водорода (6) в малекулах бензола (С 6 Н 6).

Подставляя значения, и в (12) получаем

Избыточный объем воздуха, приходящийся на 1 килограмм горючего, определяется так:

где - объем одного киломоля избыточного воздуха, который находится в составе продуктов сгорания. Так как температура и давление избыточного воздуха соответствуют температуре и давлению продуктов сгорания, то = =220,7 .

Подставляя данное значение, а такжев в (14), получим:

Для расчета удельного объема продуктов полного сгорания горючего будем считать, что пары бензола имеют температуру Тг при давлении:

где - объем одного киломоля паров бензола при температуре Тг и давлении Рг. Мольный объем горючего рассчитывается по формуле:

Подставляя полученное значение, а такие значения и в (17), получаем:

Избыточный объем воздуха, приходящийся на один кубический метр паров бензола, определяется так:

Подстановка в (20) значений =30,16 , =и

дает следующий результат:

Общий удельный объем продуктов сгорания с учетом избытка воздуха определяется суммой

Результат расчетов:

Х СО2 = % ; Х Н2О =4,4 % ; Х N2 =%; Х О2 =11,7%


Подобные документы

    Расчет коэффициента горючести нитробензола С6Н5NО2 и сероуглерода CS2. Уравнение реакции горения пропилацетата в воздухе. Расчет объема воздуха и продуктов горения при сгорании горючего газа. Определение температуры вспышки толуола по формуле В. Блинова.

    контрольная работа , добавлен 08.04.2017

    Расчет объема воздуха и продуктов горения, образующихся при сгорании вещества. Уравнение реакции горения этиленгликоля в воздухе. Горение смеси горючих газов. Расчет адиабатической температуры горения для стехиометрической смеси. Горение пропанола.

    контрольная работа , добавлен 17.10.2012

    Вид горения и его основные параметры. Химическое превращение горючего и окислителя в продукты горения. Уравнения материального и теплового баланса реакции горения. Влияние коэффициента избытка воздуха на состав продуктов горения и температуру горения.

    контрольная работа , добавлен 17.01.2013

    Определение объема воздуха, необходимого для полного сгорания единицы массы горючего вещества. Состав продуктов сгорания единицы масс горючего вещества. Пределы распространения пламени газо-, паро-, пылевоздушных смесей. Давление взрывчатого разложения.

    курсовая работа , добавлен 23.12.2013

    Разработка мер предотвращения возникновения пожаров и взрывов, оценка условий их развития и подавления. Понятие скорости выгорания, способ ее определения. Порядок составления уравнения реакции горения. Расчет объема воздуха, необходимого для возгорания.

    курсовая работа , добавлен 10.07.2014

    Определение состава продуктов полного сгорания газа. Расчет адиабатной температуры горения газовой смеси при постоянном объеме и при постоянном давлении. Кинетические константы реакции самовоспламенения природного газа. Предел воспламенения газовой смеси.

    курсовая работа , добавлен 19.02.2014

    Характеристика промышленных способов алкилирования бензола пропиленом. Принципы алкилирования бензола олефинами в химической технологии. Проблемы проектирования технологических установок алкилирования бензола. Описание технологии процесса производства.

    дипломная работа , добавлен 15.11.2010

    Горение как мощный процесс окисления. Типы горения: тление и горение с пламенем. Взрыв как частный случай горения. Электрические свойства пламени. Многообразие продуктов горения как следствие неполного сгорания топлива. Фильтрация дыма через воду.

    научная работа , добавлен 29.07.2009

    Определение объема воздуха необходимого для полного сгорания заданного количества пропана. Вычисление изменения энтальпии, энтропии и энергии Гиббса, при помощи следствий из закона Гесса. Определение молярных масс эквивалентов окислителя и восстановителя.

    контрольная работа , добавлен 08.02.2012

    Способы определения расхода поглотительного масла, концентрации бензола в поглотительном масле, выходящем из абсорбера. Расчет диаметра и высоты насадочного абсорбера. Определение требуемой поверхности нагрева в кубе колонны и расхода греющего пара.

Ароматические УВ (арены) – это УВ, молекулы которых содержат одно или несколько бензольных колец.

Примеры ароматических УВ:

Арены ряда бензола (моноциклические арены)

Общая формула: C n H 2n-6 , n≥6

Простейшим представителем ароматических УВ является бензол, его эмпирическая формула С 6 Н 6 .

Электронное строение молекулы бензола

Общая формула моноциклических аренов C n H 2 n -6 показывает, что они являются ненасыщенными соединениями.

В 1856 г. немецкий химик А.Ф. Кекуле предложил циклическую формулу бензола с сопряженными связями (чередуются простые и двойные связи) - циклогексатриен-1,3,5:

Такая структура молекулы бензола не объясняла многие свойства бензола:

  • для бензола характерны реакции замещения, а не реакции присоединения, свойственные ненасыщенным соединениям. Реакции присоединения возможны, но протекают труднее, чем для ;
  • бензол не вступает в реакции, являющиеся качественными реакциями на непредельные УВ (с бромной водой и раствором КМnО 4).

Проведенные позже электронографические исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину 0,140 нм (среднее значение между длиной простой связи С-С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120 о. Молекула представляет собой правильный плоский шестиугольник.

Современная теория для объяснения строения молекулы С 6 Н 6 использует представление о гибридизации орбиталей атома .

Атомы углерода в бензоле находятся в состоянии sp 2 -гибридизации. Каждый атом «С» образует три σ-связи (две с атомами углерода и одну с атомом водорода). Все σ-связи находятся в одной плоскости:

Каждый атом углерода имеет один р-электрон, который не участвует в гибридизации. Негибридизованные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей. Каждое р-облако перекрывается с двумя соседними р-облаками, и в результате образуется единая сопряженная π-система (вспомните эффект сопряжения р-электронов в молекуле бутадиена-1,3, рассмотренный в теме «Диеновые углеводороды»):

Сочетание шести σ-связей с едиой π-системой называется ароматической связью.

Цикл из шести атомов углерода, связанных ароматической связью, называется бензольным кольцом, или бензольным ядром .

В соответствии с современными представлениями об электронном строении бензола молекулу С 6 Н 6 изображают следующим образом:

Физические свойства бензола

Бензол при обычных условиях - бесцветная жидкость; t o пл = 5,5 о С; t o кип. = 80 о С; имеет характерный запах; не смешивается с водой, хороший растворитель, сильно токсичен.

Химические свойства бензола

Ароматическая связь определяет химические свойства бензола и других ароматических УВ.

6π-электронная система является более устойчивой, чем обычные двухэлектроиные π-связи. Поэтому реакции присоединения менее характерны для ароматических УВ, чем для непредельных УВ. Наиболее характерными для аренов являются реакции замещения.

I . Реакции замещения

1.Галогенирование

2. Нитрование

Реакцию осуществляют смесью и кислот (нитрующая смесь):

3.Сульфирование

4.Алкилирование (замещение атома «Н» на алкильную группу) – реакции Фриделя-Крафтса , образуются гомологи бензола:

Вместо галогеналканов можно использовать алкены (в присутствии катализатора – AlCl 3 или неорганической кислоты):

II . Реакции присоединения

1.Гидрирование

2.Присоединение хлора

III. Реакции окисления

1. Горение

2С 6 Н 6 + 15О 2 → 12СО 2 + 6Н 2 О

2. Неполное окисление (KMnO 4 или K 2 Cr 2 O 7 в кислой среде). Бензольное кольцо устойчиво к действию окислителей. Реакция не происходит.

Получение бензола

В промышленности:

1) переработка нефти и угля;

2) дегидрирование циклогексана:

3) дегидроциклизация (ароматизация) гексана:

В лаборатории:

Сплавление солей бензойной кислоты со :

Изомерия и номенклатура гомологов бензола

Любой гомолог бензола имеет боковую цепь, т.е. алкильные радикалы, связанные с бензольным ядром. Первый гомолог бензола представляет собой бензольное ядро, связанное с метильным радикалом:

Толуол не имеет изомеров, поскольку все положения в бензольном ядре равноценны.

Для последующих гомологов бензола возможен один вид изомерии – изомерия боковой цепи, которая может быть двух видов:

1) изомерия числа и строения заместителей;

2) изомерия положения заместителей.

Физические свойства толуола

Толуол - бесцветная жидкость с характерным запахом, не растворимая в воде, хорошо растворяется в органических растворителях. Толуол менее токсичен, чем бензол.

Химические свойства толуола

I . Реакции замещения

1.Реакции с участием бензольного кольца

Метилбензол вступает во все реакции замещения, в которых участвует бензол, и проявляет при этом более высокую реакционную способность, реакции протекают с большей скоростью.

Метильный радикал, содержащийся в молекуле толуола, является заместителем рода, поэтому в результате реакций замещения в бензольном ядре получаются орто- и пара-производные толуола или при избытке реагента - трипроизводные общей формулы:

а) галогенирование

При дальнейшем хлорировании можно получить дихлорметилбензол и трихлорметилбензол:

II . Реакции присоединения

Гидрирование

III. Реакции окисления

1.Горение
C 6 H 5 CH 3 + 9O 2 → 7CO 2 + 4H 2 O

2. Неполное окисление

В отличие от бензола его гомологи окисляются некоторыми окислителями; при этом окислению подвергается боковая цепь, в случае толуола – метильная группа. Мягкие окислители типа MnO 2 окисляют его до альдегидной группы, более сильные окислители (KMnO 4) вызывают дальнейшее окисление до кислоты:

Любой гомолог бензола с одной боковой цепью окисляется сильным окислителем типа KMnO4 в бензойную кислоту, т.е. происходит разрыв боковой цепи с окислением отщепившейся части ее до СО 2 ; например:

При наличии нескольких боковых цепей каждая из них окисляется до карбоксильной группы и в результате образуются многоосновные кислоты, например:

Получение толуола:

В промышленности:

1) переработка нефти и угля;

2) дегидрирование метилциклогексана:

3) дегидроциклизация гептана:

В лаборатории:

1) алкилирование по Фриделю-Крафтсу;

2) реакция Вюрца-Фиттига (взаимодействие натрия со смесью галогенбензола и галогеналкана).

Представляем вашему вниманию видеоурок, посвящённый теме "Химические свойства бензола". Используя этот видеоматериал, вы сможете получить представление о химических свойствах бензола, а также о жёстких условиях, которые необходимы для того, чтобы бензол вступил в реакцию с другими веществами.

Тема: Ароматические углеводороды

Урок: Химические свойства бензола

Рис. 1. Молекула бензола

Разорвать p-электронное облако в молекуле бензола сложно. Поэтому бензол вступает в химические реакции значительно менее активно по сравнению с непредельными соединениями.

Для того чтобы бензол вступил в химические реакции, необходимы достаточно жесткие условия: повышенная температура, а во многих случаях - катализатор. В большинстве реакций устойчивое бензольное кольцо сохраняется.

1. Бромирование.

Необходим катализатор (бромид железа (III) или алюминия) и недопустимо попадание даже небольших количеств воды. Роль катализатора заключается в том, что молекула брома притягивается одним из атомов брома к атому железа. В результате она поляризуется - пара электронов связи переходит к атому брома, связанному с железом:

Br +…. Br - FeBr 3 .

Br + - сильный электрофил. Он притягивается к шестиэлектронному облаку бензольного кольца и разрывает его, образуя ковалентную связь с атомом углерода:

К образовавшемуся катиону мог бы присоединиться анион брома. Но восстановление ароматической системы бензольного кольца энергетически более выгодно, чем присоединение аниона брома. Поэтому молекула переходит в стабильное состояние, выкинув ион водорода:

По аналогичному механизму протекают все реакции электрофильного замещения в бензольном кольце.

2. Нитрование

Бензол и его гомологи взаимодействует со смесью концентрированных серной и азотной кислот (нитрующей смесью). В нитрующей смеси в равновесии существует иона нитрония NO 2 + , который является электрофилом:

3. Сульфирование.

Бензол и другие арены при нагревании реагируют с концентрированной серной кислотой или олеумом - раствором SO 3 в серной кислоте:

4 . Алкилирование по Фриделю-Крафтсу

5. Алкилирование алкенами

Эти реакции энергетически невыгодны, поэтому протекают только при нагревании или облучении.

1. Гидрирование.

При нагревании, повышенном давлении и в присутствии катализатора Ni, Pt или Pd бензол и другие арены присоединяют водород, образуя циклогексан:

2. Хлорирование бензола.

Под действием ультрафиолетового излучения бензол присоединяет хлор. Если колбу из кварцевого стекла с раствором хлора в бензоле вынести на солнечный свет, раствор быстро обесцветится, хлор присоединится к бензолу с образованием 1,2,3,4,5,6-гексахлорциклогексана, который известен под названием гексахлоран (ранее применялся как инсектицид):

3. Горение бензола .

В отличие от алканов, пламя у бензола и других ароматических углеводородов яркое, коптящее.

Подведение итога урока

На этом уроке вы изучили тему «Химические свойства бензола». Используя этот материал, вы смогли получить представление о химических свойствах бензола, а также о жёстких условиях, которые необходимы для того, чтобы бензол вступил в реакцию с другими веществами.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 13, 14 (с. 62) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Почему ароматические соединения по химическим свойствам отличаются как от предельных, так и от непредельных углеводородов?

3. Напишите уравнения реакций сгорания этилбензола и ксилола.

Арены (ароматические углеводороды) это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Общая формула: C n H 2n–6 при n ≥ 6.

Химические свойства аренов

Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

Для ароматических углеводородов характерны реакции:

  • присоединения,
  • замещения,
  • окисления (для гомологов бензола).

Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

1. Реакции присоединения

Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

1.1. Гидрирование

Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.).

При гидрировании бензола образуется циклогексан:

При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

1.2. Хлорирование аренов

Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре , под действием ультрафиолетового излучения.

При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран) .

Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C) , то происходит замещение атомов водорода в боковом алкильном заместителе, а не в ароматическом кольце.

2. Реакции замещения

2.1. Галогенирование

Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl 3 , FeBr 3).

При взаимодействии с хлором на катализаторе AlCl 3 образуется хлорбензол:

Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr 3 . Также в качестве катализатора можно использовать металлическое железо.

Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

Мета -хлортолуол образуется в незначительном количестве.

При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300 о С) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

Например, при хлорировании этилбензола:

2.2. Нитрование

Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

При этом образуется нитробензол:

Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

В продуктах реакции мы указываем либо о -нитротолуол:

либо п -нитротолуол:

Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

2.3. Алкилирование ароматических углеводородов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl 3, FeBr 3 и др.) с образованием гомологов бензола.
  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.
  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.

2.4. Сульфирование ароматических углеводородов

Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO 3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

3. Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C 6 H 6 + 15O 2 → 12CO 2 + 6H 2 O + Q

Уравнение сгорания аренов в общем виде:

C n H 2n–6 + (3n – 3)/2 O 2 → nCO 2 + (n – 3)H 2 O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. О кисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода , соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Если окисление толуола идёт в нейтральном растворе при нагревании , то образуется соль бензойной кислоты – бензоат калия:

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

4. Ориентирующее действие заместителей в бензольном кольце

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Типы заместителей в бензольном кольце

Заместители первого рода Заместители второго рода
орто — и пара -положение Дальнейшее замещение происходит преимущественно в мета -положение
Электронодонорные, повышают электронную плотность в бензольном кольце Электроноакцепторные, снижают электронную плотность в сопряженной системе.
  • алкильные заместители: СН 3 –, С 2 Н 5 – и др.;
  • гидроксил, амин: –ОН, –NН 2 ;
  • галогены: –Cl, –Br
  • нитро-группа:– NO 2 , – SO 3 Н;
  • карбонил – СНО;
  • карбоксил: – СООН, нитрил: – С N;
  • – CF 3

Последние материалы раздела:

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...

Третичное образование Третичное образование
Третичное образование Третичное образование

Чешская система образования развивалась на протяжении длительного периода. Обязательное образование было введено с 1774 года. На сегодняшний день в...